Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,62 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- embedding
|
| 5 |
+
- text-embedding
|
| 6 |
+
- crypto
|
| 7 |
+
- nlp
|
| 8 |
+
library_name: transformers
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# crypto-mini-embed
|
| 12 |
+
|
| 13 |
+
**crypto-mini-embed** adalah contoh model mini embedding berbasis arsitektur sederhana untuk eksperimen NLP seperti:
|
| 14 |
+
|
| 15 |
+
- text similarity
|
| 16 |
+
- vector search
|
| 17 |
+
- clustering
|
| 18 |
+
- semantic tagging
|
| 19 |
+
- crypto-topic classification
|
| 20 |
+
|
| 21 |
+
Model ini merupakan **dummy model** untuk membantu pengguna memahami struktur repository model di HuggingFace.
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## ⚙️ Arsitektur Model
|
| 26 |
+
|
| 27 |
+
- Tipe model: `MiniEmbeddingModel`
|
| 28 |
+
- Hidden size: 64
|
| 29 |
+
- Max length: 128 tokens
|
| 30 |
+
- Framework: PyTorch
|
| 31 |
+
- Format: Safetensors
|
| 32 |
+
- Tokenizer: Basic CharTokenizer (dummy)
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## 📦 File dalam Model
|
| 37 |
+
|
| 38 |
+
| File | Fungsi |
|
| 39 |
+
|------|--------|
|
| 40 |
+
| `config.json` | Konfigurasi model |
|
| 41 |
+
| `tokenizer.json` | Tokenizer sederhana |
|
| 42 |
+
| `model.safetensors` | Parameter model |
|
| 43 |
+
| `README.md` | Dokumentasi model |
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
## 🧪 Contoh Penggunaan
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
from transformers import AutoTokenizer, AutoModel
|
| 51 |
+
import torch
|
| 52 |
+
|
| 53 |
+
tok = AutoTokenizer.from_pretrained("0xcubin/crypto-mini-embed")
|
| 54 |
+
model = AutoModel.from_pretrained("0xcubin/crypto-mini-embed")
|
| 55 |
+
|
| 56 |
+
text = "Bitcoin is digital money"
|
| 57 |
+
inputs = tok(text, return_tensors="pt")
|
| 58 |
+
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
emb = model(**inputs).last_hidden_state.mean(dim=1)
|
| 61 |
+
|
| 62 |
+
print(emb.shape) # contoh: (1, 64)
|