SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("0xFarzad/nav-instruction")
# Run inference
queries = [
"\u003cROUTE_START\u003e\n\u003cSEG\u003e ST_1 -\u003e ST_2 \u003cDIR:LEFT\u003e \u003cLIGHT\u003e \u003cPOI: Citi Bike / amenity: bicycle_rental\u003e \u003cPOI: Hampton Inn / tourism: hotel\u003e\n\u003cSEG\u003e ST_2 -\u003e ST_3 \u003cDIR:STRAIGHT\u003e \u003cPOI_LEFT: Santander / amenity: bank\u003e \u003cPOI_LEFT: Santander / amenity: atm\u003e \u003cPOI_RIGHT: Hampton Inn / tourism: hotel\u003e \u003cPOI_RIGHT: T-Mobile / shop: mobile_phone\u003e\n\u003cSEG\u003e ST_3 -\u003e ST_4 \u003cDIR:STRAIGHT\u003e \u003cPOI_LEFT: Chase / amenity: bank\u003e \u003cPOI_LEFT: Chase / amenity: atm\u003e \u003cPOI_LEFT: Pret A Manger / amenity: fast_food / cuisine: sandwich\u003e\n\u003cSEG\u003e ST_4 -\u003e ST_5 \u003cDIR:STRAIGHT\u003e \u003cPOI_LEFT: Chase / amenity: bank\u003e \u003cPOI_LEFT: Chase / amenity: atm\u003e \u003cPOI_LEFT: Pret A Manger / amenity: fast_food / cuisine: sandwich\u003e\n\u003cSEG\u003e ST_5 -\u003e ST_6 \u003cDIR:STRAIGHT\u003e \u003cPOI_LEFT: Santander / amenity: bank\u003e \u003cPOI_LEFT: Santander / amenity: atm\u003e \u003cPOI_RIGHT: Hampton Inn / tourism: hotel\u003e \u003cPOI_RIGHT: T-Mobile / shop: mobile_phone\u003e\n\u003cSEG\u003e ST_6 -\u003e ST_7 \u003cDIR:STRAIGHT\u003e \u003cPOI_RIGHT: Sheraton New York Times Square Hotel / tourism: hotel\u003e\n\u003cSEG\u003e ST_7 -\u003e ST_8 \u003cDIR:STRAIGHT\u003e \u003cPOI_RIGHT: Sheraton New York Times Square Hotel / tourism: hotel\u003e\n\u003cROUTE_END\u003e",
]
documents = [
"After this block take a left at the third light and stop halfway down the block. After the second intersection you'll go down a block with several theaters. A Hampton Inn will be on your right and a bank ahead on the corner. Start by going straight through two intersections.",
"After this block take a left at the third light and stop halfway down the block. After the second intersection you'll go down a block with several theaters. A Hampton Inn will be on your right and a bank ahead on the corner. Start by going straight through two intersections.",
'At the next light with a playground on the far left, turn left. Stop in the middle of the playground before a fire station on the left side. Pass a T-intersection with Chase on the far left corner. Walk by a small church to the end of the street and turn left.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.4171, 0.4171, 0.3222]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,786 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 16 tokens
- mean: 257.72 tokens
- max: 1468 tokens
- min: 4 tokens
- mean: 44.19 tokens
- max: 150 tokens
- min: 5 tokens
- mean: 40.97 tokens
- max: 115 tokens
- Samples:
anchor positive negative
ST_1 -> ST_2 DIR:STRAIGHT
ST_2 -> ST_3 DIR:STRAIGHT
ST_3 -> ST_4 DIR:STRAIGHT
ST_4 -> ST_5 DIR:LEFT
ST_5 -> ST_6 DIR:STRAIGHTTurn left at the 2nd light with Nine West on the left corner.Walk to the light with the fountain on your left and turn right.
ST_1 -> ST_2 DIR:STRAIGHT
ST_2 -> ST_3 DIR:STRAIGHT
ST_3 -> ST_4 DIR:STRAIGHT
ST_4 -> ST_5 DIR:STRAIGHT
ST_5 -> ST_6 DIR:STRAIGHT
ST_6 -> ST_7 DIR:STRAIGHTCooper's Tavern is on the right corner. Go about half way down the block. Go to the lights and turn right. Go through the following three sets of lights. Stop right after McDonald's on the left.Go through the following three sets of lights. Go about half way down the block. Cooper's Tavern is on the right corner. Stop right after McDonald's on the left. Go to the lights and turn right.
ST_1 -> ST_2 DIR:STRAIGHT
ST_2 -> ST_3 DIR:STRAIGHT
ST_3 -> ST_4 DIR:RIGHT
ST_4 -> ST_5 DIR:STRAIGHT
ST_5 -> ST_6 DIR:STRAIGHT
ST_6 -> ST_7 DIR:STRAIGHTGo straight and take a right at the intersection. Continue straight through 2 intersections. then your destination will be right before Exki on the left.Go straight and take a right at the intersection. Head to the first light and make a left. then your destination will be right before Exki on the left. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
Unnamed Dataset
- Size: 866 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 866 samples:
anchor positive negative type string string string details - min: 16 tokens
- mean: 262.37 tokens
- max: 1270 tokens
- min: 5 tokens
- mean: 43.59 tokens
- max: 164 tokens
- min: 5 tokens
- mean: 40.63 tokens
- max: 115 tokens
- Samples:
anchor positive negative
ST_1 -> ST_2 DIR:STRAIGHT
ST_2 -> ST_3 DIR:STRAIGHTstop in the middle of the intersection at the next light.Go through another light past Rail Line Diner.
ST_1 -> ST_2 DIR:STRAIGHT
ST_2 -> ST_3 DIR:STRAIGHT
ST_3 -> ST_4 DIR:STRAIGHT
ST_4 -> ST_5 DIR:STRAIGHT
ST_5 -> ST_6 DIR:STRAIGHT
ST_6 -> ST_7 DIR:STRAIGHT
ST_7 -> ST_8 DIR:RIGHT
ST_8 -> ST_9 DIR:RIGHT
ST_9 -> ST_10 DIR:STRAIGHT
ST_10 -> ST_11 DIR:STRAIGHTstop a little more than half way down the block where Abe Lebewohl Park on the right begins between Atmi and Urban Outfitters will be on the left. Go to the traffic light where there is a bus stop on the near left corner and turn right. Go through two lights.Go to the traffic light where there is a bus stop on the near left corner and turn right. Go through two lights. stop a little more than half way down the block where Abe Lebewohl Park on the right begins between Atmi and Urban Outfitters will be on the left.
ST_1 -> ST_2 DIR:STRAIGHT
ST_2 -> ST_3 DIR:STRAIGHT
ST_3 -> ST_4 DIR:RIGHTTurn right and go through the light immediately after.Go through the next intersection and pass the park on your right. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_eval_batch_size: 16learning_rate: 2e-05weight_decay: 0.01num_train_epochs: 5warmup_ratio: 0.1bf16: Truedataloader_num_workers: 2load_best_model_at_end: Trueprompts: task: sentence similarity | query:
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 2dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: task: sentence similarity | query:batch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.1028 | 100 | 1.4258 | - |
| 0.2055 | 200 | 1.0283 | - |
| 0.3083 | 300 | 0.9212 | - |
| 0.4111 | 400 | 0.8341 | - |
| 0.5139 | 500 | 0.9105 | 1.0776 |
| 0.6166 | 600 | 0.9106 | - |
| 0.7194 | 700 | 0.8155 | - |
| 0.8222 | 800 | 0.9267 | - |
| 0.9250 | 900 | 0.8819 | - |
| 1.0277 | 1000 | 0.8002 | 0.9708 |
| 1.1305 | 1100 | 0.6874 | - |
| 1.2333 | 1200 | 0.5829 | - |
| 1.3361 | 1300 | 0.6127 | - |
| 1.4388 | 1400 | 0.6469 | - |
| 1.5416 | 1500 | 0.6435 | 0.8187 |
| 1.6444 | 1600 | 0.5558 | - |
| 1.7472 | 1700 | 0.6104 | - |
| 1.8499 | 1800 | 0.6795 | - |
| 1.9527 | 1900 | 0.5831 | - |
| 2.0555 | 2000 | 0.4615 | 0.7572 |
| 2.1583 | 2100 | 0.397 | - |
| 2.2610 | 2200 | 0.425 | - |
| 2.3638 | 2300 | 0.4597 | - |
| 2.4666 | 2400 | 0.3876 | - |
| 2.5694 | 2500 | 0.3891 | 0.7638 |
| 2.6721 | 2600 | 0.4013 | - |
| 2.7749 | 2700 | 0.3587 | - |
| 2.8777 | 2800 | 0.4283 | - |
| 2.9805 | 2900 | 0.4114 | - |
| 3.0832 | 3000 | 0.2442 | 0.7846 |
| 3.1860 | 3100 | 0.2424 | - |
| 3.2888 | 3200 | 0.2852 | - |
| 3.3916 | 3300 | 0.2249 | - |
| 3.4943 | 3400 | 0.3106 | - |
| 3.5971 | 3500 | 0.2425 | 0.7473 |
| 3.6999 | 3600 | 0.2483 | - |
| 3.8027 | 3700 | 0.2413 | - |
| 3.9054 | 3800 | 0.3022 | - |
| 4.0082 | 3900 | 0.2193 | - |
| 4.1110 | 4000 | 0.1417 | 0.7994 |
| 4.2138 | 4100 | 0.1449 | - |
| 4.3165 | 4200 | 0.1421 | - |
| 4.4193 | 4300 | 0.1425 | - |
| 4.5221 | 4400 | 0.1441 | - |
| 4.6249 | 4500 | 0.1775 | 0.8077 |
| 4.7276 | 4600 | 0.1137 | - |
| 4.8304 | 4700 | 0.1319 | - |
| 4.9332 | 4800 | 0.1162 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.1
- Transformers: 4.57.1
- PyTorch: 2.9.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.2.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 15
Model tree for 0xFarzad/nav-instruction
Base model
google/embeddinggemma-300m