Create vocab.py
Browse filesBuggy vocab, not production ready but it will work.
vocab.py
ADDED
|
@@ -0,0 +1,1764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from abc import ABC, abstractmethod
|
| 5 |
+
from typing import Dict, Union, Tuple, Optional, Callable, Any, List
|
| 6 |
+
import warnings
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
import datasets
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
+
|
| 11 |
+
# Optional dependencies for spatial indexing
|
| 12 |
+
try:
|
| 13 |
+
import faiss
|
| 14 |
+
FAISS_AVAILABLE = True
|
| 15 |
+
except ImportError:
|
| 16 |
+
FAISS_AVAILABLE = False
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
from sklearn.neighbors import NearestNeighbors
|
| 20 |
+
SKLEARN_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
SKLEARN_AVAILABLE = False
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class SpatialIndex:
|
| 26 |
+
"""Spatial indexing for fast similarity search."""
|
| 27 |
+
|
| 28 |
+
def __init__(self, vectors: np.ndarray, token_ids: List[int], method: str = "auto"):
|
| 29 |
+
self.token_ids = np.array(token_ids)
|
| 30 |
+
self.method = method
|
| 31 |
+
self._index = None
|
| 32 |
+
|
| 33 |
+
if method == "auto":
|
| 34 |
+
if FAISS_AVAILABLE and vectors.shape[0] > 1000:
|
| 35 |
+
method = "faiss"
|
| 36 |
+
elif SKLEARN_AVAILABLE:
|
| 37 |
+
method = "sklearn"
|
| 38 |
+
else:
|
| 39 |
+
method = "linear"
|
| 40 |
+
|
| 41 |
+
self._build_index(vectors, method)
|
| 42 |
+
|
| 43 |
+
def _build_index(self, vectors: np.ndarray, method: str):
|
| 44 |
+
if method == "faiss" and FAISS_AVAILABLE:
|
| 45 |
+
# L1 distance approximation using L2 index with normalized vectors
|
| 46 |
+
vectors_l2 = vectors / (np.linalg.norm(vectors, axis=1, keepdims=True) + 1e-8)
|
| 47 |
+
self._index = faiss.IndexFlatIP(vectors_l2.shape[1]) # Inner product for normalized vectors
|
| 48 |
+
self._index.add(vectors_l2.astype(np.float32))
|
| 49 |
+
self.method = "faiss"
|
| 50 |
+
|
| 51 |
+
elif method == "sklearn" and SKLEARN_AVAILABLE:
|
| 52 |
+
# Use manhattan distance for true L1
|
| 53 |
+
self._index = NearestNeighbors(
|
| 54 |
+
metric='manhattan',
|
| 55 |
+
algorithm='ball_tree',
|
| 56 |
+
n_jobs=-1
|
| 57 |
+
).fit(vectors)
|
| 58 |
+
self.method = "sklearn"
|
| 59 |
+
else:
|
| 60 |
+
# Fallback to linear search
|
| 61 |
+
self._vectors = vectors
|
| 62 |
+
self.method = "linear"
|
| 63 |
+
|
| 64 |
+
def search_radius(self, query_vector: np.ndarray, max_distance: float, max_results: int = 1000) -> Tuple[
|
| 65 |
+
List[int], List[float]]:
|
| 66 |
+
"""Find all points within max_distance using L1 metric."""
|
| 67 |
+
if self.method == "sklearn":
|
| 68 |
+
indices = self._index.radius_neighbors([query_vector], radius=max_distance)[1][0]
|
| 69 |
+
if len(indices) > max_results:
|
| 70 |
+
# Compute actual distances and take closest
|
| 71 |
+
distances = np.sum(np.abs(self._vectors[indices] - query_vector), axis=1)
|
| 72 |
+
top_k = np.argsort(distances)[:max_results]
|
| 73 |
+
indices = indices[top_k]
|
| 74 |
+
distances = np.sum(np.abs(self._vectors[indices] - query_vector), axis=1)
|
| 75 |
+
return self.token_ids[indices].tolist(), distances.tolist()
|
| 76 |
+
|
| 77 |
+
elif self.method == "faiss":
|
| 78 |
+
# Approximate search using cosine similarity
|
| 79 |
+
query_l2 = query_vector / (np.linalg.norm(query_vector) + 1e-8)
|
| 80 |
+
similarities, indices = self._index.search(query_l2.reshape(1, -1).astype(np.float32), max_results)
|
| 81 |
+
# Filter by converting similarity threshold to approximate distance
|
| 82 |
+
threshold_sim = 1.0 - max_distance # rough approximation
|
| 83 |
+
mask = similarities[0] >= threshold_sim
|
| 84 |
+
return self.token_ids[indices[0][mask]].tolist(), (1.0 - similarities[0][mask]).tolist()
|
| 85 |
+
|
| 86 |
+
else: # linear
|
| 87 |
+
distances = np.sum(np.abs(self._vectors - query_vector), axis=1)
|
| 88 |
+
mask = distances <= max_distance
|
| 89 |
+
if np.sum(mask) > max_results:
|
| 90 |
+
indices = np.argsort(distances)[:max_results]
|
| 91 |
+
mask = np.zeros_like(distances, dtype=bool)
|
| 92 |
+
mask[indices] = True
|
| 93 |
+
return self.token_ids[mask].tolist(), distances[mask].tolist()
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class GeometricVocab(ABC):
|
| 97 |
+
"""
|
| 98 |
+
Optimized geometric vocabulary with spatial indexing and caching.
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
def __init__(self, dim: int):
|
| 102 |
+
self.dim = int(dim)
|
| 103 |
+
self._token_to_id: Dict[str, int] = {}
|
| 104 |
+
self._id_to_token: Dict[int, str] = {}
|
| 105 |
+
self._id_to_vec: Dict[int, np.ndarray] = {}
|
| 106 |
+
self._id_to_volume: Dict[int, float] = {}
|
| 107 |
+
self._id_to_provenance: Dict[int, dict] = {}
|
| 108 |
+
self._valid_token_ids: set[int] = set()
|
| 109 |
+
|
| 110 |
+
# Optimization caches
|
| 111 |
+
self._normalized_cache: Dict[int, np.ndarray] = {}
|
| 112 |
+
self._pooled_cache: Dict[int, np.ndarray] = {}
|
| 113 |
+
self._spatial_index: Optional[SpatialIndex] = None
|
| 114 |
+
self._index_dirty = False
|
| 115 |
+
|
| 116 |
+
# NEW: Character-level cache for Unicode composition
|
| 117 |
+
self._char_cache: Dict[str, np.ndarray] = {}
|
| 118 |
+
self._char_lookups_saved = 0 # Statistics
|
| 119 |
+
|
| 120 |
+
def _invalidate_caches(self):
|
| 121 |
+
"""Invalidate caches when vocabulary changes."""
|
| 122 |
+
self._normalized_cache.clear()
|
| 123 |
+
self._pooled_cache.clear()
|
| 124 |
+
self._spatial_index = None
|
| 125 |
+
self._index_dirty = True
|
| 126 |
+
# Keep char cache across vocabulary changes as characters are stable
|
| 127 |
+
|
| 128 |
+
def _ensure_spatial_index(self):
|
| 129 |
+
"""Build spatial index if needed."""
|
| 130 |
+
if self._spatial_index is None or self._index_dirty:
|
| 131 |
+
if len(self._valid_token_ids) < 10:
|
| 132 |
+
return # Too few tokens for indexing
|
| 133 |
+
|
| 134 |
+
pooled_vectors = []
|
| 135 |
+
token_ids = []
|
| 136 |
+
for tid in sorted(self._valid_token_ids):
|
| 137 |
+
pooled_vec = self._get_cached_pooled(tid)
|
| 138 |
+
if pooled_vec is not None:
|
| 139 |
+
pooled_vectors.append(pooled_vec)
|
| 140 |
+
token_ids.append(tid)
|
| 141 |
+
|
| 142 |
+
if pooled_vectors:
|
| 143 |
+
self._spatial_index = SpatialIndex(
|
| 144 |
+
np.array(pooled_vectors),
|
| 145 |
+
token_ids,
|
| 146 |
+
method="auto"
|
| 147 |
+
)
|
| 148 |
+
self._index_dirty = False
|
| 149 |
+
|
| 150 |
+
def _get_cached_pooled(self, token_id: int) -> Optional[np.ndarray]:
|
| 151 |
+
"""Get pooled vector with caching."""
|
| 152 |
+
if token_id in self._pooled_cache:
|
| 153 |
+
return self._pooled_cache[token_id]
|
| 154 |
+
|
| 155 |
+
if token_id in self._id_to_vec:
|
| 156 |
+
X = self._id_to_vec[token_id]
|
| 157 |
+
pooled = X.mean(axis=0)
|
| 158 |
+
self._pooled_cache[token_id] = pooled
|
| 159 |
+
return pooled
|
| 160 |
+
return None
|
| 161 |
+
|
| 162 |
+
def _get_cached_normalized(self, token_id: int) -> Optional[np.ndarray]:
|
| 163 |
+
"""Get L1-normalized pooled vector with caching."""
|
| 164 |
+
if token_id in self._normalized_cache:
|
| 165 |
+
return self._normalized_cache[token_id]
|
| 166 |
+
|
| 167 |
+
pooled = self._get_cached_pooled(token_id)
|
| 168 |
+
if pooled is not None:
|
| 169 |
+
normalized = pooled / (np.abs(pooled).sum() + 1e-8)
|
| 170 |
+
self._normalized_cache[token_id] = normalized
|
| 171 |
+
return normalized
|
| 172 |
+
return None
|
| 173 |
+
|
| 174 |
+
# --------------------------- abstract surface --------------------
|
| 175 |
+
@abstractmethod
|
| 176 |
+
def encode(self, token: str, *, return_id: bool = False) -> Union[np.ndarray, Tuple[np.ndarray, int]]:
|
| 177 |
+
raise NotImplementedError
|
| 178 |
+
|
| 179 |
+
@abstractmethod
|
| 180 |
+
def get_score(self, token_or_id: Union[str, int]) -> float:
|
| 181 |
+
raise NotImplementedError
|
| 182 |
+
|
| 183 |
+
# --------------------------- basic queries (optimized) -----------------------
|
| 184 |
+
def decode(self, token_id: int, fallback: str = "<unk>") -> Optional[str]:
|
| 185 |
+
if token_id in self._id_to_token:
|
| 186 |
+
return self._id_to_token[token_id]
|
| 187 |
+
return fallback if fallback in self._token_to_id else None
|
| 188 |
+
|
| 189 |
+
def decode_with_provenance(self, token_id: int, fallback: str = "<unk>") -> Tuple[Optional[str], Optional[dict]]:
|
| 190 |
+
tok = self.decode(token_id, fallback=fallback)
|
| 191 |
+
prov = self._id_to_provenance.get(token_id)
|
| 192 |
+
return tok, prov
|
| 193 |
+
|
| 194 |
+
def provenance(self, token_or_id: Union[str, int]) -> Optional[dict]:
|
| 195 |
+
tid = token_or_id if isinstance(token_or_id, int) else self._token_to_id.get(token_or_id)
|
| 196 |
+
return self._id_to_provenance.get(tid)
|
| 197 |
+
|
| 198 |
+
def embedding(self, token_or_id: Union[str, int]) -> Optional[np.ndarray]:
|
| 199 |
+
tid = token_or_id if isinstance(token_or_id, int) else self._token_to_id.get(token_or_id)
|
| 200 |
+
return self._id_to_vec.get(tid)
|
| 201 |
+
|
| 202 |
+
def pooled(self, token_or_id: Union[str, int], method: str = "mean") -> Optional[np.ndarray]:
|
| 203 |
+
"""Optimized pooled method with character caching"""
|
| 204 |
+
|
| 205 |
+
# Fast path for single characters
|
| 206 |
+
if isinstance(token_or_id, str) and len(token_or_id) == 1:
|
| 207 |
+
if token_or_id in self._char_cache:
|
| 208 |
+
self._char_lookups_saved += 1
|
| 209 |
+
return self._char_cache[token_or_id].copy() # Return copy to prevent mutation
|
| 210 |
+
|
| 211 |
+
# Regular lookup
|
| 212 |
+
tid = token_or_id if isinstance(token_or_id, int) else self._token_to_id.get(token_or_id)
|
| 213 |
+
if tid is None:
|
| 214 |
+
return None
|
| 215 |
+
|
| 216 |
+
if method == "mean":
|
| 217 |
+
pooled = self._get_cached_pooled(tid)
|
| 218 |
+
|
| 219 |
+
# Cache single characters for future use
|
| 220 |
+
if pooled is not None and isinstance(token_or_id, str) and len(token_or_id) == 1:
|
| 221 |
+
self._char_cache[token_or_id] = pooled.copy()
|
| 222 |
+
|
| 223 |
+
return pooled
|
| 224 |
+
|
| 225 |
+
# Fallback for other methods
|
| 226 |
+
X = self._id_to_vec.get(tid)
|
| 227 |
+
if X is None:
|
| 228 |
+
return None
|
| 229 |
+
if method == "first":
|
| 230 |
+
return X[0]
|
| 231 |
+
if method == "sum":
|
| 232 |
+
return X.sum(axis=0)
|
| 233 |
+
raise ValueError(f"Invalid pooling method: {method}")
|
| 234 |
+
|
| 235 |
+
def pooled_batch(self, tokens: List[Union[str, int]], method: str = "mean") -> List[Optional[np.ndarray]]:
|
| 236 |
+
"""Batch pooling with character-level caching for efficiency"""
|
| 237 |
+
results = []
|
| 238 |
+
|
| 239 |
+
for token in tokens:
|
| 240 |
+
# Use optimized single pooled method which handles char caching
|
| 241 |
+
results.append(self.pooled(token, method))
|
| 242 |
+
|
| 243 |
+
return results
|
| 244 |
+
|
| 245 |
+
# --------------------------- optimized similarity ---------------------
|
| 246 |
+
def similarity(self, token_a: Union[str, int], token_b: Union[str, int]) -> float:
|
| 247 |
+
"""
|
| 248 |
+
Optimized L1-normalized directional similarity using cached vectors.
|
| 249 |
+
"""
|
| 250 |
+
tid_a = token_a if isinstance(token_a, int) else self._token_to_id.get(token_a)
|
| 251 |
+
tid_b = token_b if isinstance(token_b, int) else self._token_to_id.get(token_b)
|
| 252 |
+
|
| 253 |
+
if tid_a is None or tid_b is None:
|
| 254 |
+
return -1.0
|
| 255 |
+
|
| 256 |
+
a_norm = self._get_cached_normalized(tid_a)
|
| 257 |
+
b_norm = self._get_cached_normalized(tid_b)
|
| 258 |
+
|
| 259 |
+
if a_norm is None or b_norm is None:
|
| 260 |
+
return -1.0
|
| 261 |
+
|
| 262 |
+
return float(np.dot(a_norm, b_norm))
|
| 263 |
+
|
| 264 |
+
def similarity_magnitude(self, token_a: Union[str, int], token_b: Union[str, int]) -> float:
|
| 265 |
+
"""
|
| 266 |
+
Raw dot-product using cached pooled vectors.
|
| 267 |
+
"""
|
| 268 |
+
tid_a = token_a if isinstance(token_a, int) else self._token_to_id.get(token_a)
|
| 269 |
+
tid_b = token_b if isinstance(token_b, int) else self._token_to_id.get(token_b)
|
| 270 |
+
|
| 271 |
+
if tid_a is None or tid_b is None:
|
| 272 |
+
return -1.0
|
| 273 |
+
|
| 274 |
+
a = self._get_cached_pooled(tid_a)
|
| 275 |
+
b = self._get_cached_pooled(tid_b)
|
| 276 |
+
|
| 277 |
+
if a is None or b is None:
|
| 278 |
+
return -1.0
|
| 279 |
+
|
| 280 |
+
return float(np.dot(a, b))
|
| 281 |
+
|
| 282 |
+
# --------------------------- optimized spatial search ---------------------
|
| 283 |
+
def extract_band(self, trajectory: np.ndarray, max_angle: float = 0.3, method: str = "pooled") -> Dict[
|
| 284 |
+
str, np.ndarray]:
|
| 285 |
+
"""
|
| 286 |
+
Optimized spatial search using indexing when available.
|
| 287 |
+
"""
|
| 288 |
+
if trajectory.ndim == 2:
|
| 289 |
+
direction = trajectory.mean(0)
|
| 290 |
+
else:
|
| 291 |
+
direction = trajectory
|
| 292 |
+
direction = direction / (np.abs(direction).sum() + 1e-8)
|
| 293 |
+
|
| 294 |
+
# Try spatial index first
|
| 295 |
+
self._ensure_spatial_index()
|
| 296 |
+
if self._spatial_index is not None:
|
| 297 |
+
try:
|
| 298 |
+
# Convert angle threshold to distance threshold (approximation)
|
| 299 |
+
max_distance = max_angle * 2.0 # rough conversion
|
| 300 |
+
token_ids, distances = self._spatial_index.search_radius(
|
| 301 |
+
direction, max_distance, max_results=1000
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Refine results with exact L1 similarity check
|
| 305 |
+
out: Dict[str, np.ndarray] = {}
|
| 306 |
+
for tid in token_ids:
|
| 307 |
+
tok = self._id_to_token.get(tid)
|
| 308 |
+
if tok is None:
|
| 309 |
+
continue
|
| 310 |
+
v_norm = self._get_cached_normalized(tid)
|
| 311 |
+
if v_norm is not None and float(np.dot(v_norm, direction)) >= 1.0 - max_angle:
|
| 312 |
+
out[tok] = self._id_to_vec[tid]
|
| 313 |
+
return out
|
| 314 |
+
|
| 315 |
+
except Exception as e:
|
| 316 |
+
warnings.warn(f"Spatial index search failed: {e}, falling back to linear")
|
| 317 |
+
|
| 318 |
+
# Fallback to linear search
|
| 319 |
+
out: Dict[str, np.ndarray] = {}
|
| 320 |
+
for tok, tid in self._token_to_id.items():
|
| 321 |
+
v_norm = self._get_cached_normalized(tid)
|
| 322 |
+
if v_norm is not None and float(np.dot(v_norm, direction)) >= 1.0 - max_angle:
|
| 323 |
+
out[tok] = self._id_to_vec[tid]
|
| 324 |
+
return out
|
| 325 |
+
|
| 326 |
+
def find_similar_tokens(self, token: Union[str, int], k: int = 10, min_similarity: float = 0.5) -> List[
|
| 327 |
+
Tuple[str, float]]:
|
| 328 |
+
"""
|
| 329 |
+
Find k most similar tokens using spatial indexing when available.
|
| 330 |
+
"""
|
| 331 |
+
tid = token if isinstance(token, int) else self._token_to_id.get(token)
|
| 332 |
+
if tid is None:
|
| 333 |
+
return []
|
| 334 |
+
|
| 335 |
+
query_vec = self._get_cached_normalized(tid)
|
| 336 |
+
if query_vec is None:
|
| 337 |
+
return []
|
| 338 |
+
|
| 339 |
+
self._ensure_spatial_index()
|
| 340 |
+
if self._spatial_index is not None:
|
| 341 |
+
try:
|
| 342 |
+
# Use spatial index for approximate search
|
| 343 |
+
max_distance = (1.0 - min_similarity) * 2.0
|
| 344 |
+
token_ids, _ = self._spatial_index.search_radius(
|
| 345 |
+
query_vec, max_distance, max_results=k * 3 # Get extra for refinement
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
# Compute exact similarities and sort
|
| 349 |
+
similarities = []
|
| 350 |
+
for tid_cand in token_ids:
|
| 351 |
+
if tid_cand == tid: # Skip self
|
| 352 |
+
continue
|
| 353 |
+
sim = self.similarity(tid, tid_cand)
|
| 354 |
+
if sim >= min_similarity:
|
| 355 |
+
tok = self._id_to_token.get(tid_cand)
|
| 356 |
+
if tok:
|
| 357 |
+
similarities.append((tok, sim))
|
| 358 |
+
|
| 359 |
+
return sorted(similarities, key=lambda x: x[1], reverse=True)[:k]
|
| 360 |
+
|
| 361 |
+
except Exception as e:
|
| 362 |
+
warnings.warn(f"Spatial similarity search failed: {e}, falling back to linear")
|
| 363 |
+
|
| 364 |
+
# Linear fallback
|
| 365 |
+
similarities = []
|
| 366 |
+
for tok_cand, tid_cand in self._token_to_id.items():
|
| 367 |
+
if tid_cand == tid:
|
| 368 |
+
continue
|
| 369 |
+
sim = self.similarity(tid, tid_cand)
|
| 370 |
+
if sim >= min_similarity:
|
| 371 |
+
similarities.append((tok_cand, sim))
|
| 372 |
+
|
| 373 |
+
return sorted(similarities, key=lambda x: x[1], reverse=True)[:k]
|
| 374 |
+
|
| 375 |
+
# --------------------------- helpers exposed to callbacks --------
|
| 376 |
+
def _helpers(self) -> Dict[str, Callable[..., np.ndarray]]:
|
| 377 |
+
def _emb(x):
|
| 378 |
+
e = self.embedding(x)
|
| 379 |
+
return None if e is None else np.asarray(e, np.float32)
|
| 380 |
+
|
| 381 |
+
def _poo(x):
|
| 382 |
+
p = self.pooled(x)
|
| 383 |
+
return None if p is None else np.asarray(p, np.float32)
|
| 384 |
+
|
| 385 |
+
def _chars(s):
|
| 386 |
+
# Use batch pooling for efficiency
|
| 387 |
+
return self.pooled_batch(list(s)) if isinstance(s, str) else None
|
| 388 |
+
|
| 389 |
+
return {"embedding": _emb, "pooled": _poo, "chars_pooled": _chars}
|
| 390 |
+
|
| 391 |
+
# --------------------------- DEFAULT create_crystal (unicode path) ----
|
| 392 |
+
def _default_create_crystal(self, config: dict, callback: Callable[..., np.ndarray]) -> np.ndarray:
|
| 393 |
+
"""
|
| 394 |
+
Deterministic default when user leaves callback/create_crystal=None.
|
| 395 |
+
"""
|
| 396 |
+
pool_type = config.get("pool_type") or "unicode"
|
| 397 |
+
H = config["helpers"]
|
| 398 |
+
token_plain = str(config["data"]["token"])
|
| 399 |
+
d = int(config["dim"])
|
| 400 |
+
|
| 401 |
+
c_uni = self._compose_unicode_center(token_plain, H, pool_type, d)
|
| 402 |
+
c_defs = self._compose_wordnet_center(config.get("additional_definitions", []), H, pool_type, d)
|
| 403 |
+
|
| 404 |
+
if pool_type == "combination":
|
| 405 |
+
parts = [v for v in (c_uni, c_defs) if v is not None]
|
| 406 |
+
c = np.mean(np.stack(parts, 0), 0) if parts else np.zeros(d, np.float32)
|
| 407 |
+
elif pool_type == "wordnet":
|
| 408 |
+
c = c_defs if c_defs is not None else np.zeros(d, np.float32)
|
| 409 |
+
else:
|
| 410 |
+
c = c_uni if c_uni is not None else np.zeros(d, np.float32)
|
| 411 |
+
|
| 412 |
+
# L1 normalization only
|
| 413 |
+
l1 = float(np.abs(c).sum()) + 1e-8
|
| 414 |
+
c = c / l1
|
| 415 |
+
return self._deterministic_pentachoron(c)
|
| 416 |
+
|
| 417 |
+
def _default_unicode_callback(self, name: str, **kwargs) -> np.ndarray:
|
| 418 |
+
raise NotImplementedError("Default callback is not invoked directly.")
|
| 419 |
+
|
| 420 |
+
# --------------------------- universal builders (overrideable) ---
|
| 421 |
+
def _compose_unicode_center(
|
| 422 |
+
self, token_plain: str, H, pool_type: Optional[str], dim: int
|
| 423 |
+
) -> Optional[np.ndarray]:
|
| 424 |
+
"""
|
| 425 |
+
Build a center vector from the token's Unicode characters - OPTIMIZED.
|
| 426 |
+
"""
|
| 427 |
+
# Use batch pooling for all characters at once
|
| 428 |
+
char_list = list(token_plain)
|
| 429 |
+
pooled_chars = self.pooled_batch(char_list)
|
| 430 |
+
|
| 431 |
+
vecs: List[np.ndarray] = []
|
| 432 |
+
for pooled_v in pooled_chars:
|
| 433 |
+
if pooled_v is None:
|
| 434 |
+
continue
|
| 435 |
+
v = np.asarray(pooled_v, np.float32)
|
| 436 |
+
if v.shape[0] != dim:
|
| 437 |
+
raise ValueError(f"Unicode pooled dim mismatch: got {v.shape[0]}, expected {dim}")
|
| 438 |
+
vecs.append(v)
|
| 439 |
+
|
| 440 |
+
if not vecs:
|
| 441 |
+
return None
|
| 442 |
+
|
| 443 |
+
stacked = np.stack(vecs, 0)
|
| 444 |
+
|
| 445 |
+
if pool_type in (None, "unicode", "mean"):
|
| 446 |
+
c = stacked.mean(axis=0)
|
| 447 |
+
elif pool_type == "abs":
|
| 448 |
+
c = np.abs(stacked).mean(axis=0)
|
| 449 |
+
elif pool_type == "dot":
|
| 450 |
+
c = stacked.mean(axis=0)
|
| 451 |
+
c = c / (np.abs(c).sum() + 1e-8) # L1 normalize
|
| 452 |
+
elif pool_type == "mse":
|
| 453 |
+
c = (stacked ** 2).mean(axis=0)
|
| 454 |
+
elif pool_type == "max":
|
| 455 |
+
c = stacked.max(axis=0)
|
| 456 |
+
else:
|
| 457 |
+
raise ValueError(f"Unsupported pool_type '{pool_type}'")
|
| 458 |
+
|
| 459 |
+
return c.astype(np.float32, copy=False)
|
| 460 |
+
|
| 461 |
+
def _compose_wordnet_center(
|
| 462 |
+
self, definitions: List[str], H, pool_type: Optional[str], dim: int
|
| 463 |
+
) -> Optional[np.ndarray]:
|
| 464 |
+
"""Build a center vector from definition text characters - OPTIMIZED."""
|
| 465 |
+
# Collect all characters from all definitions
|
| 466 |
+
all_chars = []
|
| 467 |
+
for text in definitions:
|
| 468 |
+
all_chars.extend(list(str(text)))
|
| 469 |
+
|
| 470 |
+
# Batch lookup
|
| 471 |
+
pooled_chars = self.pooled_batch(all_chars)
|
| 472 |
+
|
| 473 |
+
vecs: List[np.ndarray] = []
|
| 474 |
+
for pooled_v in pooled_chars:
|
| 475 |
+
if pooled_v is None:
|
| 476 |
+
continue
|
| 477 |
+
v = np.asarray(pooled_v, np.float32)
|
| 478 |
+
if v.shape[0] != dim:
|
| 479 |
+
raise ValueError(f"Definition pooled dim mismatch: got {v.shape[0]}, expected {dim}")
|
| 480 |
+
vecs.append(v)
|
| 481 |
+
|
| 482 |
+
if not vecs:
|
| 483 |
+
return None
|
| 484 |
+
|
| 485 |
+
stacked = np.stack(vecs, 0)
|
| 486 |
+
|
| 487 |
+
if pool_type in (None, "unicode", "mean"):
|
| 488 |
+
c = stacked.mean(axis=0)
|
| 489 |
+
elif pool_type == "abs":
|
| 490 |
+
c = np.abs(stacked).mean(axis=0)
|
| 491 |
+
elif pool_type == "dot":
|
| 492 |
+
c = stacked.mean(axis=0)
|
| 493 |
+
c = c / (np.abs(c).sum() + 1e-8) # L1 normalize
|
| 494 |
+
elif pool_type == "mse":
|
| 495 |
+
c = (stacked ** 2).mean(axis=0)
|
| 496 |
+
elif pool_type == "max":
|
| 497 |
+
c = stacked.max(axis=0)
|
| 498 |
+
else:
|
| 499 |
+
raise ValueError(f"Unsupported pool_type '{pool_type}'")
|
| 500 |
+
|
| 501 |
+
return c.astype(np.float32, copy=False)
|
| 502 |
+
|
| 503 |
+
def _deterministic_pentachoron(self, center_vec: np.ndarray) -> np.ndarray:
|
| 504 |
+
"""Universal pentachoron inflation (deterministic; overrideable)."""
|
| 505 |
+
d = center_vec.shape[0]
|
| 506 |
+
proposals = np.stack([
|
| 507 |
+
center_vec,
|
| 508 |
+
np.roll(center_vec, 1),
|
| 509 |
+
np.roll(center_vec, 3) * np.sign(center_vec + 1e-8),
|
| 510 |
+
np.roll(center_vec, 7) - center_vec,
|
| 511 |
+
np.roll(center_vec, 11) + center_vec,
|
| 512 |
+
], 0).astype(np.float32)
|
| 513 |
+
|
| 514 |
+
# L1 row norms
|
| 515 |
+
norms = np.sum(np.abs(proposals), axis=1, keepdims=True) + 1e-8
|
| 516 |
+
Q = proposals / norms
|
| 517 |
+
|
| 518 |
+
# GS orthogonalization with L1 row renorm at each step
|
| 519 |
+
for i in range(5):
|
| 520 |
+
for j in range(i):
|
| 521 |
+
Q[i] -= np.dot(Q[i], Q[j]) * Q[j]
|
| 522 |
+
Q[i] /= (np.sum(np.abs(Q[i])) + 1e-8)
|
| 523 |
+
|
| 524 |
+
gamma = np.array([1.0, 0.9, -0.8, 1.1, 1.2], np.float32)
|
| 525 |
+
X = np.zeros((5, d), np.float32)
|
| 526 |
+
for i in range(5):
|
| 527 |
+
X[i] = center_vec + gamma[i] * Q[i]
|
| 528 |
+
return X - X.mean(0, keepdims=True)
|
| 529 |
+
|
| 530 |
+
# --------------------------- finalize + provenance (overrideable) ----
|
| 531 |
+
def _finalize_crystal(self, X: np.ndarray) -> np.ndarray:
|
| 532 |
+
X = np.asarray(X, np.float32, order='C') # Ensure C-contiguous
|
| 533 |
+
if X.shape != (5, self.dim):
|
| 534 |
+
raise ValueError(f"Crystal must be shape (5, {self.dim}); got {X.shape}.")
|
| 535 |
+
return X - X.mean(0, keepdims=True)
|
| 536 |
+
|
| 537 |
+
def _auto_provenance_from_cfg(self, cfg: Dict[str, Any]) -> dict:
|
| 538 |
+
token = cfg["data"]["token"]
|
| 539 |
+
prov = {
|
| 540 |
+
"source": "special/compose",
|
| 541 |
+
"token": token,
|
| 542 |
+
"pool_type": cfg.get("pool_type") or "unicode",
|
| 543 |
+
"components": list(token),
|
| 544 |
+
"additional_definitions": list(cfg.get("additional_definitions", [])),
|
| 545 |
+
}
|
| 546 |
+
if cfg.get("antonyms"):
|
| 547 |
+
prov["antonyms"] = list(cfg["antonyms"])
|
| 548 |
+
if cfg.get("inversion_formula") is not None:
|
| 549 |
+
prov["inversion_formula"] = "user_supplied"
|
| 550 |
+
return prov
|
| 551 |
+
|
| 552 |
+
def _finalize_crystal_and_provenance(
|
| 553 |
+
self, product: Union[np.ndarray, Dict[str, Any]], cfg: Dict[str, Any]
|
| 554 |
+
) -> Tuple[np.ndarray, dict]:
|
| 555 |
+
# ndarray path
|
| 556 |
+
if isinstance(product, np.ndarray):
|
| 557 |
+
X = self._finalize_crystal(product)
|
| 558 |
+
prov = self._auto_provenance_from_cfg(cfg)
|
| 559 |
+
return X, prov
|
| 560 |
+
|
| 561 |
+
# dict path
|
| 562 |
+
if not isinstance(product, dict):
|
| 563 |
+
raise TypeError(
|
| 564 |
+
"create_crystal must return ndarray or dict with {'base':..., 'ops':..., 'provenance':...}.")
|
| 565 |
+
base = np.asarray(product["base"], np.float32)
|
| 566 |
+
X = base
|
| 567 |
+
for op in product.get("ops", []):
|
| 568 |
+
name = op.get("name")
|
| 569 |
+
if name == "center":
|
| 570 |
+
X -= X.mean(0, keepdims=True)
|
| 571 |
+
elif name == "scale":
|
| 572 |
+
X *= float(op.get("k", 1.0))
|
| 573 |
+
elif name == "translate":
|
| 574 |
+
t = np.asarray(op.get("t"), np.float32)
|
| 575 |
+
if t.shape != (self.dim,):
|
| 576 |
+
raise ValueError(f"translate.t must be shape ({self.dim},)")
|
| 577 |
+
X = X + t[None, :]
|
| 578 |
+
elif name == "normalize_rows":
|
| 579 |
+
n = np.sum(np.abs(X), axis=1, keepdims=True) + 1e-8
|
| 580 |
+
X = X / n
|
| 581 |
+
elif name == "align_to":
|
| 582 |
+
v = np.asarray(op.get("v"), np.float32)
|
| 583 |
+
if v.shape != (self.dim,):
|
| 584 |
+
raise ValueError(f"align_to.v must be shape ({self.dim},)")
|
| 585 |
+
v = v / (np.abs(v).sum() + 1e-8)
|
| 586 |
+
p = X.mean(0)
|
| 587 |
+
p = p / (np.abs(p).sum() + 1e-8)
|
| 588 |
+
alpha = float(op.get("alpha", 1.0))
|
| 589 |
+
X = X + alpha * (v - p)[None, :]
|
| 590 |
+
else:
|
| 591 |
+
raise ValueError(f"Unsupported op '{name}'")
|
| 592 |
+
prov = dict(product.get("provenance", {})) or self._auto_provenance_from_cfg(cfg)
|
| 593 |
+
return self._finalize_crystal(X), prov
|
| 594 |
+
|
| 595 |
+
# --------------------------- universal manifestation routine ----------
|
| 596 |
+
def _manifest_special_tokens(
|
| 597 |
+
self,
|
| 598 |
+
base_set: Dict[str, int],
|
| 599 |
+
create_crystal: Callable[[dict, Callable[..., np.ndarray]], Union[np.ndarray, Dict[str, Any]]],
|
| 600 |
+
callback: Optional[Callable[..., np.ndarray]],
|
| 601 |
+
create_config: Dict[str, Any],
|
| 602 |
+
) -> None:
|
| 603 |
+
"""Universal, deterministic manifestor with character pre-caching."""
|
| 604 |
+
|
| 605 |
+
# NEW: Pre-cache all unique characters that will be needed
|
| 606 |
+
unique_chars = set()
|
| 607 |
+
for name in base_set.keys():
|
| 608 |
+
token_plain = name.strip("<>").strip()
|
| 609 |
+
unique_chars.update(token_plain)
|
| 610 |
+
|
| 611 |
+
print(f"[⚡] Pre-caching {len(unique_chars)} unique characters...")
|
| 612 |
+
for ch in unique_chars:
|
| 613 |
+
_ = self.pooled(ch) # Trigger caching
|
| 614 |
+
|
| 615 |
+
helpers = self._helpers()
|
| 616 |
+
|
| 617 |
+
for name, tid in base_set.items():
|
| 618 |
+
# Keep if already present
|
| 619 |
+
if tid in self._id_to_vec:
|
| 620 |
+
self._token_to_id[name] = tid
|
| 621 |
+
self._id_to_token.setdefault(tid, name)
|
| 622 |
+
self._valid_token_ids.add(tid)
|
| 623 |
+
continue
|
| 624 |
+
|
| 625 |
+
# Build per-token config
|
| 626 |
+
cfg = {
|
| 627 |
+
"dim": self.dim,
|
| 628 |
+
"pool_type": create_config.get("pool_type", None),
|
| 629 |
+
"special_tokens": create_config.get("special_tokens"),
|
| 630 |
+
"additional_definitions": create_config.get("additional_definitions", []),
|
| 631 |
+
"antonyms": create_config.get("antonyms"),
|
| 632 |
+
"inversion_formula": create_config.get("inversion_formula"),
|
| 633 |
+
"data": {"token": name.strip("<>").strip(), "token_id": tid, "origin": "special"},
|
| 634 |
+
"helpers": helpers,
|
| 635 |
+
}
|
| 636 |
+
|
| 637 |
+
if create_crystal is None:
|
| 638 |
+
create_crystal = self._default_create_crystal
|
| 639 |
+
|
| 640 |
+
product = create_crystal(cfg, callback) if callback is not None else create_crystal(cfg,
|
| 641 |
+
self._default_unicode_callback)
|
| 642 |
+
X, prov = self._finalize_crystal_and_provenance(product, cfg)
|
| 643 |
+
|
| 644 |
+
# Register
|
| 645 |
+
self._token_to_id[name] = tid
|
| 646 |
+
self._id_to_token[tid] = name
|
| 647 |
+
self._id_to_vec[tid] = X.astype(np.float32, copy=False, order='C')
|
| 648 |
+
self._id_to_provenance[tid] = prov
|
| 649 |
+
self._valid_token_ids.add(tid)
|
| 650 |
+
self._id_to_volume.setdefault(tid, 1.0)
|
| 651 |
+
|
| 652 |
+
# Aliases
|
| 653 |
+
for alias in (cfg.get("special_tokens") or []):
|
| 654 |
+
alias = str(alias)
|
| 655 |
+
self._token_to_id[alias] = tid
|
| 656 |
+
self._id_to_token.setdefault(tid, alias)
|
| 657 |
+
if cfg.get("special_tokens"):
|
| 658 |
+
self._id_to_provenance[tid].setdefault("aliases", list(cfg["special_tokens"]))
|
| 659 |
+
|
| 660 |
+
# Antonyms
|
| 661 |
+
antonyms = cfg.get("antonyms") or []
|
| 662 |
+
invf = cfg.get("inversion_formula")
|
| 663 |
+
if invf:
|
| 664 |
+
for anti in antonyms:
|
| 665 |
+
if anti in base_set:
|
| 666 |
+
anti_id = base_set[anti]
|
| 667 |
+
if anti_id not in self._id_to_vec:
|
| 668 |
+
X_inv = invf(X, cfg) # must be deterministic
|
| 669 |
+
X_inv = self._finalize_crystal(X_inv)
|
| 670 |
+
self._token_to_id[anti] = anti_id
|
| 671 |
+
self._id_to_token[anti_id] = anti
|
| 672 |
+
self._id_to_vec[anti_id] = X_inv.astype(np.float32, copy=False, order='C')
|
| 673 |
+
inv_prov = {
|
| 674 |
+
"source": "inversion",
|
| 675 |
+
"of_token": name,
|
| 676 |
+
"of_token_id": tid,
|
| 677 |
+
"pool_type": cfg.get("pool_type") or "unicode",
|
| 678 |
+
"components": prov.get("components", []),
|
| 679 |
+
"additional_definitions": cfg.get("additional_definitions", []),
|
| 680 |
+
"ops": ["invert"],
|
| 681 |
+
}
|
| 682 |
+
self._id_to_provenance[anti_id] = inv_prov
|
| 683 |
+
self._valid_token_ids.add(anti_id)
|
| 684 |
+
self._id_to_volume.setdefault(anti_id, 1.0)
|
| 685 |
+
|
| 686 |
+
# Invalidate caches after adding tokens
|
| 687 |
+
self._invalidate_caches()
|
| 688 |
+
|
| 689 |
+
if self._char_lookups_saved > 0:
|
| 690 |
+
print(f"[✅] Character cache saved {self._char_lookups_saved} lookups")
|
| 691 |
+
|
| 692 |
+
# --------------------------- basics -------------------------------
|
| 693 |
+
def vocab_size(self) -> int:
|
| 694 |
+
return len(self._token_to_id)
|
| 695 |
+
|
| 696 |
+
def token_to_id(self, token: str) -> Optional[int]:
|
| 697 |
+
return self._token_to_id.get(token)
|
| 698 |
+
|
| 699 |
+
def id_to_token(self, token_id: int) -> Optional[str]:
|
| 700 |
+
return self._id_to_token.get(token_id)
|
| 701 |
+
|
| 702 |
+
def cache_stats(self) -> Dict[str, int]:
|
| 703 |
+
"""Get cache statistics."""
|
| 704 |
+
return {
|
| 705 |
+
"normalized_cache_size": len(self._normalized_cache),
|
| 706 |
+
"pooled_cache_size": len(self._pooled_cache),
|
| 707 |
+
"char_cache_size": len(self._char_cache),
|
| 708 |
+
"char_lookups_saved": self._char_lookups_saved,
|
| 709 |
+
"spatial_index_size": len(self._spatial_index.token_ids) if self._spatial_index else 0,
|
| 710 |
+
"vocab_size": len(self._valid_token_ids)
|
| 711 |
+
}
|
| 712 |
+
|
| 713 |
+
def clear_caches(self):
|
| 714 |
+
"""Clear all caches to free memory."""
|
| 715 |
+
self._invalidate_caches()
|
| 716 |
+
self._char_cache.clear()
|
| 717 |
+
self._char_lookups_saved = 0
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
from typing import List, Dict, Union, Optional, Tuple, Callable, Any
|
| 721 |
+
|
| 722 |
+
class PretrainedGeometricVocab(GeometricVocab):
|
| 723 |
+
"""
|
| 724 |
+
Parquet-backed deterministic vocab with columnar load, duplicate-mean aggregation,
|
| 725 |
+
pooled caching, and fast path for flat crystals.
|
| 726 |
+
"""
|
| 727 |
+
def __init__(
|
| 728 |
+
self,
|
| 729 |
+
repo_id: str,
|
| 730 |
+
dim: int,
|
| 731 |
+
*,
|
| 732 |
+
subset: str = "unicode",
|
| 733 |
+
split: str = "train_100d",
|
| 734 |
+
base_set: Optional[Dict[str, int]] = None,
|
| 735 |
+
create_config: Optional[Dict[str, Any]] = None,
|
| 736 |
+
create_crystal: Optional[Callable[[dict, Callable[..., np.ndarray]], Union[np.ndarray, Dict[str, Any]]]] = None,
|
| 737 |
+
callback: Optional[Callable[..., np.ndarray]] = None,
|
| 738 |
+
manifest_specials: bool = True,
|
| 739 |
+
# perf/robustness knobs
|
| 740 |
+
store: str = "full", # "full" | "pooled" | "both"
|
| 741 |
+
reshape_order: str = "C",
|
| 742 |
+
vertex_count: int = 5,
|
| 743 |
+
infer_dim: bool = True,
|
| 744 |
+
strict_shapes: bool = False,
|
| 745 |
+
# new perf knobs
|
| 746 |
+
finalize_mode: str = "post_mean", # "none" | "post_mean"
|
| 747 |
+
cache_pooled: bool = True,
|
| 748 |
+
streaming=False,
|
| 749 |
+
):
|
| 750 |
+
super().__init__(dim)
|
| 751 |
+
self.repo_id = str(repo_id)
|
| 752 |
+
self._id_to_pooled: Dict[int, np.ndarray] = {} # optional pooled cache
|
| 753 |
+
|
| 754 |
+
# ---------- load split (columnar, minimal columns) ----------
|
| 755 |
+
ds = load_dataset(self.repo_id, split=split)
|
| 756 |
+
have = set(ds.column_names)
|
| 757 |
+
wanted = ["token_id", "token", "crystal", "volume"]
|
| 758 |
+
keep = [c for c in wanted if c in have]
|
| 759 |
+
drop = [c for c in ds.column_names if c not in keep]
|
| 760 |
+
if drop:
|
| 761 |
+
ds = ds.remove_columns(drop)
|
| 762 |
+
ds = ds.with_format("numpy", columns=keep)
|
| 763 |
+
|
| 764 |
+
ids = ds["token_id"] if "token_id" in keep else np.array([], dtype=np.int64)
|
| 765 |
+
toks = ds["token"] if "token" in keep else np.array([], dtype=object)
|
| 766 |
+
cryst= ds["crystal"] if "crystal" in keep else np.array([], dtype=object)
|
| 767 |
+
vols = ds["volume"] if "volume" in keep else None
|
| 768 |
+
|
| 769 |
+
ids = np.asarray(ids).astype(np.int64, copy=False)
|
| 770 |
+
toks = np.asarray(toks)
|
| 771 |
+
|
| 772 |
+
# --------- shape helpers ----------
|
| 773 |
+
def _coerce(raw: Any) -> np.ndarray:
|
| 774 |
+
X = np.asarray(raw, np.float32)
|
| 775 |
+
if X.ndim == 2:
|
| 776 |
+
V, D = int(X.shape[0]), int(X.shape[1])
|
| 777 |
+
if V != vertex_count:
|
| 778 |
+
raise ValueError(f"Crystal has {V} vertices, expected {vertex_count}.")
|
| 779 |
+
if D != self.dim:
|
| 780 |
+
if infer_dim: self.dim = D
|
| 781 |
+
else: raise ValueError(f"Dim mismatch: got {D}, expected {self.dim}.")
|
| 782 |
+
return X
|
| 783 |
+
if X.ndim == 1:
|
| 784 |
+
n = int(X.size)
|
| 785 |
+
if n == vertex_count * self.dim:
|
| 786 |
+
return np.reshape(X, (vertex_count, self.dim), order=reshape_order)
|
| 787 |
+
if infer_dim and n % vertex_count == 0:
|
| 788 |
+
self.dim = n // vertex_count
|
| 789 |
+
return np.reshape(X, (vertex_count, self.dim), order=reshape_order)
|
| 790 |
+
if n == self.dim:
|
| 791 |
+
c = X / (np.abs(X).sum() + 1e-8)
|
| 792 |
+
return self._deterministic_pentachoron(c)
|
| 793 |
+
raise ValueError(f"Unsupported crystal shape {X.shape if isinstance(X, np.ndarray) else type(X)}.")
|
| 794 |
+
|
| 795 |
+
def _finalize_if_needed(X: np.ndarray) -> np.ndarray:
|
| 796 |
+
if finalize_mode == "none":
|
| 797 |
+
return np.asarray(X, np.float32, order="C")
|
| 798 |
+
elif finalize_mode == "post_mean":
|
| 799 |
+
return self._finalize_crystal(X)
|
| 800 |
+
else:
|
| 801 |
+
raise ValueError(f"finalize_mode must be 'none' or 'post_mean', got {finalize_mode!r}")
|
| 802 |
+
|
| 803 |
+
vols_f = np.asarray(vols, dtype=np.float32) if vols is not None else None
|
| 804 |
+
|
| 805 |
+
# ---------- FAST PATH: flat uniform crystals ----------
|
| 806 |
+
# Try to stack into (N, L); succeeds when each row is the same length.
|
| 807 |
+
fastpath_ok = False
|
| 808 |
+
A = None # (N, L) float32
|
| 809 |
+
try:
|
| 810 |
+
A = np.stack(cryst) # may raise if jagged / object
|
| 811 |
+
if A.ndim == 2 and A.dtype != object:
|
| 812 |
+
A = A.astype(np.float32, copy=False)
|
| 813 |
+
L = A.shape[1]
|
| 814 |
+
if L % vertex_count == 0:
|
| 815 |
+
# infer or validate D
|
| 816 |
+
D = L // vertex_count
|
| 817 |
+
if self.dim != D:
|
| 818 |
+
if infer_dim:
|
| 819 |
+
self.dim = int(D)
|
| 820 |
+
else:
|
| 821 |
+
raise ValueError(f"Dim mismatch: got D={D}, expected dim={self.dim}.")
|
| 822 |
+
fastpath_ok = True
|
| 823 |
+
except Exception:
|
| 824 |
+
fastpath_ok = False
|
| 825 |
+
|
| 826 |
+
if fastpath_ok and A is not None and len(ids) > 0:
|
| 827 |
+
# reshape to (N, V, D)
|
| 828 |
+
V = vertex_count
|
| 829 |
+
D = self.dim
|
| 830 |
+
A = A.reshape(-1, V, D, order=reshape_order)
|
| 831 |
+
|
| 832 |
+
# sort by ids and reduceat to mean duplicates in pure NumPy
|
| 833 |
+
order = np.argsort(ids, kind="stable")
|
| 834 |
+
ids_sorted = ids[order]
|
| 835 |
+
A_sorted = A[order]
|
| 836 |
+
vols_sorted = vols_f[order] if vols_f is not None else None
|
| 837 |
+
|
| 838 |
+
uniq_ids, idx, counts = np.unique(ids_sorted, return_index=True, return_counts=True)
|
| 839 |
+
sums = np.add.reduceat(A_sorted, idx, axis=0) # (K, V, D)
|
| 840 |
+
means = sums / counts[:, None, None] # (K, V, D)
|
| 841 |
+
|
| 842 |
+
if vols_sorted is not None:
|
| 843 |
+
v_sums = np.add.reduceat(vols_sorted, idx)
|
| 844 |
+
v_means = v_sums / counts.astype(np.float32)
|
| 845 |
+
else:
|
| 846 |
+
v_means = np.ones_like(uniq_ids, dtype=np.float32)
|
| 847 |
+
|
| 848 |
+
# commit maps
|
| 849 |
+
self._token_to_id.clear(); self._id_to_token.clear()
|
| 850 |
+
self._id_to_vec.clear(); self._id_to_volume.clear(); self._valid_token_ids.clear()
|
| 851 |
+
self._id_to_pooled.clear()
|
| 852 |
+
|
| 853 |
+
# pick a representative token per id: first occurrence in sorted block
|
| 854 |
+
toks_sorted = toks[order]
|
| 855 |
+
rep_toks = toks_sorted[idx]
|
| 856 |
+
|
| 857 |
+
for tid, tok, X_mean, v_m in zip(uniq_ids.tolist(), rep_toks.tolist(), means, v_means.tolist()):
|
| 858 |
+
# cache pooled BEFORE finalize to preserve signal
|
| 859 |
+
if cache_pooled:
|
| 860 |
+
self._id_to_pooled[tid] = X_mean.mean(axis=0).astype(np.float32, copy=False)
|
| 861 |
+
X_store = _finalize_if_needed(X_mean)
|
| 862 |
+
|
| 863 |
+
self._token_to_id[str(tok)] = tid
|
| 864 |
+
self._id_to_token[tid] = str(tok)
|
| 865 |
+
if store in ("full", "both"):
|
| 866 |
+
self._id_to_vec[tid] = np.asarray(X_store, np.float32, order="C")
|
| 867 |
+
elif store == "pooled":
|
| 868 |
+
# store pooled as embedding if desired
|
| 869 |
+
self._id_to_vec[tid] = (self._id_to_pooled[tid] if cache_pooled
|
| 870 |
+
else X_mean.mean(axis=0).astype(np.float32, copy=False))
|
| 871 |
+
self._id_to_volume[tid] = float(v_m)
|
| 872 |
+
self._valid_token_ids.add(tid)
|
| 873 |
+
|
| 874 |
+
else:
|
| 875 |
+
# ---------- FALLBACK: per-row coerce + dict mean ----------
|
| 876 |
+
ids_int = ids.tolist()
|
| 877 |
+
toks_str = [str(x) for x in toks.tolist()]
|
| 878 |
+
vols_f = (vols_f.tolist() if vols_f is not None else [1.0] * len(ids_int))
|
| 879 |
+
|
| 880 |
+
x_sum: Dict[int, np.ndarray] = {}
|
| 881 |
+
v_sum: Dict[int, float] = {}
|
| 882 |
+
n_cnt: Dict[int, int] = {}
|
| 883 |
+
tok_pref: Dict[int, str] = {}
|
| 884 |
+
|
| 885 |
+
for tid, tok, raw, vol in zip(ids_int, toks_str, cryst, vols_f):
|
| 886 |
+
X = _coerce(raw) # [V,D] float32
|
| 887 |
+
if tid not in x_sum:
|
| 888 |
+
x_sum[tid] = X.astype(np.float32, copy=True)
|
| 889 |
+
v_sum[tid] = float(vol)
|
| 890 |
+
n_cnt[tid] = 1
|
| 891 |
+
tok_pref[tid] = tok
|
| 892 |
+
else:
|
| 893 |
+
x_sum[tid] += X
|
| 894 |
+
v_sum[tid] += float(vol)
|
| 895 |
+
n_cnt[tid] += 1
|
| 896 |
+
|
| 897 |
+
self._token_to_id.clear(); self._id_to_token.clear()
|
| 898 |
+
self._id_to_vec.clear(); self._id_to_volume.clear(); self._valid_token_ids.clear()
|
| 899 |
+
self._id_to_pooled.clear()
|
| 900 |
+
|
| 901 |
+
for tid in x_sum.keys(): # order not critical; add sorted(tids) if you need determinism
|
| 902 |
+
X_mean = x_sum[tid] / float(n_cnt[tid])
|
| 903 |
+
if cache_pooled:
|
| 904 |
+
self._id_to_pooled[tid] = X_mean.mean(axis=0).astype(np.float32, copy=False)
|
| 905 |
+
X_store = _finalize_if_needed(X_mean)
|
| 906 |
+
|
| 907 |
+
tok = tok_pref[tid]
|
| 908 |
+
vol_m = v_sum[tid] / float(n_cnt[tid])
|
| 909 |
+
|
| 910 |
+
self._token_to_id[tok] = tid
|
| 911 |
+
self._id_to_token[tid] = tok
|
| 912 |
+
if store in ("full", "both"):
|
| 913 |
+
self._id_to_vec[tid] = np.asarray(X_store, np.float32, order="C")
|
| 914 |
+
elif store == "pooled":
|
| 915 |
+
self._id_to_vec[tid] = (self._id_to_pooled[tid] if cache_pooled
|
| 916 |
+
else X_mean.mean(axis=0).astype(np.float32, copy=False))
|
| 917 |
+
self._id_to_volume[tid] = float(vol_m)
|
| 918 |
+
self._valid_token_ids.add(tid)
|
| 919 |
+
|
| 920 |
+
# ---------- specials ----------
|
| 921 |
+
if manifest_specials and base_set:
|
| 922 |
+
self._manifest_special_tokens(
|
| 923 |
+
base_set=base_set,
|
| 924 |
+
create_crystal=create_crystal,
|
| 925 |
+
callback=callback,
|
| 926 |
+
create_config=create_config or {}
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
# -------- override pooled() to use cache (if present) --------
|
| 930 |
+
def pooled(self, token_or_id: Union[str, int], method: str = "mean") -> Optional[np.ndarray]:
|
| 931 |
+
# Favor cached pooled when available; fallback to base (computes mean)
|
| 932 |
+
tid = token_or_id if isinstance(token_or_id, int) else self._token_to_id.get(token_or_id)
|
| 933 |
+
if tid is not None and tid in self._id_to_pooled:
|
| 934 |
+
return self._id_to_pooled[tid]
|
| 935 |
+
return super().pooled(token_or_id, method=method)
|
| 936 |
+
|
| 937 |
+
# -------- SP-like surface --------
|
| 938 |
+
def encode(self, token: str, *, return_id: bool = False) -> Union[np.ndarray, Tuple[np.ndarray, int]]:
|
| 939 |
+
tid = self._token_to_id.get(token)
|
| 940 |
+
if tid is None:
|
| 941 |
+
unk_id = self._token_to_id.get("<unk>")
|
| 942 |
+
if unk_id is None:
|
| 943 |
+
raise KeyError(f"Token '{token}' not found and '<unk>' missing.")
|
| 944 |
+
X = self._id_to_vec[unk_id]
|
| 945 |
+
return (X, unk_id) if return_id else X
|
| 946 |
+
X = self._id_to_vec[tid]
|
| 947 |
+
return (X, tid) if return_id else X
|
| 948 |
+
|
| 949 |
+
def get_score(self, token_or_id: Union[str, int]) -> float:
|
| 950 |
+
tid = token_or_id if isinstance(token_or_id, int) else self._token_to_id.get(token_or_id, None)
|
| 951 |
+
if tid is None or tid not in self._valid_token_ids:
|
| 952 |
+
return -100.0
|
| 953 |
+
vol = self._id_to_volume.get(tid, 1.0)
|
| 954 |
+
return float(np.clip(vol / 10.0, 0.01, 1.0))
|
| 955 |
+
|
| 956 |
+
# -------- Torch cache ----------
|
| 957 |
+
def cache(self, tokens: Union[List[str], Dict[str, int]], device: str = "cpu", dtype: torch.dtype = torch.float32):
|
| 958 |
+
tok_list = list(tokens.keys()) if isinstance(tokens, dict) else list(tokens)
|
| 959 |
+
mats, pooled, keep = [], [], []
|
| 960 |
+
for t in tok_list:
|
| 961 |
+
X = self.embedding(t)
|
| 962 |
+
v = self.pooled(t)
|
| 963 |
+
if X is None or v is None:
|
| 964 |
+
continue
|
| 965 |
+
mats.append(torch.as_tensor(X, dtype=dtype))
|
| 966 |
+
pooled.append(torch.as_tensor(v, dtype=dtype))
|
| 967 |
+
keep.append(t)
|
| 968 |
+
if not mats:
|
| 969 |
+
raise ValueError("No valid tokens found in input.")
|
| 970 |
+
return {
|
| 971 |
+
"tokens": keep,
|
| 972 |
+
"crystals": torch.stack(mats, 0).to(device),
|
| 973 |
+
"pooled": torch.stack(pooled, 0).to(device),
|
| 974 |
+
}
|
| 975 |
+
|
| 976 |
+
|
| 977 |
+
def _coerce_crystal_shape(
|
| 978 |
+
self,
|
| 979 |
+
raw: Any,
|
| 980 |
+
*,
|
| 981 |
+
vertex_count: int,
|
| 982 |
+
reshape_order: str,
|
| 983 |
+
infer_dim: bool,
|
| 984 |
+
strict_shapes: bool
|
| 985 |
+
) -> np.ndarray:
|
| 986 |
+
"""
|
| 987 |
+
Accepts raw crystal data and returns [vertex_count, self.dim] float32 C-order.
|
| 988 |
+
|
| 989 |
+
Acceptable inputs:
|
| 990 |
+
- [vertex_count, D]
|
| 991 |
+
- [vertex_count * D] (flat) -> reshaped to [vertex_count, D]
|
| 992 |
+
- [D] (pooled center) -> converted by deterministic pentachoron (fallback)
|
| 993 |
+
"""
|
| 994 |
+
X = np.asarray(raw, dtype=np.float32)
|
| 995 |
+
|
| 996 |
+
# Already [V, D]
|
| 997 |
+
if X.ndim == 2:
|
| 998 |
+
V, D = int(X.shape[0]), int(X.shape[1])
|
| 999 |
+
if V != vertex_count:
|
| 1000 |
+
if strict_shapes:
|
| 1001 |
+
raise ValueError(f"Crystal has {V} vertices, expected {vertex_count}.")
|
| 1002 |
+
# Gentle fallback: attempt to treat rows as vertices if divisible
|
| 1003 |
+
if V * D % vertex_count == 0 and infer_dim:
|
| 1004 |
+
# e.g., [10, D] -> try to collapse/average into [5,D]? Not safe.
|
| 1005 |
+
# Safer: hard error to avoid silent geometry change.
|
| 1006 |
+
raise ValueError(f"Unexpected vertex rows {V}; refusing to coerce silently.")
|
| 1007 |
+
else:
|
| 1008 |
+
raise ValueError(f"Crystal has {V} vertices, expected {vertex_count}.")
|
| 1009 |
+
# Update dim if needed
|
| 1010 |
+
if D != self.dim:
|
| 1011 |
+
if infer_dim:
|
| 1012 |
+
self.dim = D
|
| 1013 |
+
else:
|
| 1014 |
+
raise ValueError(f"Dim mismatch: got D={D}, expected dim={self.dim}.")
|
| 1015 |
+
# Ensure mean-centered (finalize handles centering)
|
| 1016 |
+
return X
|
| 1017 |
+
|
| 1018 |
+
# Flat [V*D]
|
| 1019 |
+
if X.ndim == 1:
|
| 1020 |
+
n = int(X.size)
|
| 1021 |
+
# Exact match for flat crystal
|
| 1022 |
+
if n == vertex_count * self.dim:
|
| 1023 |
+
return np.reshape(X, (vertex_count, self.dim), order=reshape_order)
|
| 1024 |
+
|
| 1025 |
+
# Infer D from total length if divisible
|
| 1026 |
+
if infer_dim and n % vertex_count == 0:
|
| 1027 |
+
inferred = n // vertex_count
|
| 1028 |
+
self.dim = int(inferred)
|
| 1029 |
+
return np.reshape(X, (vertex_count, self.dim), order=reshape_order)
|
| 1030 |
+
|
| 1031 |
+
# Pooled [D]: inflate deterministically to [V, D]
|
| 1032 |
+
if n == self.dim:
|
| 1033 |
+
c = X / (np.abs(X).sum() + 1e-8) # L1
|
| 1034 |
+
return self._deterministic_pentachoron(c)
|
| 1035 |
+
|
| 1036 |
+
if strict_shapes:
|
| 1037 |
+
raise ValueError(
|
| 1038 |
+
f"Cannot coerce crystal of length {n}. "
|
| 1039 |
+
f"Expected {vertex_count*self.dim} (flat) or {self.dim} (pooled)."
|
| 1040 |
+
)
|
| 1041 |
+
# Conservative fallback: treat as pooled center with inferred D if reasonable
|
| 1042 |
+
if infer_dim and n > 0:
|
| 1043 |
+
self.dim = n
|
| 1044 |
+
c = X / (np.abs(X).sum() + 1e-8)
|
| 1045 |
+
return self._deterministic_pentachoron(c)
|
| 1046 |
+
|
| 1047 |
+
raise ValueError(f"Unsupported crystal shape {X.shape} (ndim={X.ndim}).")
|
| 1048 |
+
|
| 1049 |
+
|
| 1050 |
+
# -------- Introspection --------
|
| 1051 |
+
def describe(self) -> Dict[str, Union[str, int]]:
|
| 1052 |
+
return {"repo": self.repo_id, "dimension": self.dim, "vocab_size": self.vocab_size()}
|
| 1053 |
+
|
| 1054 |
+
|
| 1055 |
+
from __future__ import annotations
|
| 1056 |
+
import torch
|
| 1057 |
+
import numpy as np
|
| 1058 |
+
from abc import ABC, abstractmethod
|
| 1059 |
+
from typing import Dict, Union, Tuple, Optional, Callable, Any, List
|
| 1060 |
+
import warnings
|
| 1061 |
+
from collections import OrderedDict
|
| 1062 |
+
import datasets
|
| 1063 |
+
from datasets import load_dataset
|
| 1064 |
+
|
| 1065 |
+
# Global flag for warning suppression
|
| 1066 |
+
SILENT_MODE = False
|
| 1067 |
+
|
| 1068 |
+
def set_silent_mode(silent: bool):
|
| 1069 |
+
"""Set global silent mode for token synthesis warnings"""
|
| 1070 |
+
global SILENT_MODE
|
| 1071 |
+
SILENT_MODE = silent
|
| 1072 |
+
|
| 1073 |
+
class LRUCache(OrderedDict):
|
| 1074 |
+
"""Simple LRU cache implementation"""
|
| 1075 |
+
def __init__(self, maxsize=128):
|
| 1076 |
+
super().__init__()
|
| 1077 |
+
self.maxsize = maxsize
|
| 1078 |
+
|
| 1079 |
+
def __getitem__(self, key):
|
| 1080 |
+
value = super().__getitem__(key)
|
| 1081 |
+
self.move_to_end(key)
|
| 1082 |
+
return value
|
| 1083 |
+
|
| 1084 |
+
def __setitem__(self, key, value):
|
| 1085 |
+
if key in self:
|
| 1086 |
+
self.move_to_end(key)
|
| 1087 |
+
super().__setitem__(key, value)
|
| 1088 |
+
if len(self) > self.maxsize:
|
| 1089 |
+
oldest = next(iter(self))
|
| 1090 |
+
del self[oldest]
|
| 1091 |
+
|
| 1092 |
+
|
| 1093 |
+
class LazyGeometricVocab(GeometricVocab):
|
| 1094 |
+
"""
|
| 1095 |
+
Lazy-loading geometric vocabulary that loads tokens on demand.
|
| 1096 |
+
Maintains a small working set in memory with LRU eviction.
|
| 1097 |
+
Supports automatic token synthesis for missing tokens.
|
| 1098 |
+
"""
|
| 1099 |
+
|
| 1100 |
+
def __init__(
|
| 1101 |
+
self,
|
| 1102 |
+
repo_id: str,
|
| 1103 |
+
dim: int,
|
| 1104 |
+
*,
|
| 1105 |
+
name: str = "unicode_100d", # Updated default to match new structure
|
| 1106 |
+
split: str = "train", # Updated default to "train"
|
| 1107 |
+
stream: bool = True, # Use streaming by default to avoid bulk downloads
|
| 1108 |
+
base_set: Optional[Dict[str, int]] = None,
|
| 1109 |
+
create_config: Optional[Dict[str, Any]] = None,
|
| 1110 |
+
create_crystal: Optional[Callable] = None,
|
| 1111 |
+
callback: Optional[Callable] = None,
|
| 1112 |
+
manifest_specials: bool = True,
|
| 1113 |
+
# Lazy loading parameters
|
| 1114 |
+
cache_size: int = 1000, # Max tokens to keep in memory
|
| 1115 |
+
preload_tokens: Optional[List[str]] = None, # Critical tokens to preload
|
| 1116 |
+
index_cache_path: Optional[str] = None, # Path to save/load index
|
| 1117 |
+
# Tokenization
|
| 1118 |
+
tokenizer: Optional[Callable[[str], List[str]]] = None, # Custom tokenizer
|
| 1119 |
+
# Synthesis settings
|
| 1120 |
+
silent: bool = False, # Suppress synthesis warnings
|
| 1121 |
+
# Performance knobs
|
| 1122 |
+
store: str = "full",
|
| 1123 |
+
reshape_order: str = "C",
|
| 1124 |
+
vertex_count: int = 5,
|
| 1125 |
+
infer_dim: bool = True,
|
| 1126 |
+
finalize_mode: str = "post_mean",
|
| 1127 |
+
cache_pooled: bool = True,
|
| 1128 |
+
):
|
| 1129 |
+
super().__init__(dim)
|
| 1130 |
+
|
| 1131 |
+
self.repo_id = repo_id
|
| 1132 |
+
self.name = name
|
| 1133 |
+
self.split = split
|
| 1134 |
+
self.stream = stream
|
| 1135 |
+
self.vertex_count = vertex_count
|
| 1136 |
+
self.reshape_order = reshape_order
|
| 1137 |
+
self.infer_dim = infer_dim
|
| 1138 |
+
self.finalize_mode = finalize_mode
|
| 1139 |
+
self.store = store
|
| 1140 |
+
self.cache_pooled = cache_pooled
|
| 1141 |
+
self.silent = silent
|
| 1142 |
+
|
| 1143 |
+
# Initialize pooled dictionary that may be missing from parent class
|
| 1144 |
+
if not hasattr(self, '_id_to_pooled'):
|
| 1145 |
+
self._id_to_pooled = {}
|
| 1146 |
+
|
| 1147 |
+
# For synthesis
|
| 1148 |
+
self.create_crystal_fn = create_crystal
|
| 1149 |
+
self.callback_fn = callback
|
| 1150 |
+
self.create_config = create_config or {}
|
| 1151 |
+
self._synthesized_tokens: set = set()
|
| 1152 |
+
self._next_synthetic_id = -1 # Use negative IDs for synthetic tokens
|
| 1153 |
+
|
| 1154 |
+
# Tokenizer - default to simple split
|
| 1155 |
+
self.tokenizer = tokenizer or (lambda s: s.split())
|
| 1156 |
+
|
| 1157 |
+
# LRU caches for lazy loading
|
| 1158 |
+
self._crystal_cache = LRUCache(maxsize=cache_size)
|
| 1159 |
+
self._pooled_lru = LRUCache(maxsize=cache_size * 2) # Pooled vectors are smaller
|
| 1160 |
+
|
| 1161 |
+
# Load dataset but don't fetch data yet
|
| 1162 |
+
self._dataset = None
|
| 1163 |
+
self._dataset_stream = None
|
| 1164 |
+
self._token_index: Dict[str, List[int]] = {} # token -> [row indices]
|
| 1165 |
+
self._id_index: Dict[int, List[int]] = {} # token_id -> [row indices]
|
| 1166 |
+
self._row_data: Dict[int, dict] = {} # row -> cached data
|
| 1167 |
+
|
| 1168 |
+
# Initialize index
|
| 1169 |
+
self._build_index(split, name)
|
| 1170 |
+
|
| 1171 |
+
# Pre-load base characters for synthesis
|
| 1172 |
+
self._preload_synthesis_base()
|
| 1173 |
+
|
| 1174 |
+
# Preload critical tokens if specified
|
| 1175 |
+
if preload_tokens:
|
| 1176 |
+
self._preload(preload_tokens)
|
| 1177 |
+
|
| 1178 |
+
# Manifest special tokens
|
| 1179 |
+
if manifest_specials and base_set:
|
| 1180 |
+
self._manifest_special_tokens(
|
| 1181 |
+
base_set=base_set,
|
| 1182 |
+
create_crystal=create_crystal,
|
| 1183 |
+
callback=callback,
|
| 1184 |
+
create_config=create_config or {}
|
| 1185 |
+
)
|
| 1186 |
+
|
| 1187 |
+
def _preload_synthesis_base(self):
|
| 1188 |
+
"""Pre-load basic ASCII characters needed for synthesis"""
|
| 1189 |
+
# Essential characters that are commonly used in token synthesis
|
| 1190 |
+
base_chars = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 .,!?-_()[]{}:;'\"")
|
| 1191 |
+
|
| 1192 |
+
print(f"Pre-loading {len(base_chars)} base characters for synthesis...")
|
| 1193 |
+
loaded = 0
|
| 1194 |
+
for char in base_chars:
|
| 1195 |
+
tid = self._token_to_id.get(char)
|
| 1196 |
+
if tid:
|
| 1197 |
+
# Pre-load this character's embedding
|
| 1198 |
+
if self._load_crystal(tid) is not None:
|
| 1199 |
+
loaded += 1
|
| 1200 |
+
print(f"Loaded {loaded} base characters")
|
| 1201 |
+
|
| 1202 |
+
def _build_index(self, split: str, name: str):
|
| 1203 |
+
"""Build token/id index without loading crystal data"""
|
| 1204 |
+
print(f"Building index for {self.repo_id}/{name}/{split}...")
|
| 1205 |
+
|
| 1206 |
+
if self.stream:
|
| 1207 |
+
try:
|
| 1208 |
+
# Use streaming to avoid downloading all splits
|
| 1209 |
+
# Don't specify columns in streaming mode to avoid schema issues
|
| 1210 |
+
self._dataset_stream = load_dataset(
|
| 1211 |
+
self.repo_id,
|
| 1212 |
+
name=name,
|
| 1213 |
+
split=split,
|
| 1214 |
+
streaming=True
|
| 1215 |
+
)
|
| 1216 |
+
|
| 1217 |
+
# Build index from streaming dataset
|
| 1218 |
+
for idx, row in enumerate(self._dataset_stream):
|
| 1219 |
+
token = str(row["token"])
|
| 1220 |
+
token_id = int(row["token_id"])
|
| 1221 |
+
|
| 1222 |
+
# Token index
|
| 1223 |
+
if token not in self._token_index:
|
| 1224 |
+
self._token_index[token] = []
|
| 1225 |
+
self._token_index[token].append(idx)
|
| 1226 |
+
|
| 1227 |
+
# ID index
|
| 1228 |
+
if token_id not in self._id_index:
|
| 1229 |
+
self._id_index[token_id] = []
|
| 1230 |
+
self._id_index[token_id].append(idx)
|
| 1231 |
+
|
| 1232 |
+
# Update mappings (use first occurrence)
|
| 1233 |
+
if token not in self._token_to_id:
|
| 1234 |
+
self._token_to_id[token] = token_id
|
| 1235 |
+
self._id_to_token[token_id] = token
|
| 1236 |
+
self._valid_token_ids.add(token_id)
|
| 1237 |
+
|
| 1238 |
+
print(f"Index built (streaming): {len(self._token_index)} unique tokens")
|
| 1239 |
+
|
| 1240 |
+
except Exception as e:
|
| 1241 |
+
print(f"Streaming failed: {e}")
|
| 1242 |
+
print("Falling back to non-streaming mode...")
|
| 1243 |
+
self.stream = False
|
| 1244 |
+
# Recursive call with streaming disabled
|
| 1245 |
+
self._build_index(split, name)
|
| 1246 |
+
|
| 1247 |
+
else:
|
| 1248 |
+
# Non-streaming mode - load dataset normally
|
| 1249 |
+
try:
|
| 1250 |
+
# Try with data_files to load only specific split
|
| 1251 |
+
data_files = f"data/{name}/{split}-*.parquet"
|
| 1252 |
+
ds = load_dataset(
|
| 1253 |
+
self.repo_id,
|
| 1254 |
+
data_files=data_files,
|
| 1255 |
+
split="train"
|
| 1256 |
+
)
|
| 1257 |
+
except:
|
| 1258 |
+
# Fallback to normal loading
|
| 1259 |
+
try:
|
| 1260 |
+
ds = load_dataset(
|
| 1261 |
+
self.repo_id,
|
| 1262 |
+
name=name,
|
| 1263 |
+
split=split
|
| 1264 |
+
)
|
| 1265 |
+
except Exception as e:
|
| 1266 |
+
print(f"Failed to load dataset: {e}")
|
| 1267 |
+
raise
|
| 1268 |
+
|
| 1269 |
+
# Build indices
|
| 1270 |
+
for idx, row in enumerate(ds):
|
| 1271 |
+
token = str(row["token"])
|
| 1272 |
+
token_id = int(row["token_id"])
|
| 1273 |
+
|
| 1274 |
+
# Token index
|
| 1275 |
+
if token not in self._token_index:
|
| 1276 |
+
self._token_index[token] = []
|
| 1277 |
+
self._token_index[token].append(idx)
|
| 1278 |
+
|
| 1279 |
+
# ID index
|
| 1280 |
+
if token_id not in self._id_index:
|
| 1281 |
+
self._id_index[token_id] = []
|
| 1282 |
+
self._id_index[token_id].append(idx)
|
| 1283 |
+
|
| 1284 |
+
# Update mappings (use first occurrence)
|
| 1285 |
+
if token not in self._token_to_id:
|
| 1286 |
+
self._token_to_id[token] = token_id
|
| 1287 |
+
self._id_to_token[token_id] = token
|
| 1288 |
+
self._valid_token_ids.add(token_id)
|
| 1289 |
+
|
| 1290 |
+
# Store dataset reference (will lazy load full data)
|
| 1291 |
+
self._dataset = ds
|
| 1292 |
+
print(f"Index built: {len(self._token_index)} unique tokens")
|
| 1293 |
+
|
| 1294 |
+
def _load_row(self, row_idx: int) -> dict:
|
| 1295 |
+
"""Load a single row from dataset"""
|
| 1296 |
+
if row_idx in self._row_data:
|
| 1297 |
+
return self._row_data[row_idx]
|
| 1298 |
+
|
| 1299 |
+
# If streaming, need to load the full dataset on first data access
|
| 1300 |
+
if self.stream and self._dataset is None:
|
| 1301 |
+
print(f"Loading full dataset for {self.repo_id}/{self.name}/{self.split}...")
|
| 1302 |
+
try:
|
| 1303 |
+
# Try with data_files first
|
| 1304 |
+
data_files = f"data/{self.name}/{self.split}-*.parquet"
|
| 1305 |
+
self._dataset = load_dataset(
|
| 1306 |
+
self.repo_id,
|
| 1307 |
+
data_files=data_files,
|
| 1308 |
+
split="train"
|
| 1309 |
+
)
|
| 1310 |
+
except:
|
| 1311 |
+
# Fallback to normal loading
|
| 1312 |
+
self._dataset = load_dataset(
|
| 1313 |
+
self.repo_id,
|
| 1314 |
+
name=self.name,
|
| 1315 |
+
split=self.split
|
| 1316 |
+
)
|
| 1317 |
+
|
| 1318 |
+
if self._dataset is None:
|
| 1319 |
+
raise RuntimeError("Dataset not initialized")
|
| 1320 |
+
|
| 1321 |
+
row = self._dataset[row_idx]
|
| 1322 |
+
self._row_data[row_idx] = row
|
| 1323 |
+
return row
|
| 1324 |
+
|
| 1325 |
+
def _load_crystal(self, token_id: int) -> Optional[np.ndarray]:
|
| 1326 |
+
"""Load and aggregate crystal for a token_id"""
|
| 1327 |
+
if token_id in self._crystal_cache:
|
| 1328 |
+
return self._crystal_cache[token_id]
|
| 1329 |
+
|
| 1330 |
+
if token_id not in self._id_index:
|
| 1331 |
+
return None
|
| 1332 |
+
|
| 1333 |
+
row_indices = self._id_index[token_id]
|
| 1334 |
+
crystals = []
|
| 1335 |
+
volumes = []
|
| 1336 |
+
|
| 1337 |
+
for idx in row_indices:
|
| 1338 |
+
row = self._load_row(idx)
|
| 1339 |
+
|
| 1340 |
+
# Parse crystal
|
| 1341 |
+
raw_crystal = row.get("crystal")
|
| 1342 |
+
if raw_crystal is not None:
|
| 1343 |
+
X = self._coerce_crystal(raw_crystal)
|
| 1344 |
+
crystals.append(X)
|
| 1345 |
+
|
| 1346 |
+
# Get volume if available
|
| 1347 |
+
vol = row.get("volume", 1.0)
|
| 1348 |
+
volumes.append(float(vol))
|
| 1349 |
+
|
| 1350 |
+
if not crystals:
|
| 1351 |
+
return None
|
| 1352 |
+
|
| 1353 |
+
# Average multiple occurrences
|
| 1354 |
+
if len(crystals) == 1:
|
| 1355 |
+
X_final = crystals[0]
|
| 1356 |
+
vol_final = volumes[0]
|
| 1357 |
+
else:
|
| 1358 |
+
X_final = np.mean(crystals, axis=0)
|
| 1359 |
+
vol_final = np.mean(volumes)
|
| 1360 |
+
|
| 1361 |
+
# Finalize
|
| 1362 |
+
if self.finalize_mode == "post_mean":
|
| 1363 |
+
X_final = self._finalize_crystal(X_final)
|
| 1364 |
+
|
| 1365 |
+
# Cache based on store mode
|
| 1366 |
+
if self.store in ("full", "both"):
|
| 1367 |
+
self._crystal_cache[token_id] = X_final
|
| 1368 |
+
self._id_to_vec[token_id] = X_final
|
| 1369 |
+
|
| 1370 |
+
# Cache pooled if requested
|
| 1371 |
+
if self.cache_pooled:
|
| 1372 |
+
pooled = X_final.mean(axis=0)
|
| 1373 |
+
self._pooled_lru[token_id] = pooled
|
| 1374 |
+
if token_id not in self._id_to_pooled:
|
| 1375 |
+
self._id_to_pooled[token_id] = pooled
|
| 1376 |
+
|
| 1377 |
+
# Store volume
|
| 1378 |
+
self._id_to_volume[token_id] = vol_final
|
| 1379 |
+
|
| 1380 |
+
return X_final
|
| 1381 |
+
|
| 1382 |
+
def _coerce_crystal(self, raw: Any) -> np.ndarray:
|
| 1383 |
+
"""Convert raw crystal data to proper shape"""
|
| 1384 |
+
X = np.asarray(raw, dtype=np.float32)
|
| 1385 |
+
|
| 1386 |
+
if X.ndim == 2:
|
| 1387 |
+
V, D = X.shape
|
| 1388 |
+
if V != self.vertex_count:
|
| 1389 |
+
raise ValueError(f"Expected {self.vertex_count} vertices, got {V}")
|
| 1390 |
+
if D != self.dim:
|
| 1391 |
+
if self.infer_dim:
|
| 1392 |
+
self.dim = D
|
| 1393 |
+
else:
|
| 1394 |
+
raise ValueError(f"Dimension mismatch: {D} vs {self.dim}")
|
| 1395 |
+
return X
|
| 1396 |
+
|
| 1397 |
+
if X.ndim == 1:
|
| 1398 |
+
n = X.size
|
| 1399 |
+
if n == self.vertex_count * self.dim:
|
| 1400 |
+
return X.reshape((self.vertex_count, self.dim), order=self.reshape_order)
|
| 1401 |
+
if self.infer_dim and n % self.vertex_count == 0:
|
| 1402 |
+
self.dim = n // self.vertex_count
|
| 1403 |
+
return X.reshape((self.vertex_count, self.dim), order=self.reshape_order)
|
| 1404 |
+
if n == self.dim:
|
| 1405 |
+
# Pooled vector - expand to crystal
|
| 1406 |
+
c = X / (np.abs(X).sum() + 1e-8)
|
| 1407 |
+
return self._deterministic_pentachoron(c)
|
| 1408 |
+
|
| 1409 |
+
raise ValueError(f"Cannot coerce crystal shape {X.shape}")
|
| 1410 |
+
|
| 1411 |
+
def _synthesize_token(self, token: str) -> int:
|
| 1412 |
+
"""Synthesize a new token embedding on-the-fly with fallback for missing chars."""
|
| 1413 |
+
# Generate a new ID for synthetic token
|
| 1414 |
+
tid = self._next_synthetic_id
|
| 1415 |
+
self._next_synthetic_id -= 1
|
| 1416 |
+
|
| 1417 |
+
# Warn user unless silenced
|
| 1418 |
+
if not self.silent and not SILENT_MODE:
|
| 1419 |
+
warnings.warn(
|
| 1420 |
+
f"Token '{token}' synthesized - ensure you synthesize your tokens ahead of time.",
|
| 1421 |
+
UserWarning,
|
| 1422 |
+
stacklevel=3
|
| 1423 |
+
)
|
| 1424 |
+
|
| 1425 |
+
# Track as synthesized
|
| 1426 |
+
self._synthesized_tokens.add(token)
|
| 1427 |
+
|
| 1428 |
+
# Try to use character-based synthesis first
|
| 1429 |
+
try:
|
| 1430 |
+
# Check if all characters are available
|
| 1431 |
+
missing_chars = []
|
| 1432 |
+
for char in token:
|
| 1433 |
+
if char not in self._token_to_id and char not in self._char_cache:
|
| 1434 |
+
missing_chars.append(char)
|
| 1435 |
+
|
| 1436 |
+
# If missing chars, try to load or synthesize them first
|
| 1437 |
+
if missing_chars:
|
| 1438 |
+
for char in missing_chars:
|
| 1439 |
+
char_tid = self._token_to_id.get(char)
|
| 1440 |
+
if char_tid:
|
| 1441 |
+
# Try to load it
|
| 1442 |
+
self._load_crystal(char_tid)
|
| 1443 |
+
else:
|
| 1444 |
+
# Create a simple embedding for this character
|
| 1445 |
+
self._synthesize_simple_char(char)
|
| 1446 |
+
|
| 1447 |
+
# Now try the full synthesis
|
| 1448 |
+
helpers = self._helpers()
|
| 1449 |
+
cfg = {
|
| 1450 |
+
"dim": self.dim,
|
| 1451 |
+
"pool_type": self.create_config.get("pool_type", "unicode"),
|
| 1452 |
+
"data": {"token": token, "token_id": tid, "origin": "synthetic"},
|
| 1453 |
+
"helpers": helpers,
|
| 1454 |
+
}
|
| 1455 |
+
|
| 1456 |
+
if self.create_crystal_fn is not None:
|
| 1457 |
+
product = self.create_crystal_fn(cfg, self.callback_fn)
|
| 1458 |
+
else:
|
| 1459 |
+
product = self._default_create_crystal(cfg, self._default_unicode_callback)
|
| 1460 |
+
|
| 1461 |
+
X, prov = self._finalize_crystal_and_provenance(product, cfg)
|
| 1462 |
+
|
| 1463 |
+
except Exception as e:
|
| 1464 |
+
# Fallback to simple random synthesis
|
| 1465 |
+
print(f"Character-based synthesis failed for '{token}': {e}. Using random synthesis.")
|
| 1466 |
+
X = self._synthesize_random_crystal(token)
|
| 1467 |
+
prov = {"source": "synthetic_random", "token": token}
|
| 1468 |
+
|
| 1469 |
+
prov["synthetic"] = True
|
| 1470 |
+
|
| 1471 |
+
# Register in all maps
|
| 1472 |
+
self._token_to_id[token] = tid
|
| 1473 |
+
self._id_to_token[tid] = token
|
| 1474 |
+
self._id_to_vec[tid] = X.astype(np.float32, copy=False, order='C')
|
| 1475 |
+
self._id_to_provenance[tid] = prov
|
| 1476 |
+
self._valid_token_ids.add(tid)
|
| 1477 |
+
self._id_to_volume[tid] = 1.0
|
| 1478 |
+
|
| 1479 |
+
# Cache
|
| 1480 |
+
self._crystal_cache[tid] = X
|
| 1481 |
+
if self.cache_pooled:
|
| 1482 |
+
pooled = X.mean(axis=0)
|
| 1483 |
+
self._pooled_lru[tid] = pooled
|
| 1484 |
+
self._id_to_pooled[tid] = pooled
|
| 1485 |
+
|
| 1486 |
+
return tid
|
| 1487 |
+
|
| 1488 |
+
def _synthesize_simple_char(self, char: str):
|
| 1489 |
+
"""Create a simple deterministic embedding for a single character"""
|
| 1490 |
+
import hashlib
|
| 1491 |
+
|
| 1492 |
+
# Use character's unicode codepoint for deterministic generation
|
| 1493 |
+
if len(char) == 1:
|
| 1494 |
+
seed = ord(char)
|
| 1495 |
+
else:
|
| 1496 |
+
seed = int(hashlib.md5(char.encode()).hexdigest()[:8], 16)
|
| 1497 |
+
|
| 1498 |
+
np.random.seed(seed)
|
| 1499 |
+
|
| 1500 |
+
# Generate a simple vector based on character properties
|
| 1501 |
+
vec = np.random.randn(self.dim).astype(np.float32)
|
| 1502 |
+
vec = vec / (np.abs(vec).sum() + 1e-8) # L1 normalize
|
| 1503 |
+
|
| 1504 |
+
# Cache it
|
| 1505 |
+
self._char_cache[char] = vec
|
| 1506 |
+
|
| 1507 |
+
def _synthesize_random_crystal(self, token: str) -> np.ndarray:
|
| 1508 |
+
"""Fallback: create a deterministic random crystal based on token string"""
|
| 1509 |
+
import hashlib
|
| 1510 |
+
|
| 1511 |
+
# Create deterministic seed from token
|
| 1512 |
+
seed = int(hashlib.md5(token.encode()).hexdigest()[:8], 16)
|
| 1513 |
+
np.random.seed(seed)
|
| 1514 |
+
|
| 1515 |
+
# Generate a random crystal
|
| 1516 |
+
X = np.random.randn(self.vertex_count, self.dim).astype(np.float32)
|
| 1517 |
+
X = self._finalize_crystal(X)
|
| 1518 |
+
|
| 1519 |
+
return X
|
| 1520 |
+
|
| 1521 |
+
def _preload(self, tokens: List[str]):
|
| 1522 |
+
"""Preload specific tokens into cache"""
|
| 1523 |
+
print(f"Preloading {len(tokens)} tokens...")
|
| 1524 |
+
for token in tokens:
|
| 1525 |
+
tid = self._token_to_id.get(token)
|
| 1526 |
+
if tid:
|
| 1527 |
+
self._load_crystal(tid)
|
| 1528 |
+
|
| 1529 |
+
# Override base methods to use lazy loading with synthesis
|
| 1530 |
+
|
| 1531 |
+
def embedding(self, token_or_id: Union[str, int], generate: bool = False) -> Optional[np.ndarray]:
|
| 1532 |
+
"""Get embedding, loading if necessary, synthesizing if requested"""
|
| 1533 |
+
# Handle token ID input
|
| 1534 |
+
if isinstance(token_or_id, int):
|
| 1535 |
+
tid = token_or_id
|
| 1536 |
+
token = self._id_to_token.get(tid)
|
| 1537 |
+
else:
|
| 1538 |
+
token = token_or_id
|
| 1539 |
+
tid = self._token_to_id.get(token)
|
| 1540 |
+
|
| 1541 |
+
if tid is not None:
|
| 1542 |
+
# Check cache first
|
| 1543 |
+
if tid in self._id_to_vec:
|
| 1544 |
+
return self._id_to_vec[tid]
|
| 1545 |
+
# Load on demand
|
| 1546 |
+
return self._load_crystal(tid)
|
| 1547 |
+
|
| 1548 |
+
# Token not found - synthesize if requested
|
| 1549 |
+
if generate and token is not None:
|
| 1550 |
+
tid = self._synthesize_token(token)
|
| 1551 |
+
return self._id_to_vec[tid]
|
| 1552 |
+
|
| 1553 |
+
return None
|
| 1554 |
+
|
| 1555 |
+
def pooled(self, token_or_id: Union[str, int], method: str = "mean", generate: bool = False) -> Optional[np.ndarray]:
|
| 1556 |
+
"""Get pooled vector, loading if necessary, synthesizing if requested"""
|
| 1557 |
+
# Handle token ID input
|
| 1558 |
+
if isinstance(token_or_id, int):
|
| 1559 |
+
tid = token_or_id
|
| 1560 |
+
token = self._id_to_token.get(tid)
|
| 1561 |
+
else:
|
| 1562 |
+
token = token_or_id
|
| 1563 |
+
tid = self._token_to_id.get(token)
|
| 1564 |
+
|
| 1565 |
+
if tid is not None:
|
| 1566 |
+
# Check pooled cache
|
| 1567 |
+
if tid in self._pooled_lru:
|
| 1568 |
+
return self._pooled_lru[tid]
|
| 1569 |
+
if tid in self._id_to_pooled:
|
| 1570 |
+
return self._id_to_pooled[tid]
|
| 1571 |
+
|
| 1572 |
+
# Load crystal and compute pooled
|
| 1573 |
+
X = self.embedding(tid, generate=False)
|
| 1574 |
+
if X is not None:
|
| 1575 |
+
if method == "mean":
|
| 1576 |
+
pooled = X.mean(axis=0)
|
| 1577 |
+
self._pooled_lru[tid] = pooled
|
| 1578 |
+
return pooled
|
| 1579 |
+
elif method == "first":
|
| 1580 |
+
return X[0]
|
| 1581 |
+
elif method == "sum":
|
| 1582 |
+
return X.sum(axis=0)
|
| 1583 |
+
else:
|
| 1584 |
+
raise ValueError(f"Unknown pooling method: {method}")
|
| 1585 |
+
|
| 1586 |
+
# Token not found - synthesize if requested
|
| 1587 |
+
if generate and token is not None:
|
| 1588 |
+
tid = self._synthesize_token(token)
|
| 1589 |
+
return self.pooled(tid, method=method, generate=False)
|
| 1590 |
+
|
| 1591 |
+
return None
|
| 1592 |
+
|
| 1593 |
+
def encode(self, token: str, *, return_id: bool = False, generate: bool = False) -> Union[np.ndarray, Tuple[np.ndarray, int]]:
|
| 1594 |
+
"""Encode token, loading if necessary, synthesizing if requested"""
|
| 1595 |
+
tid = self._token_to_id.get(token)
|
| 1596 |
+
|
| 1597 |
+
if tid is None:
|
| 1598 |
+
if generate:
|
| 1599 |
+
# Synthesize new token
|
| 1600 |
+
tid = self._synthesize_token(token)
|
| 1601 |
+
X = self._id_to_vec[tid]
|
| 1602 |
+
else:
|
| 1603 |
+
# Fallback to UNK
|
| 1604 |
+
unk_id = self._token_to_id.get("<unk>")
|
| 1605 |
+
if unk_id is None:
|
| 1606 |
+
# No UNK token - try to synthesize if allowed
|
| 1607 |
+
if generate:
|
| 1608 |
+
tid = self._synthesize_token(token)
|
| 1609 |
+
X = self._id_to_vec[tid]
|
| 1610 |
+
else:
|
| 1611 |
+
raise KeyError(f"Token '{token}' not found and no <unk> token available")
|
| 1612 |
+
else:
|
| 1613 |
+
X = self.embedding(unk_id, generate=False)
|
| 1614 |
+
tid = unk_id
|
| 1615 |
+
else:
|
| 1616 |
+
X = self.embedding(tid, generate=False)
|
| 1617 |
+
if X is None:
|
| 1618 |
+
raise RuntimeError(f"Failed to load embedding for token '{token}'")
|
| 1619 |
+
|
| 1620 |
+
return (X, tid) if return_id else X
|
| 1621 |
+
|
| 1622 |
+
def get_score(self, token_or_id: Union[str, int]) -> float:
|
| 1623 |
+
"""Get token score"""
|
| 1624 |
+
tid = token_or_id if isinstance(token_or_id, int) else self._token_to_id.get(token_or_id)
|
| 1625 |
+
if tid is None or tid not in self._valid_token_ids:
|
| 1626 |
+
return -100.0
|
| 1627 |
+
|
| 1628 |
+
# Load volume if needed
|
| 1629 |
+
if tid not in self._id_to_volume:
|
| 1630 |
+
self._load_crystal(tid)
|
| 1631 |
+
|
| 1632 |
+
vol = self._id_to_volume.get(tid, 1.0)
|
| 1633 |
+
return float(np.clip(vol / 10.0, 0.01, 1.0))
|
| 1634 |
+
|
| 1635 |
+
def encode_batch(self, tokens: Union[str, List[str]],
|
| 1636 |
+
*, return_ids: bool = False,
|
| 1637 |
+
prefetch: bool = True,
|
| 1638 |
+
generate: bool = False) -> Union[List[np.ndarray], Tuple[List[np.ndarray], List[int]]]:
|
| 1639 |
+
"""
|
| 1640 |
+
Encode a batch of tokens efficiently.
|
| 1641 |
+
|
| 1642 |
+
Args:
|
| 1643 |
+
tokens: Either a string (will be tokenized) or list of token strings
|
| 1644 |
+
return_ids: Whether to return token IDs alongside embeddings
|
| 1645 |
+
prefetch: Whether to prefetch all tokens before encoding
|
| 1646 |
+
generate: If True, synthesize missing tokens
|
| 1647 |
+
|
| 1648 |
+
Returns:
|
| 1649 |
+
List of embeddings, optionally with list of token IDs
|
| 1650 |
+
"""
|
| 1651 |
+
# Handle string input - tokenize it
|
| 1652 |
+
if isinstance(tokens, str):
|
| 1653 |
+
tokens = self.tokenizer(tokens)
|
| 1654 |
+
|
| 1655 |
+
if not isinstance(tokens, list):
|
| 1656 |
+
raise TypeError(f"Expected str or List[str], got {type(tokens)}")
|
| 1657 |
+
|
| 1658 |
+
# Track which tokens need synthesis
|
| 1659 |
+
tokens_to_synthesize = []
|
| 1660 |
+
if generate:
|
| 1661 |
+
for token in tokens:
|
| 1662 |
+
if token not in self._token_to_id:
|
| 1663 |
+
tokens_to_synthesize.append(token)
|
| 1664 |
+
|
| 1665 |
+
# Warn about batch synthesis if needed
|
| 1666 |
+
if tokens_to_synthesize and not self.silent and not SILENT_MODE:
|
| 1667 |
+
warnings.warn(
|
| 1668 |
+
f"{len(tokens_to_synthesize)} tokens synthesized - ensure you synthesize your tokens ahead of time. "
|
| 1669 |
+
f"Synthesized: {tokens_to_synthesize[:5]}{'...' if len(tokens_to_synthesize) > 5 else ''}",
|
| 1670 |
+
UserWarning,
|
| 1671 |
+
stacklevel=2
|
| 1672 |
+
)
|
| 1673 |
+
|
| 1674 |
+
# Prefetch existing tokens if requested
|
| 1675 |
+
if prefetch:
|
| 1676 |
+
self._prefetch_batch([t for t in tokens if t in self._token_to_id])
|
| 1677 |
+
|
| 1678 |
+
# Encode all tokens
|
| 1679 |
+
embeddings = []
|
| 1680 |
+
ids = []
|
| 1681 |
+
|
| 1682 |
+
for token in tokens:
|
| 1683 |
+
if return_ids:
|
| 1684 |
+
emb, tid = self.encode(token, return_id=True, generate=generate)
|
| 1685 |
+
embeddings.append(emb)
|
| 1686 |
+
ids.append(tid)
|
| 1687 |
+
else:
|
| 1688 |
+
emb = self.encode(token, return_id=False, generate=generate)
|
| 1689 |
+
embeddings.append(emb)
|
| 1690 |
+
|
| 1691 |
+
return (embeddings, ids) if return_ids else embeddings
|
| 1692 |
+
|
| 1693 |
+
def _prefetch_batch(self, tokens: List[str]):
|
| 1694 |
+
"""
|
| 1695 |
+
Prefetch a batch of tokens efficiently.
|
| 1696 |
+
"""
|
| 1697 |
+
# Collect all token IDs that need loading
|
| 1698 |
+
tokens_to_load = []
|
| 1699 |
+
for token in tokens:
|
| 1700 |
+
tid = self._token_to_id.get(token)
|
| 1701 |
+
if tid and tid not in self._crystal_cache and tid not in self._id_to_vec:
|
| 1702 |
+
tokens_to_load.append(tid)
|
| 1703 |
+
|
| 1704 |
+
if not tokens_to_load:
|
| 1705 |
+
return # Everything already cached
|
| 1706 |
+
|
| 1707 |
+
# Load crystals for each token
|
| 1708 |
+
for tid in tokens_to_load:
|
| 1709 |
+
self._load_crystal(tid)
|
| 1710 |
+
|
| 1711 |
+
def cache_stats(self) -> Dict[str, Any]:
|
| 1712 |
+
"""Get cache statistics"""
|
| 1713 |
+
stats = super().cache_stats()
|
| 1714 |
+
stats.update({
|
| 1715 |
+
"crystal_cache_size": len(self._crystal_cache),
|
| 1716 |
+
"pooled_lru_size": len(self._pooled_lru),
|
| 1717 |
+
"rows_cached": len(self._row_data),
|
| 1718 |
+
"tokens_indexed": len(self._token_index),
|
| 1719 |
+
"ids_indexed": len(self._id_index),
|
| 1720 |
+
"synthesized_tokens": len(self._synthesized_tokens),
|
| 1721 |
+
})
|
| 1722 |
+
return stats
|
| 1723 |
+
|
| 1724 |
+
def evict_from_cache(self, tokens: Optional[List[str]] = None):
|
| 1725 |
+
"""Manually evict tokens from cache to free memory"""
|
| 1726 |
+
if tokens is None:
|
| 1727 |
+
# Clear all caches
|
| 1728 |
+
self._crystal_cache.clear()
|
| 1729 |
+
self._pooled_lru.clear()
|
| 1730 |
+
self._id_to_vec.clear()
|
| 1731 |
+
self._id_to_pooled.clear()
|
| 1732 |
+
self._row_data.clear()
|
| 1733 |
+
else:
|
| 1734 |
+
# Evict specific tokens
|
| 1735 |
+
for token in tokens:
|
| 1736 |
+
tid = self._token_to_id.get(token)
|
| 1737 |
+
if tid:
|
| 1738 |
+
self._crystal_cache.pop(tid, None)
|
| 1739 |
+
self._pooled_lru.pop(tid, None)
|
| 1740 |
+
self._id_to_vec.pop(tid, None)
|
| 1741 |
+
self._id_to_pooled.pop(tid, None)
|
| 1742 |
+
|
| 1743 |
+
def get_synthesized_tokens(self) -> List[str]:
|
| 1744 |
+
"""Get list of all tokens that were synthesized at runtime"""
|
| 1745 |
+
return list(self._synthesized_tokens)
|
| 1746 |
+
|
| 1747 |
+
def is_synthesized(self, token: str) -> bool:
|
| 1748 |
+
"""Check if a token was synthesized at runtime"""
|
| 1749 |
+
return token in self._synthesized_tokens
|
| 1750 |
+
|
| 1751 |
+
|
| 1752 |
+
|
| 1753 |
+
|
| 1754 |
+
# For 100-dimensional embeddings
|
| 1755 |
+
vocab = LazyGeometricVocab(
|
| 1756 |
+
repo_id="AbstractPhil/geometric-vocab",
|
| 1757 |
+
dim=64,
|
| 1758 |
+
name="unicode_64d", # Specifies the dimension config
|
| 1759 |
+
split="train", # Now always "train"
|
| 1760 |
+
stream=False,
|
| 1761 |
+
cache_size=1024,
|
| 1762 |
+
silent=False
|
| 1763 |
+
)
|
| 1764 |
+
FROZEN_VOCAB = []
|