Updated the model to correctly reflect the fixes.
Browse files
model.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
PentachoraViT: Vision Transformer with Pentachoron Geometric Structure
|
| 3 |
Enhanced with Geometric Attention for improved head cohesion and generalization
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import torch
|
|
@@ -35,7 +36,7 @@ class PentachoraConfig:
|
|
| 35 |
aux_loss_weight: float = 0.3
|
| 36 |
geo_loss_weight: float = 0.1
|
| 37 |
vocab: Optional[Any] = None
|
| 38 |
-
|
| 39 |
@property
|
| 40 |
def num_patches(self) -> int:
|
| 41 |
return (self.img_size // self.patch_size) ** 2
|
|
@@ -74,33 +75,33 @@ class GeometricConfig:
|
|
| 74 |
|
| 75 |
class GeometricNavigator(nn.Module):
|
| 76 |
"""Maps inputs to geometric regions in 4D space."""
|
| 77 |
-
|
| 78 |
def __init__(self, input_dim: int, num_regions: int, config: GeometricConfig):
|
| 79 |
super().__init__()
|
| 80 |
self.input_dim = input_dim
|
| 81 |
self.num_regions = num_regions
|
| 82 |
self.config = config
|
| 83 |
-
|
| 84 |
self.to_nav = nn.Linear(input_dim, 4, bias=False)
|
| 85 |
self.vertex_w = nn.Parameter(torch.zeros(num_regions, 5))
|
| 86 |
-
|
| 87 |
# Initialize geometry after module is created
|
| 88 |
self.register_parameter('D', None)
|
| 89 |
self.register_parameter('S', None)
|
| 90 |
-
|
| 91 |
def _lazy_init_geometry(self, device):
|
| 92 |
"""Initialize geometry on first forward pass."""
|
| 93 |
if self.D is not None:
|
| 94 |
return
|
| 95 |
-
|
| 96 |
base = perfect_4simplex(device)
|
| 97 |
-
|
| 98 |
D = torch.zeros(self.num_regions, 5, 4, device=device)
|
| 99 |
S = torch.zeros(self.num_regions, 5, 4, device=device)
|
| 100 |
-
|
| 101 |
for r in range(self.num_regions):
|
| 102 |
D[r] = base + self.config.jitter * torch.randn_like(base)
|
| 103 |
-
|
| 104 |
theta = torch.tensor(0.27 + 0.05 * (r % self.config.rotate_cycle), device=device)
|
| 105 |
rot = torch.eye(4, device=device)
|
| 106 |
c, s_val = torch.cos(theta), torch.sin(theta)
|
|
@@ -108,67 +109,67 @@ class GeometricNavigator(nn.Module):
|
|
| 108 |
rot[1, 0] = s_val; rot[1, 1] = c
|
| 109 |
S[r] = (base @ rot) + self.config.shift
|
| 110 |
S[r] += self.config.jitter * torch.randn_like(S[r])
|
| 111 |
-
|
| 112 |
self.D = nn.Parameter(D)
|
| 113 |
self.S = nn.Parameter(S)
|
| 114 |
-
|
| 115 |
def navigate(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
|
| 116 |
"""Navigate inputs through geometric space."""
|
| 117 |
self._lazy_init_geometry(x.device)
|
| 118 |
-
|
| 119 |
nav_x = self.to_nav(x)
|
| 120 |
nav_x_exp = nav_x[:, None, None, :]
|
| 121 |
D_exp = self.D[None, :, :, :]
|
| 122 |
-
|
| 123 |
d_disp = torch.norm(nav_x_exp - D_exp, dim=-1)
|
| 124 |
s_disp = -softmin_over_last(d_disp, self.config.softmin_tau)
|
| 125 |
-
|
| 126 |
w = F.softmax(self.vertex_w, dim=1)
|
| 127 |
phase_scores = []
|
| 128 |
-
|
| 129 |
for phase in self.config.phases:
|
| 130 |
phase_tensor = torch.tensor(phase, device=x.device)
|
| 131 |
ct = torch.cos(phase_tensor)
|
| 132 |
st = torch.sin(phase_tensor)
|
| 133 |
-
|
| 134 |
Vt = ct * self.D + st * self.S
|
| 135 |
w_expanded = w.unsqueeze(-1)
|
| 136 |
Vt_mean = Vt.mean(dim=1, keepdim=True)
|
| 137 |
Vt = (1.0 - w_expanded) * Vt + w_expanded * Vt_mean
|
| 138 |
-
|
| 139 |
Vt_exp = Vt[None, :, :, :]
|
| 140 |
d_ribbon = torch.norm(nav_x_exp - Vt_exp, dim=-1)
|
| 141 |
s_ribbon = -softmin_over_last(d_ribbon, self.config.softmin_tau)
|
| 142 |
phase_scores.append(s_ribbon)
|
| 143 |
-
|
| 144 |
s_ribbon = torch.stack(phase_scores).mean(dim=0)
|
| 145 |
scores = self.config.fuse_alpha * s_ribbon + (1 - self.config.fuse_alpha) * s_disp
|
| 146 |
-
|
| 147 |
diagnostics = {
|
| 148 |
'dispatcher_scores': s_disp.detach(),
|
| 149 |
'ribbon_scores': s_ribbon.detach()
|
| 150 |
}
|
| 151 |
-
|
| 152 |
return {'scores': scores, 'diagnostics': diagnostics}
|
| 153 |
|
| 154 |
class GeometricAttention(nn.Module):
|
| 155 |
"""Multi-head geometric attention with Q-K alignment."""
|
| 156 |
-
|
| 157 |
def __init__(self, dim: int, num_heads: int = 8, num_regions: Optional[int] = None,
|
| 158 |
config: Optional[GeometricConfig] = None, dropout: float = 0.0):
|
| 159 |
super().__init__()
|
| 160 |
self.dim = dim
|
| 161 |
self.num_heads = num_heads
|
| 162 |
self.head_dim = dim // num_heads
|
| 163 |
-
|
| 164 |
if num_regions is None:
|
| 165 |
num_regions = min(self.head_dim, 16)
|
| 166 |
if config is None:
|
| 167 |
config = GeometricConfig()
|
| 168 |
-
|
| 169 |
self.config = config
|
| 170 |
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
|
| 171 |
-
|
| 172 |
self.q_navigators = nn.ModuleList([
|
| 173 |
GeometricNavigator(self.head_dim, num_regions, config)
|
| 174 |
for _ in range(num_heads)
|
|
@@ -177,53 +178,53 @@ class GeometricAttention(nn.Module):
|
|
| 177 |
GeometricNavigator(self.head_dim, num_regions, config)
|
| 178 |
for _ in range(num_heads)
|
| 179 |
])
|
| 180 |
-
|
| 181 |
self.out_proj = nn.Linear(dim, dim)
|
| 182 |
self.dropout = nn.Dropout(dropout)
|
| 183 |
-
|
| 184 |
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None,
|
| 185 |
return_diagnostics: bool = False) -> Tuple[torch.Tensor, Optional[Dict]]:
|
| 186 |
B, T, D = x.shape
|
| 187 |
-
|
| 188 |
qkv = self.to_qkv(x)
|
| 189 |
q, k, v = qkv.chunk(3, dim=-1)
|
| 190 |
-
|
| 191 |
q = q.reshape(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 192 |
k = k.reshape(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 193 |
v = v.reshape(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 194 |
-
|
| 195 |
outputs = []
|
| 196 |
all_diagnostics = [] if return_diagnostics else None
|
| 197 |
-
|
| 198 |
for h in range(self.num_heads):
|
| 199 |
q_h_flat = q[:, h].reshape(B * T, self.head_dim)
|
| 200 |
k_h_flat = k[:, h].reshape(B * T, self.head_dim)
|
| 201 |
-
|
| 202 |
q_nav = self.q_navigators[h].navigate(q_h_flat)
|
| 203 |
k_nav = self.k_navigators[h].navigate(k_h_flat)
|
| 204 |
-
|
| 205 |
q_scores = q_nav['scores'].reshape(B, T, -1)
|
| 206 |
k_scores = k_nav['scores'].reshape(B, T, -1)
|
| 207 |
-
|
| 208 |
attn = torch.bmm(q_scores, k_scores.transpose(1, 2))
|
| 209 |
attn = attn / math.sqrt(q_scores.size(-1))
|
| 210 |
-
|
| 211 |
if mask is not None:
|
| 212 |
attn = attn.masked_fill(mask.unsqueeze(1) == 0, -1e9)
|
| 213 |
-
|
| 214 |
attn = F.softmax(attn, dim=-1)
|
| 215 |
attn = self.dropout(attn)
|
| 216 |
-
|
| 217 |
out = torch.bmm(attn, v[:, h])
|
| 218 |
outputs.append(out)
|
| 219 |
-
|
| 220 |
if return_diagnostics:
|
| 221 |
all_diagnostics.append({'q': q_nav['diagnostics'], 'k': k_nav['diagnostics']})
|
| 222 |
-
|
| 223 |
output = torch.stack(outputs, dim=1).transpose(1, 2).reshape(B, T, D)
|
| 224 |
output = self.out_proj(output)
|
| 225 |
output = self.dropout(output)
|
| 226 |
-
|
| 227 |
if return_diagnostics:
|
| 228 |
return output, {'head_diagnostics': all_diagnostics}
|
| 229 |
return output, None
|
|
@@ -249,103 +250,156 @@ class DropPath(nn.Module):
|
|
| 249 |
return output
|
| 250 |
|
| 251 |
# ============================================
|
| 252 |
-
# HIERARCHICAL CLS WITH PENTACHORA
|
| 253 |
# ============================================
|
| 254 |
|
| 255 |
class HierarchicalPentachoronCLS(nn.Module):
|
| 256 |
"""
|
| 257 |
Hierarchical CLS structure with pentachoron geometry.
|
| 258 |
-
|
| 259 |
"""
|
| 260 |
def __init__(self, dim: int, vocab_dim: int, num_classes: int = 100):
|
| 261 |
super().__init__()
|
| 262 |
self.dim = dim # Model's internal dimension
|
| 263 |
self.vocab_dim = vocab_dim # Vocabulary's dimension
|
| 264 |
self.num_classes = num_classes
|
| 265 |
-
|
| 266 |
-
#
|
| 267 |
-
self.global_cls = nn.Parameter(torch.randn(1, 1, dim) * 0.02)
|
| 268 |
-
self.vertex_cls = nn.Parameter(torch.randn(1, 5, dim) * 0.02)
|
| 269 |
-
|
| 270 |
-
# Class-specific pentachora (in vocabulary dimension)
|
| 271 |
self.class_pentachora = nn.Parameter(torch.randn(num_classes, 5, vocab_dim) * 0.02)
|
| 272 |
|
| 273 |
-
# Projection
|
| 274 |
if vocab_dim != dim:
|
| 275 |
-
self.
|
| 276 |
else:
|
| 277 |
-
self.
|
| 278 |
|
| 279 |
-
#
|
| 280 |
-
self.
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
-
def forward(self, batch_size: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 284 |
-
"""Generate CLS tokens for batch."""
|
| 285 |
-
global_cls = self.global_cls.expand(batch_size, -1, -1)
|
| 286 |
-
vertex_cls = self.vertex_cls.expand(batch_size, -1, -1)
|
| 287 |
return global_cls, vertex_cls
|
| 288 |
-
|
| 289 |
-
def
|
| 290 |
-
"""
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
# ============================================
|
| 297 |
-
# GEOMETRIC PROJECTION LAYER
|
| 298 |
# ============================================
|
| 299 |
|
| 300 |
class GeometricProjection(nn.Module):
|
| 301 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 302 |
def __init__(self, dim: int, vocab_dim: int, num_classes: int = 100, dropout: float = 0.1):
|
| 303 |
super().__init__()
|
| 304 |
self.dim = dim # Model dimension
|
| 305 |
self.vocab_dim = vocab_dim # Vocabulary dimension
|
| 306 |
self.num_classes = num_classes
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
-
#
|
| 309 |
self.vertex_projections = nn.ModuleList([
|
| 310 |
-
nn.Linear(
|
| 311 |
])
|
| 312 |
|
|
|
|
|
|
|
|
|
|
| 313 |
self.norm = nn.LayerNorm(dim)
|
| 314 |
self.dropout = nn.Dropout(dropout)
|
| 315 |
-
|
| 316 |
def forward(self, patches: torch.Tensor, pentachora: torch.Tensor) -> torch.Tensor:
|
| 317 |
"""
|
| 318 |
Compute alignment between patches and class pentachora.
|
| 319 |
-
|
| 320 |
Args:
|
| 321 |
-
patches: [B, N, D] - patch embeddings
|
| 322 |
-
pentachora: [C, 5, vocab_dim] - class pentachora
|
| 323 |
-
|
| 324 |
Returns:
|
| 325 |
[B, N, C] - alignment scores
|
| 326 |
"""
|
| 327 |
B, N, D = patches.shape
|
| 328 |
C = pentachora.shape[0]
|
| 329 |
-
|
|
|
|
| 330 |
patches = self.norm(patches)
|
| 331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
# Compute alignment with each vertex
|
| 333 |
alignments = []
|
| 334 |
for v in range(5):
|
| 335 |
-
#
|
| 336 |
-
|
| 337 |
-
|
| 338 |
|
| 339 |
# Get vertex v of all classes
|
| 340 |
-
vertex_v = F.normalize(pentachora[:, v, :], dim=-1)
|
| 341 |
|
| 342 |
# Compute alignment scores
|
| 343 |
-
alignment = torch.matmul(
|
| 344 |
alignments.append(alignment)
|
| 345 |
-
|
| 346 |
# Average alignments across vertices
|
| 347 |
-
alignments = torch.stack(alignments, dim=-1).mean(dim=-1)
|
| 348 |
-
|
| 349 |
return self.dropout(alignments)
|
| 350 |
|
| 351 |
# ============================================
|
|
@@ -359,13 +413,13 @@ class MLP(nn.Module):
|
|
| 359 |
super().__init__()
|
| 360 |
out_features = out_features or in_features
|
| 361 |
hidden_features = hidden_features or in_features
|
| 362 |
-
|
| 363 |
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 364 |
self.act = nn.GELU()
|
| 365 |
self.drop1 = nn.Dropout(dropout)
|
| 366 |
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 367 |
self.drop2 = nn.Dropout(dropout)
|
| 368 |
-
|
| 369 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 370 |
x = self.fc1(x)
|
| 371 |
x = self.act(x)
|
|
@@ -385,7 +439,7 @@ class PentachoronViTBlock(nn.Module):
|
|
| 385 |
drop_path: float = 0.):
|
| 386 |
super().__init__()
|
| 387 |
self.norm1 = nn.LayerNorm(dim)
|
| 388 |
-
|
| 389 |
# Use GeometricAttention for structured layers, standard for others
|
| 390 |
if use_mesh:
|
| 391 |
self.attn = GeometricAttention(
|
|
@@ -398,15 +452,15 @@ class PentachoronViTBlock(nn.Module):
|
|
| 398 |
else:
|
| 399 |
# Standard multi-head attention for later layers
|
| 400 |
self.attn = nn.MultiheadAttention(dim, heads, dropout=attn_dropout, batch_first=True)
|
| 401 |
-
|
| 402 |
self.use_mesh = use_mesh
|
| 403 |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 404 |
-
|
| 405 |
self.norm2 = nn.LayerNorm(dim)
|
| 406 |
mlp_hidden = int(dim * mlp_ratio)
|
| 407 |
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden, dropout=dropout)
|
| 408 |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 409 |
-
|
| 410 |
def forward(self, x: torch.Tensor, preserve_structure: bool = True) -> torch.Tensor:
|
| 411 |
if self.use_mesh:
|
| 412 |
# GeometricAttention
|
|
@@ -417,7 +471,7 @@ class PentachoronViTBlock(nn.Module):
|
|
| 417 |
normalized = self.norm1(x)
|
| 418 |
attn_out, _ = self.attn(normalized, normalized, normalized)
|
| 419 |
x = x + self.drop_path1(attn_out)
|
| 420 |
-
|
| 421 |
x = x + self.drop_path2(self.mlp(self.norm2(x)))
|
| 422 |
return x
|
| 423 |
|
|
@@ -433,10 +487,10 @@ class PatchEmbed(nn.Module):
|
|
| 433 |
self.img_size = img_size
|
| 434 |
self.patch_size = patch_size
|
| 435 |
self.num_patches = (img_size // patch_size) ** 2
|
| 436 |
-
|
| 437 |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 438 |
self.norm = nn.LayerNorm(embed_dim)
|
| 439 |
-
|
| 440 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 441 |
x = self.proj(x)
|
| 442 |
x = rearrange(x, 'b c h w -> b (h w) c')
|
|
@@ -444,60 +498,61 @@ class PatchEmbed(nn.Module):
|
|
| 444 |
return x
|
| 445 |
|
| 446 |
# ============================================
|
| 447 |
-
# PENTACHORA VISION TRANSFORMER
|
| 448 |
# ============================================
|
| 449 |
|
| 450 |
class PentachoraViT(nn.Module):
|
| 451 |
"""
|
| 452 |
Vision Transformer with pentachoron-based hierarchical CLS tokens
|
| 453 |
and geometric vocabulary integration.
|
|
|
|
| 454 |
"""
|
| 455 |
def __init__(self, config: Optional[PentachoraConfig] = None, **kwargs):
|
| 456 |
super().__init__()
|
| 457 |
-
|
| 458 |
# Use config or kwargs
|
| 459 |
if config is not None:
|
| 460 |
cfg = config
|
| 461 |
else:
|
| 462 |
cfg = PentachoraConfig(**kwargs)
|
| 463 |
-
|
| 464 |
self.config = cfg
|
| 465 |
self.num_classes = cfg.num_classes
|
| 466 |
self.dim = cfg.dim
|
| 467 |
self.depth = cfg.depth
|
| 468 |
self.preserve_structure_until_layer = cfg.preserve_structure_until_layer
|
| 469 |
-
|
| 470 |
-
# Set vocabulary dimension
|
| 471 |
if cfg.vocab_dim is not None:
|
| 472 |
self.vocab_dim = cfg.vocab_dim
|
| 473 |
elif 'vocab_dim' in kwargs:
|
| 474 |
self.vocab_dim = kwargs['vocab_dim']
|
| 475 |
else:
|
| 476 |
self.vocab_dim = cfg.dim
|
| 477 |
-
|
| 478 |
# Patch embedding
|
| 479 |
self.patch_embed = PatchEmbed(
|
| 480 |
cfg.img_size, cfg.patch_size, 3, cfg.dim
|
| 481 |
)
|
| 482 |
num_patches = self.patch_embed.num_patches
|
| 483 |
-
|
| 484 |
# Positional embedding
|
| 485 |
self.pos_embed = nn.Parameter(torch.randn(1, num_patches, cfg.dim) * 0.02)
|
| 486 |
self.pos_drop = nn.Dropout(cfg.dropout_rate)
|
| 487 |
-
|
| 488 |
# CLS tokens with pentachoron structure
|
| 489 |
self.cls_tokens = HierarchicalPentachoronCLS(cfg.dim, self.vocab_dim, cfg.num_classes)
|
| 490 |
-
|
| 491 |
-
# Geometric projection layer
|
| 492 |
self.geometric_proj = GeometricProjection(cfg.dim, self.vocab_dim, cfg.num_classes, cfg.dropout_rate)
|
| 493 |
-
|
| 494 |
-
# Initialize from vocabulary
|
| 495 |
if cfg.vocab is not None:
|
| 496 |
self._init_from_vocab(cfg.vocab)
|
| 497 |
-
|
| 498 |
# Stochastic depth decay rule
|
| 499 |
dpr = [x.item() for x in torch.linspace(0, cfg.drop_path_rate, cfg.depth)]
|
| 500 |
-
|
| 501 |
# Transformer blocks with geometric attention
|
| 502 |
self.blocks = nn.ModuleList([
|
| 503 |
PentachoronViTBlock(
|
|
@@ -511,17 +566,26 @@ class PentachoraViT(nn.Module):
|
|
| 511 |
)
|
| 512 |
for i in range(cfg.depth)
|
| 513 |
])
|
| 514 |
-
|
| 515 |
# Final norm
|
| 516 |
self.norm = nn.LayerNorm(cfg.dim)
|
| 517 |
-
|
| 518 |
# Classification heads
|
| 519 |
-
|
| 520 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
|
|
|
|
|
|
|
|
|
|
| 522 |
# Initialize weights
|
| 523 |
self.apply(self._init_weights)
|
| 524 |
-
|
| 525 |
def _init_weights(self, m: nn.Module):
|
| 526 |
"""Initialize model weights."""
|
| 527 |
if isinstance(m, nn.Linear):
|
|
@@ -535,79 +599,81 @@ class PentachoraViT(nn.Module):
|
|
| 535 |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 536 |
if m.bias is not None:
|
| 537 |
nn.init.constant_(m.bias, 0)
|
| 538 |
-
|
| 539 |
def _init_from_vocab(self, vocab):
|
| 540 |
"""Initialize class pentachora from geometric vocabulary."""
|
| 541 |
try:
|
| 542 |
print("Initializing pentachora from vocabulary...")
|
| 543 |
-
|
| 544 |
if not hasattr(vocab, 'encode_batch'):
|
| 545 |
print("Vocabulary provided but encode_batch method not found, using random initialization")
|
| 546 |
return
|
| 547 |
-
|
| 548 |
# Get CIFAR-100 class names
|
| 549 |
class_names = self._get_cifar100_classes()
|
| 550 |
-
|
| 551 |
# Generate pentachora for all classes
|
| 552 |
pentachora_list = vocab.encode_batch(class_names[:self.num_classes], generate=True)
|
| 553 |
pentachora = np.stack(pentachora_list, axis=0)
|
| 554 |
-
|
| 555 |
# Get actual dimensions from the encoded data
|
| 556 |
actual_vocab_dim = pentachora.shape[-1]
|
| 557 |
-
|
| 558 |
print(f"Encoded pentachora shape: {pentachora.shape}")
|
| 559 |
print(f"Detected vocabulary dimension: {actual_vocab_dim}")
|
| 560 |
-
|
| 561 |
# Validate basic shape requirements
|
| 562 |
if pentachora.shape[0] != self.num_classes or pentachora.shape[1] != 5:
|
| 563 |
print(f"Invalid shape: expected ({self.num_classes}, 5, ?), got {pentachora.shape}")
|
| 564 |
print("Using random initialization")
|
| 565 |
return
|
| 566 |
-
|
| 567 |
-
# Update
|
| 568 |
self.vocab_dim = actual_vocab_dim
|
| 569 |
self.cls_tokens.vocab_dim = actual_vocab_dim
|
| 570 |
self.geometric_proj.vocab_dim = actual_vocab_dim
|
| 571 |
-
|
| 572 |
# Replace class_pentachora with the loaded vocabulary
|
| 573 |
self.cls_tokens.class_pentachora = nn.Parameter(
|
| 574 |
torch.tensor(pentachora, dtype=torch.float32)
|
| 575 |
)
|
| 576 |
-
|
| 577 |
# Update/create projection layer if dimensions differ
|
| 578 |
if actual_vocab_dim != self.dim:
|
| 579 |
-
self.cls_tokens.
|
| 580 |
else:
|
| 581 |
-
self.cls_tokens.
|
| 582 |
-
|
| 583 |
-
# Rebuild geometric projection
|
|
|
|
| 584 |
self.geometric_proj.vertex_projections = nn.ModuleList([
|
| 585 |
-
nn.Linear(
|
| 586 |
])
|
| 587 |
-
|
| 588 |
# Re-initialize the new layers
|
|
|
|
| 589 |
for proj in self.geometric_proj.vertex_projections:
|
| 590 |
nn.init.xavier_uniform_(proj.weight)
|
| 591 |
if actual_vocab_dim != self.dim:
|
| 592 |
-
nn.init.xavier_uniform_(self.cls_tokens.
|
| 593 |
-
|
| 594 |
print(f"✓ Successfully initialized {self.num_classes} class pentachora from vocabulary")
|
| 595 |
print(f" Vocabulary dimension: {actual_vocab_dim}")
|
| 596 |
print(f" Model internal dimension: {self.dim}")
|
| 597 |
-
print(f"
|
| 598 |
-
|
| 599 |
except Exception as e:
|
| 600 |
print(f"Error initializing from vocabulary: {e}")
|
| 601 |
print("Using random initialization")
|
| 602 |
-
|
| 603 |
def _get_cifar100_classes(self):
|
| 604 |
"""Get CIFAR-100 class names."""
|
| 605 |
return [
|
| 606 |
-
'apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle',
|
| 607 |
-
'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel',
|
| 608 |
-
'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock',
|
| 609 |
-
'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur',
|
| 610 |
-
'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster',
|
| 611 |
'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion',
|
| 612 |
'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse',
|
| 613 |
'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear',
|
|
@@ -618,59 +684,86 @@ class PentachoraViT(nn.Module):
|
|
| 618 |
'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout',
|
| 619 |
'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm'
|
| 620 |
]
|
| 621 |
-
|
| 622 |
-
def forward_features(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
|
| 623 |
-
"""
|
| 624 |
-
|
| 625 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 626 |
# Patch embedding
|
| 627 |
x = self.patch_embed(x)
|
| 628 |
x = x + self.pos_embed
|
| 629 |
x = self.pos_drop(x)
|
| 630 |
-
|
| 631 |
-
# Get hierarchical CLS tokens
|
| 632 |
-
global_cls, vertex_cls = self.cls_tokens(B)
|
| 633 |
-
|
| 634 |
# Concatenate CLS tokens with patches
|
| 635 |
x = torch.cat([global_cls, vertex_cls, x], dim=1)
|
| 636 |
-
|
| 637 |
# Apply transformer blocks
|
| 638 |
for i, block in enumerate(self.blocks):
|
| 639 |
preserve = i < self.preserve_structure_until_layer
|
| 640 |
x = block(x, preserve_structure=preserve)
|
| 641 |
-
|
| 642 |
# Apply final norm
|
| 643 |
x = self.norm(x)
|
| 644 |
-
|
| 645 |
# Split tokens
|
| 646 |
global_cls = x[:, 0]
|
| 647 |
vertex_cls = x[:, 1:6]
|
| 648 |
patches = x[:, 6:]
|
| 649 |
-
|
| 650 |
return {
|
| 651 |
'global_cls': global_cls,
|
| 652 |
'vertex_cls': vertex_cls,
|
| 653 |
'patches': patches
|
| 654 |
}
|
| 655 |
-
|
| 656 |
-
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
|
| 657 |
-
"""
|
| 658 |
-
|
| 659 |
|
| 660 |
-
|
| 661 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 662 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 663 |
# Auxiliary classification using vertex tokens
|
| 664 |
B = features['vertex_cls'].shape[0]
|
| 665 |
vertex_flat = features['vertex_cls'].reshape(B, -1)
|
| 666 |
aux_logits = self.head_aux(vertex_flat)
|
| 667 |
-
|
| 668 |
# Geometric alignment scores
|
| 669 |
geometric_alignments = self.geometric_proj(
|
| 670 |
-
features['patches'],
|
| 671 |
self.cls_tokens.class_pentachora
|
| 672 |
)
|
| 673 |
-
|
| 674 |
return {
|
| 675 |
'logits': logits,
|
| 676 |
'aux_logits': aux_logits,
|
|
@@ -692,24 +785,24 @@ class PentachoraLoss(nn.Module):
|
|
| 692 |
self.aux_weight = aux_weight
|
| 693 |
self.geo_weight = geo_weight
|
| 694 |
self.criterion = nn.CrossEntropyLoss(label_smoothing=smoothing)
|
| 695 |
-
|
| 696 |
def forward(self, outputs: Dict[str, torch.Tensor], targets: torch.Tensor) -> torch.Tensor:
|
| 697 |
"""Compute combined loss."""
|
| 698 |
# Primary classification loss
|
| 699 |
loss = self.criterion(outputs['logits'], targets)
|
| 700 |
-
|
| 701 |
# Auxiliary loss from vertex tokens
|
| 702 |
if 'aux_logits' in outputs and self.aux_weight > 0:
|
| 703 |
aux_loss = self.criterion(outputs['aux_logits'], targets)
|
| 704 |
loss = loss + self.aux_weight * aux_loss
|
| 705 |
-
|
| 706 |
# Geometric alignment loss
|
| 707 |
if 'geometric_alignments' in outputs and self.geo_weight > 0:
|
| 708 |
# Average over patches
|
| 709 |
geo_logits = outputs['geometric_alignments'].mean(dim=1)
|
| 710 |
geo_loss = self.criterion(geo_logits, targets)
|
| 711 |
loss = loss + self.geo_weight * geo_loss
|
| 712 |
-
|
| 713 |
return loss
|
| 714 |
|
| 715 |
# ============================================
|
|
@@ -718,8 +811,8 @@ class PentachoraLoss(nn.Module):
|
|
| 718 |
|
| 719 |
MODEL_CONFIGS = {
|
| 720 |
'pentachora_spark': PentachoraConfig(
|
| 721 |
-
dim=
|
| 722 |
-
preserve_structure_until_layer=
|
| 723 |
dropout_rate=0.0, drop_path_rate=0.0
|
| 724 |
),
|
| 725 |
'pentachora_tiny': PentachoraConfig(
|
|
@@ -749,31 +842,32 @@ def create_pentachora_vit(variant: str = 'pentachora_small',
|
|
| 749 |
**kwargs) -> PentachoraViT:
|
| 750 |
"""
|
| 751 |
Create PentachoraViT model.
|
| 752 |
-
|
| 753 |
Args:
|
| 754 |
variant: Model variant name
|
| 755 |
pretrained: Whether to load pretrained weights
|
| 756 |
**kwargs: Override config parameters (including vocab_dim)
|
| 757 |
-
|
| 758 |
Returns:
|
| 759 |
PentachoraViT model
|
| 760 |
"""
|
| 761 |
if variant not in MODEL_CONFIGS:
|
| 762 |
raise ValueError(f"Unknown variant: {variant}. Choose from {list(MODEL_CONFIGS.keys())}")
|
| 763 |
-
|
| 764 |
config = MODEL_CONFIGS[variant]
|
| 765 |
-
|
| 766 |
# Override config with kwargs
|
| 767 |
for key, value in kwargs.items():
|
| 768 |
setattr(config, key, value)
|
| 769 |
-
|
| 770 |
model = PentachoraViT(config)
|
| 771 |
-
|
| 772 |
if pretrained:
|
| 773 |
warnings.warn("Pretrained weights not available yet")
|
| 774 |
-
|
| 775 |
return model
|
| 776 |
|
|
|
|
| 777 |
def pentachora_vit_spark(pretrained: bool = False, **kwargs) -> PentachoraViT:
|
| 778 |
"""Create spark variant (smallest)."""
|
| 779 |
return create_pentachora_vit('pentachora_spark', pretrained=pretrained, **kwargs)
|
|
|
|
| 1 |
"""
|
| 2 |
PentachoraViT: Vision Transformer with Pentachoron Geometric Structure
|
| 3 |
Enhanced with Geometric Attention for improved head cohesion and generalization
|
| 4 |
+
FIXED: CLS tokens now properly reference and utilize vocabulary embeddings
|
| 5 |
"""
|
| 6 |
|
| 7 |
import torch
|
|
|
|
| 36 |
aux_loss_weight: float = 0.3
|
| 37 |
geo_loss_weight: float = 0.1
|
| 38 |
vocab: Optional[Any] = None
|
| 39 |
+
|
| 40 |
@property
|
| 41 |
def num_patches(self) -> int:
|
| 42 |
return (self.img_size // self.patch_size) ** 2
|
|
|
|
| 75 |
|
| 76 |
class GeometricNavigator(nn.Module):
|
| 77 |
"""Maps inputs to geometric regions in 4D space."""
|
| 78 |
+
|
| 79 |
def __init__(self, input_dim: int, num_regions: int, config: GeometricConfig):
|
| 80 |
super().__init__()
|
| 81 |
self.input_dim = input_dim
|
| 82 |
self.num_regions = num_regions
|
| 83 |
self.config = config
|
| 84 |
+
|
| 85 |
self.to_nav = nn.Linear(input_dim, 4, bias=False)
|
| 86 |
self.vertex_w = nn.Parameter(torch.zeros(num_regions, 5))
|
| 87 |
+
|
| 88 |
# Initialize geometry after module is created
|
| 89 |
self.register_parameter('D', None)
|
| 90 |
self.register_parameter('S', None)
|
| 91 |
+
|
| 92 |
def _lazy_init_geometry(self, device):
|
| 93 |
"""Initialize geometry on first forward pass."""
|
| 94 |
if self.D is not None:
|
| 95 |
return
|
| 96 |
+
|
| 97 |
base = perfect_4simplex(device)
|
| 98 |
+
|
| 99 |
D = torch.zeros(self.num_regions, 5, 4, device=device)
|
| 100 |
S = torch.zeros(self.num_regions, 5, 4, device=device)
|
| 101 |
+
|
| 102 |
for r in range(self.num_regions):
|
| 103 |
D[r] = base + self.config.jitter * torch.randn_like(base)
|
| 104 |
+
|
| 105 |
theta = torch.tensor(0.27 + 0.05 * (r % self.config.rotate_cycle), device=device)
|
| 106 |
rot = torch.eye(4, device=device)
|
| 107 |
c, s_val = torch.cos(theta), torch.sin(theta)
|
|
|
|
| 109 |
rot[1, 0] = s_val; rot[1, 1] = c
|
| 110 |
S[r] = (base @ rot) + self.config.shift
|
| 111 |
S[r] += self.config.jitter * torch.randn_like(S[r])
|
| 112 |
+
|
| 113 |
self.D = nn.Parameter(D)
|
| 114 |
self.S = nn.Parameter(S)
|
| 115 |
+
|
| 116 |
def navigate(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
|
| 117 |
"""Navigate inputs through geometric space."""
|
| 118 |
self._lazy_init_geometry(x.device)
|
| 119 |
+
|
| 120 |
nav_x = self.to_nav(x)
|
| 121 |
nav_x_exp = nav_x[:, None, None, :]
|
| 122 |
D_exp = self.D[None, :, :, :]
|
| 123 |
+
|
| 124 |
d_disp = torch.norm(nav_x_exp - D_exp, dim=-1)
|
| 125 |
s_disp = -softmin_over_last(d_disp, self.config.softmin_tau)
|
| 126 |
+
|
| 127 |
w = F.softmax(self.vertex_w, dim=1)
|
| 128 |
phase_scores = []
|
| 129 |
+
|
| 130 |
for phase in self.config.phases:
|
| 131 |
phase_tensor = torch.tensor(phase, device=x.device)
|
| 132 |
ct = torch.cos(phase_tensor)
|
| 133 |
st = torch.sin(phase_tensor)
|
| 134 |
+
|
| 135 |
Vt = ct * self.D + st * self.S
|
| 136 |
w_expanded = w.unsqueeze(-1)
|
| 137 |
Vt_mean = Vt.mean(dim=1, keepdim=True)
|
| 138 |
Vt = (1.0 - w_expanded) * Vt + w_expanded * Vt_mean
|
| 139 |
+
|
| 140 |
Vt_exp = Vt[None, :, :, :]
|
| 141 |
d_ribbon = torch.norm(nav_x_exp - Vt_exp, dim=-1)
|
| 142 |
s_ribbon = -softmin_over_last(d_ribbon, self.config.softmin_tau)
|
| 143 |
phase_scores.append(s_ribbon)
|
| 144 |
+
|
| 145 |
s_ribbon = torch.stack(phase_scores).mean(dim=0)
|
| 146 |
scores = self.config.fuse_alpha * s_ribbon + (1 - self.config.fuse_alpha) * s_disp
|
| 147 |
+
|
| 148 |
diagnostics = {
|
| 149 |
'dispatcher_scores': s_disp.detach(),
|
| 150 |
'ribbon_scores': s_ribbon.detach()
|
| 151 |
}
|
| 152 |
+
|
| 153 |
return {'scores': scores, 'diagnostics': diagnostics}
|
| 154 |
|
| 155 |
class GeometricAttention(nn.Module):
|
| 156 |
"""Multi-head geometric attention with Q-K alignment."""
|
| 157 |
+
|
| 158 |
def __init__(self, dim: int, num_heads: int = 8, num_regions: Optional[int] = None,
|
| 159 |
config: Optional[GeometricConfig] = None, dropout: float = 0.0):
|
| 160 |
super().__init__()
|
| 161 |
self.dim = dim
|
| 162 |
self.num_heads = num_heads
|
| 163 |
self.head_dim = dim // num_heads
|
| 164 |
+
|
| 165 |
if num_regions is None:
|
| 166 |
num_regions = min(self.head_dim, 16)
|
| 167 |
if config is None:
|
| 168 |
config = GeometricConfig()
|
| 169 |
+
|
| 170 |
self.config = config
|
| 171 |
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
|
| 172 |
+
|
| 173 |
self.q_navigators = nn.ModuleList([
|
| 174 |
GeometricNavigator(self.head_dim, num_regions, config)
|
| 175 |
for _ in range(num_heads)
|
|
|
|
| 178 |
GeometricNavigator(self.head_dim, num_regions, config)
|
| 179 |
for _ in range(num_heads)
|
| 180 |
])
|
| 181 |
+
|
| 182 |
self.out_proj = nn.Linear(dim, dim)
|
| 183 |
self.dropout = nn.Dropout(dropout)
|
| 184 |
+
|
| 185 |
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None,
|
| 186 |
return_diagnostics: bool = False) -> Tuple[torch.Tensor, Optional[Dict]]:
|
| 187 |
B, T, D = x.shape
|
| 188 |
+
|
| 189 |
qkv = self.to_qkv(x)
|
| 190 |
q, k, v = qkv.chunk(3, dim=-1)
|
| 191 |
+
|
| 192 |
q = q.reshape(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 193 |
k = k.reshape(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 194 |
v = v.reshape(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 195 |
+
|
| 196 |
outputs = []
|
| 197 |
all_diagnostics = [] if return_diagnostics else None
|
| 198 |
+
|
| 199 |
for h in range(self.num_heads):
|
| 200 |
q_h_flat = q[:, h].reshape(B * T, self.head_dim)
|
| 201 |
k_h_flat = k[:, h].reshape(B * T, self.head_dim)
|
| 202 |
+
|
| 203 |
q_nav = self.q_navigators[h].navigate(q_h_flat)
|
| 204 |
k_nav = self.k_navigators[h].navigate(k_h_flat)
|
| 205 |
+
|
| 206 |
q_scores = q_nav['scores'].reshape(B, T, -1)
|
| 207 |
k_scores = k_nav['scores'].reshape(B, T, -1)
|
| 208 |
+
|
| 209 |
attn = torch.bmm(q_scores, k_scores.transpose(1, 2))
|
| 210 |
attn = attn / math.sqrt(q_scores.size(-1))
|
| 211 |
+
|
| 212 |
if mask is not None:
|
| 213 |
attn = attn.masked_fill(mask.unsqueeze(1) == 0, -1e9)
|
| 214 |
+
|
| 215 |
attn = F.softmax(attn, dim=-1)
|
| 216 |
attn = self.dropout(attn)
|
| 217 |
+
|
| 218 |
out = torch.bmm(attn, v[:, h])
|
| 219 |
outputs.append(out)
|
| 220 |
+
|
| 221 |
if return_diagnostics:
|
| 222 |
all_diagnostics.append({'q': q_nav['diagnostics'], 'k': k_nav['diagnostics']})
|
| 223 |
+
|
| 224 |
output = torch.stack(outputs, dim=1).transpose(1, 2).reshape(B, T, D)
|
| 225 |
output = self.out_proj(output)
|
| 226 |
output = self.dropout(output)
|
| 227 |
+
|
| 228 |
if return_diagnostics:
|
| 229 |
return output, {'head_diagnostics': all_diagnostics}
|
| 230 |
return output, None
|
|
|
|
| 250 |
return output
|
| 251 |
|
| 252 |
# ============================================
|
| 253 |
+
# HIERARCHICAL CLS WITH PENTACHORA (FIXED)
|
| 254 |
# ============================================
|
| 255 |
|
| 256 |
class HierarchicalPentachoronCLS(nn.Module):
|
| 257 |
"""
|
| 258 |
Hierarchical CLS structure with pentachoron geometry.
|
| 259 |
+
FIXED: Now properly uses vocabulary embeddings for CLS tokens.
|
| 260 |
"""
|
| 261 |
def __init__(self, dim: int, vocab_dim: int, num_classes: int = 100):
|
| 262 |
super().__init__()
|
| 263 |
self.dim = dim # Model's internal dimension
|
| 264 |
self.vocab_dim = vocab_dim # Vocabulary's dimension
|
| 265 |
self.num_classes = num_classes
|
| 266 |
+
|
| 267 |
+
# Class-specific pentachora from vocabulary (in vocabulary dimension)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
self.class_pentachora = nn.Parameter(torch.randn(num_classes, 5, vocab_dim) * 0.02)
|
| 269 |
|
| 270 |
+
# Projection from vocabulary dimension to model dimension
|
| 271 |
if vocab_dim != dim:
|
| 272 |
+
self.vocab_to_model = nn.Linear(vocab_dim, dim)
|
| 273 |
else:
|
| 274 |
+
self.vocab_to_model = nn.Identity()
|
| 275 |
|
| 276 |
+
# Learnable aggregation weights for creating global CLS from vertices
|
| 277 |
+
self.vertex_weights = nn.Parameter(torch.ones(5) / 5)
|
| 278 |
+
|
| 279 |
+
# Optional learnable offset for global CLS
|
| 280 |
+
self.global_offset = nn.Parameter(torch.zeros(1, 1, dim))
|
| 281 |
+
|
| 282 |
+
# Layer norms
|
| 283 |
+
self.vertex_norm = nn.LayerNorm(dim)
|
| 284 |
+
self.global_norm = nn.LayerNorm(dim)
|
| 285 |
+
|
| 286 |
+
def forward(self, batch_size: int, class_indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 287 |
+
"""
|
| 288 |
+
Generate CLS tokens for batch.
|
| 289 |
+
|
| 290 |
+
Args:
|
| 291 |
+
batch_size: Batch size
|
| 292 |
+
class_indices: Optional class indices for class-specific initialization
|
| 293 |
+
|
| 294 |
+
Returns:
|
| 295 |
+
global_cls: [B, 1, D] - Global CLS tokens
|
| 296 |
+
vertex_cls: [B, 5, D] - Vertex CLS tokens
|
| 297 |
+
"""
|
| 298 |
+
if class_indices is not None and class_indices.shape[0] == batch_size:
|
| 299 |
+
# Use class-specific pentachora when class indices are provided
|
| 300 |
+
# This would typically be used during training with labels
|
| 301 |
+
vertex_cls_vocab = self.class_pentachora[class_indices] # [B, 5, vocab_dim]
|
| 302 |
+
else:
|
| 303 |
+
# Use mean of all class pentachora when no specific classes provided
|
| 304 |
+
# This is used during inference or when class is unknown
|
| 305 |
+
vertex_cls_vocab = self.class_pentachora.mean(dim=0, keepdim=True) # [1, 5, vocab_dim]
|
| 306 |
+
vertex_cls_vocab = vertex_cls_vocab.expand(batch_size, -1, -1) # [B, 5, vocab_dim]
|
| 307 |
+
|
| 308 |
+
# Project from vocabulary dimension to model dimension
|
| 309 |
+
vertex_cls = self.vocab_to_model(vertex_cls_vocab) # [B, 5, dim]
|
| 310 |
+
vertex_cls = self.vertex_norm(vertex_cls)
|
| 311 |
+
|
| 312 |
+
# Create global CLS as weighted combination of vertices
|
| 313 |
+
weights = F.softmax(self.vertex_weights, dim=0)
|
| 314 |
+
global_cls = torch.einsum('bvd,v->bd', vertex_cls, weights).unsqueeze(1) # [B, 1, dim]
|
| 315 |
+
global_cls = global_cls + self.global_offset
|
| 316 |
+
global_cls = self.global_norm(global_cls)
|
| 317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
return global_cls, vertex_cls
|
| 319 |
+
|
| 320 |
+
def get_class_prototypes(self) -> torch.Tensor:
|
| 321 |
+
"""
|
| 322 |
+
Get class prototypes in model dimension.
|
| 323 |
+
|
| 324 |
+
Returns:
|
| 325 |
+
prototypes: [num_classes, dim] - Class prototype vectors
|
| 326 |
+
"""
|
| 327 |
+
# Project class pentachora to model dimension
|
| 328 |
+
pentachora_model = self.vocab_to_model(self.class_pentachora) # [C, 5, dim]
|
| 329 |
+
|
| 330 |
+
# Aggregate vertices to get class prototypes
|
| 331 |
+
weights = F.softmax(self.vertex_weights, dim=0)
|
| 332 |
+
prototypes = torch.einsum('cvd,v->cd', pentachora_model, weights) # [C, dim]
|
| 333 |
+
|
| 334 |
+
return prototypes
|
| 335 |
|
| 336 |
# ============================================
|
| 337 |
+
# GEOMETRIC PROJECTION LAYER (ENHANCED)
|
| 338 |
# ============================================
|
| 339 |
|
| 340 |
class GeometricProjection(nn.Module):
|
| 341 |
+
"""
|
| 342 |
+
Project patches onto pentachoron geometry.
|
| 343 |
+
ENHANCED: Now provides better integration with vocabulary.
|
| 344 |
+
"""
|
| 345 |
def __init__(self, dim: int, vocab_dim: int, num_classes: int = 100, dropout: float = 0.1):
|
| 346 |
super().__init__()
|
| 347 |
self.dim = dim # Model dimension
|
| 348 |
self.vocab_dim = vocab_dim # Vocabulary dimension
|
| 349 |
self.num_classes = num_classes
|
| 350 |
+
|
| 351 |
+
# Projection from model dim to vocab dim for alignment
|
| 352 |
+
self.to_vocab_space = nn.Linear(dim, vocab_dim)
|
| 353 |
|
| 354 |
+
# Vertex-specific projections for fine-grained alignment
|
| 355 |
self.vertex_projections = nn.ModuleList([
|
| 356 |
+
nn.Linear(vocab_dim, vocab_dim, bias=False) for _ in range(5)
|
| 357 |
])
|
| 358 |
|
| 359 |
+
# Temperature for alignment scores
|
| 360 |
+
self.temperature = nn.Parameter(torch.ones(1))
|
| 361 |
+
|
| 362 |
self.norm = nn.LayerNorm(dim)
|
| 363 |
self.dropout = nn.Dropout(dropout)
|
| 364 |
+
|
| 365 |
def forward(self, patches: torch.Tensor, pentachora: torch.Tensor) -> torch.Tensor:
|
| 366 |
"""
|
| 367 |
Compute alignment between patches and class pentachora.
|
| 368 |
+
|
| 369 |
Args:
|
| 370 |
+
patches: [B, N, D] - patch embeddings in model dimension
|
| 371 |
+
pentachora: [C, 5, vocab_dim] - class pentachora in vocabulary dimension
|
| 372 |
+
|
| 373 |
Returns:
|
| 374 |
[B, N, C] - alignment scores
|
| 375 |
"""
|
| 376 |
B, N, D = patches.shape
|
| 377 |
C = pentachora.shape[0]
|
| 378 |
+
|
| 379 |
+
# Normalize patches
|
| 380 |
patches = self.norm(patches)
|
| 381 |
|
| 382 |
+
# Project patches to vocabulary space
|
| 383 |
+
patches_vocab = self.to_vocab_space(patches) # [B, N, vocab_dim]
|
| 384 |
+
patches_vocab = F.normalize(patches_vocab, dim=-1)
|
| 385 |
+
|
| 386 |
# Compute alignment with each vertex
|
| 387 |
alignments = []
|
| 388 |
for v in range(5):
|
| 389 |
+
# Apply vertex-specific transformation
|
| 390 |
+
patches_v = self.vertex_projections[v](patches_vocab)
|
| 391 |
+
patches_v = F.normalize(patches_v, dim=-1)
|
| 392 |
|
| 393 |
# Get vertex v of all classes
|
| 394 |
+
vertex_v = F.normalize(pentachora[:, v, :], dim=-1) # [C, vocab_dim]
|
| 395 |
|
| 396 |
# Compute alignment scores
|
| 397 |
+
alignment = torch.matmul(patches_v, vertex_v.T) / self.temperature # [B, N, C]
|
| 398 |
alignments.append(alignment)
|
| 399 |
+
|
| 400 |
# Average alignments across vertices
|
| 401 |
+
alignments = torch.stack(alignments, dim=-1).mean(dim=-1) # [B, N, C]
|
| 402 |
+
|
| 403 |
return self.dropout(alignments)
|
| 404 |
|
| 405 |
# ============================================
|
|
|
|
| 413 |
super().__init__()
|
| 414 |
out_features = out_features or in_features
|
| 415 |
hidden_features = hidden_features or in_features
|
| 416 |
+
|
| 417 |
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 418 |
self.act = nn.GELU()
|
| 419 |
self.drop1 = nn.Dropout(dropout)
|
| 420 |
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 421 |
self.drop2 = nn.Dropout(dropout)
|
| 422 |
+
|
| 423 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 424 |
x = self.fc1(x)
|
| 425 |
x = self.act(x)
|
|
|
|
| 439 |
drop_path: float = 0.):
|
| 440 |
super().__init__()
|
| 441 |
self.norm1 = nn.LayerNorm(dim)
|
| 442 |
+
|
| 443 |
# Use GeometricAttention for structured layers, standard for others
|
| 444 |
if use_mesh:
|
| 445 |
self.attn = GeometricAttention(
|
|
|
|
| 452 |
else:
|
| 453 |
# Standard multi-head attention for later layers
|
| 454 |
self.attn = nn.MultiheadAttention(dim, heads, dropout=attn_dropout, batch_first=True)
|
| 455 |
+
|
| 456 |
self.use_mesh = use_mesh
|
| 457 |
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 458 |
+
|
| 459 |
self.norm2 = nn.LayerNorm(dim)
|
| 460 |
mlp_hidden = int(dim * mlp_ratio)
|
| 461 |
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden, dropout=dropout)
|
| 462 |
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 463 |
+
|
| 464 |
def forward(self, x: torch.Tensor, preserve_structure: bool = True) -> torch.Tensor:
|
| 465 |
if self.use_mesh:
|
| 466 |
# GeometricAttention
|
|
|
|
| 471 |
normalized = self.norm1(x)
|
| 472 |
attn_out, _ = self.attn(normalized, normalized, normalized)
|
| 473 |
x = x + self.drop_path1(attn_out)
|
| 474 |
+
|
| 475 |
x = x + self.drop_path2(self.mlp(self.norm2(x)))
|
| 476 |
return x
|
| 477 |
|
|
|
|
| 487 |
self.img_size = img_size
|
| 488 |
self.patch_size = patch_size
|
| 489 |
self.num_patches = (img_size // patch_size) ** 2
|
| 490 |
+
|
| 491 |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 492 |
self.norm = nn.LayerNorm(embed_dim)
|
| 493 |
+
|
| 494 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 495 |
x = self.proj(x)
|
| 496 |
x = rearrange(x, 'b c h w -> b (h w) c')
|
|
|
|
| 498 |
return x
|
| 499 |
|
| 500 |
# ============================================
|
| 501 |
+
# PENTACHORA VISION TRANSFORMER (FIXED)
|
| 502 |
# ============================================
|
| 503 |
|
| 504 |
class PentachoraViT(nn.Module):
|
| 505 |
"""
|
| 506 |
Vision Transformer with pentachoron-based hierarchical CLS tokens
|
| 507 |
and geometric vocabulary integration.
|
| 508 |
+
FIXED: CLS tokens now properly reference vocabulary embeddings.
|
| 509 |
"""
|
| 510 |
def __init__(self, config: Optional[PentachoraConfig] = None, **kwargs):
|
| 511 |
super().__init__()
|
| 512 |
+
|
| 513 |
# Use config or kwargs
|
| 514 |
if config is not None:
|
| 515 |
cfg = config
|
| 516 |
else:
|
| 517 |
cfg = PentachoraConfig(**kwargs)
|
| 518 |
+
|
| 519 |
self.config = cfg
|
| 520 |
self.num_classes = cfg.num_classes
|
| 521 |
self.dim = cfg.dim
|
| 522 |
self.depth = cfg.depth
|
| 523 |
self.preserve_structure_until_layer = cfg.preserve_structure_until_layer
|
| 524 |
+
|
| 525 |
+
# Set vocabulary dimension
|
| 526 |
if cfg.vocab_dim is not None:
|
| 527 |
self.vocab_dim = cfg.vocab_dim
|
| 528 |
elif 'vocab_dim' in kwargs:
|
| 529 |
self.vocab_dim = kwargs['vocab_dim']
|
| 530 |
else:
|
| 531 |
self.vocab_dim = cfg.dim
|
| 532 |
+
|
| 533 |
# Patch embedding
|
| 534 |
self.patch_embed = PatchEmbed(
|
| 535 |
cfg.img_size, cfg.patch_size, 3, cfg.dim
|
| 536 |
)
|
| 537 |
num_patches = self.patch_embed.num_patches
|
| 538 |
+
|
| 539 |
# Positional embedding
|
| 540 |
self.pos_embed = nn.Parameter(torch.randn(1, num_patches, cfg.dim) * 0.02)
|
| 541 |
self.pos_drop = nn.Dropout(cfg.dropout_rate)
|
| 542 |
+
|
| 543 |
# CLS tokens with pentachoron structure
|
| 544 |
self.cls_tokens = HierarchicalPentachoronCLS(cfg.dim, self.vocab_dim, cfg.num_classes)
|
| 545 |
+
|
| 546 |
+
# Geometric projection layer
|
| 547 |
self.geometric_proj = GeometricProjection(cfg.dim, self.vocab_dim, cfg.num_classes, cfg.dropout_rate)
|
| 548 |
+
|
| 549 |
+
# Initialize from vocabulary if provided
|
| 550 |
if cfg.vocab is not None:
|
| 551 |
self._init_from_vocab(cfg.vocab)
|
| 552 |
+
|
| 553 |
# Stochastic depth decay rule
|
| 554 |
dpr = [x.item() for x in torch.linspace(0, cfg.drop_path_rate, cfg.depth)]
|
| 555 |
+
|
| 556 |
# Transformer blocks with geometric attention
|
| 557 |
self.blocks = nn.ModuleList([
|
| 558 |
PentachoronViTBlock(
|
|
|
|
| 566 |
)
|
| 567 |
for i in range(cfg.depth)
|
| 568 |
])
|
| 569 |
+
|
| 570 |
# Final norm
|
| 571 |
self.norm = nn.LayerNorm(cfg.dim)
|
| 572 |
+
|
| 573 |
# Classification heads
|
| 574 |
+
# Primary head uses prototypes for classification
|
| 575 |
+
self.use_prototype_classifier = True
|
| 576 |
+
if self.use_prototype_classifier:
|
| 577 |
+
# No learnable parameters - uses class prototypes directly
|
| 578 |
+
self.head = None
|
| 579 |
+
else:
|
| 580 |
+
# Traditional linear head
|
| 581 |
+
self.head = nn.Linear(cfg.dim, cfg.num_classes)
|
| 582 |
|
| 583 |
+
# Auxiliary head for vertex tokens
|
| 584 |
+
self.head_aux = nn.Linear(cfg.dim * 5, cfg.num_classes)
|
| 585 |
+
|
| 586 |
# Initialize weights
|
| 587 |
self.apply(self._init_weights)
|
| 588 |
+
|
| 589 |
def _init_weights(self, m: nn.Module):
|
| 590 |
"""Initialize model weights."""
|
| 591 |
if isinstance(m, nn.Linear):
|
|
|
|
| 599 |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 600 |
if m.bias is not None:
|
| 601 |
nn.init.constant_(m.bias, 0)
|
| 602 |
+
|
| 603 |
def _init_from_vocab(self, vocab):
|
| 604 |
"""Initialize class pentachora from geometric vocabulary."""
|
| 605 |
try:
|
| 606 |
print("Initializing pentachora from vocabulary...")
|
| 607 |
+
|
| 608 |
if not hasattr(vocab, 'encode_batch'):
|
| 609 |
print("Vocabulary provided but encode_batch method not found, using random initialization")
|
| 610 |
return
|
| 611 |
+
|
| 612 |
# Get CIFAR-100 class names
|
| 613 |
class_names = self._get_cifar100_classes()
|
| 614 |
+
|
| 615 |
# Generate pentachora for all classes
|
| 616 |
pentachora_list = vocab.encode_batch(class_names[:self.num_classes], generate=True)
|
| 617 |
pentachora = np.stack(pentachora_list, axis=0)
|
| 618 |
+
|
| 619 |
# Get actual dimensions from the encoded data
|
| 620 |
actual_vocab_dim = pentachora.shape[-1]
|
| 621 |
+
|
| 622 |
print(f"Encoded pentachora shape: {pentachora.shape}")
|
| 623 |
print(f"Detected vocabulary dimension: {actual_vocab_dim}")
|
| 624 |
+
|
| 625 |
# Validate basic shape requirements
|
| 626 |
if pentachora.shape[0] != self.num_classes or pentachora.shape[1] != 5:
|
| 627 |
print(f"Invalid shape: expected ({self.num_classes}, 5, ?), got {pentachora.shape}")
|
| 628 |
print("Using random initialization")
|
| 629 |
return
|
| 630 |
+
|
| 631 |
+
# Update vocabulary dimension
|
| 632 |
self.vocab_dim = actual_vocab_dim
|
| 633 |
self.cls_tokens.vocab_dim = actual_vocab_dim
|
| 634 |
self.geometric_proj.vocab_dim = actual_vocab_dim
|
| 635 |
+
|
| 636 |
# Replace class_pentachora with the loaded vocabulary
|
| 637 |
self.cls_tokens.class_pentachora = nn.Parameter(
|
| 638 |
torch.tensor(pentachora, dtype=torch.float32)
|
| 639 |
)
|
| 640 |
+
|
| 641 |
# Update/create projection layer if dimensions differ
|
| 642 |
if actual_vocab_dim != self.dim:
|
| 643 |
+
self.cls_tokens.vocab_to_model = nn.Linear(actual_vocab_dim, self.dim)
|
| 644 |
else:
|
| 645 |
+
self.cls_tokens.vocab_to_model = nn.Identity()
|
| 646 |
+
|
| 647 |
+
# Rebuild geometric projection components
|
| 648 |
+
self.geometric_proj.to_vocab_space = nn.Linear(self.dim, actual_vocab_dim)
|
| 649 |
self.geometric_proj.vertex_projections = nn.ModuleList([
|
| 650 |
+
nn.Linear(actual_vocab_dim, actual_vocab_dim, bias=False) for _ in range(5)
|
| 651 |
])
|
| 652 |
+
|
| 653 |
# Re-initialize the new layers
|
| 654 |
+
nn.init.xavier_uniform_(self.geometric_proj.to_vocab_space.weight)
|
| 655 |
for proj in self.geometric_proj.vertex_projections:
|
| 656 |
nn.init.xavier_uniform_(proj.weight)
|
| 657 |
if actual_vocab_dim != self.dim:
|
| 658 |
+
nn.init.xavier_uniform_(self.cls_tokens.vocab_to_model.weight)
|
| 659 |
+
|
| 660 |
print(f"✓ Successfully initialized {self.num_classes} class pentachora from vocabulary")
|
| 661 |
print(f" Vocabulary dimension: {actual_vocab_dim}")
|
| 662 |
print(f" Model internal dimension: {self.dim}")
|
| 663 |
+
print(f" CLS tokens now reference vocabulary embeddings")
|
| 664 |
+
|
| 665 |
except Exception as e:
|
| 666 |
print(f"Error initializing from vocabulary: {e}")
|
| 667 |
print("Using random initialization")
|
| 668 |
+
|
| 669 |
def _get_cifar100_classes(self):
|
| 670 |
"""Get CIFAR-100 class names."""
|
| 671 |
return [
|
| 672 |
+
'apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle',
|
| 673 |
+
'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel',
|
| 674 |
+
'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock',
|
| 675 |
+
'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur',
|
| 676 |
+
'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster',
|
| 677 |
'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion',
|
| 678 |
'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse',
|
| 679 |
'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear',
|
|
|
|
| 684 |
'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout',
|
| 685 |
'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm'
|
| 686 |
]
|
| 687 |
+
|
| 688 |
+
def forward_features(self, x: torch.Tensor, class_indices: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
|
| 689 |
+
"""
|
| 690 |
+
Extract features from input.
|
| 691 |
|
| 692 |
+
Args:
|
| 693 |
+
x: Input images [B, 3, H, W]
|
| 694 |
+
class_indices: Optional class indices for class-aware CLS tokens [B]
|
| 695 |
+
"""
|
| 696 |
+
B = x.shape[0]
|
| 697 |
+
|
| 698 |
# Patch embedding
|
| 699 |
x = self.patch_embed(x)
|
| 700 |
x = x + self.pos_embed
|
| 701 |
x = self.pos_drop(x)
|
| 702 |
+
|
| 703 |
+
# Get hierarchical CLS tokens (now properly using vocabulary)
|
| 704 |
+
global_cls, vertex_cls = self.cls_tokens(B, class_indices)
|
| 705 |
+
|
| 706 |
# Concatenate CLS tokens with patches
|
| 707 |
x = torch.cat([global_cls, vertex_cls, x], dim=1)
|
| 708 |
+
|
| 709 |
# Apply transformer blocks
|
| 710 |
for i, block in enumerate(self.blocks):
|
| 711 |
preserve = i < self.preserve_structure_until_layer
|
| 712 |
x = block(x, preserve_structure=preserve)
|
| 713 |
+
|
| 714 |
# Apply final norm
|
| 715 |
x = self.norm(x)
|
| 716 |
+
|
| 717 |
# Split tokens
|
| 718 |
global_cls = x[:, 0]
|
| 719 |
vertex_cls = x[:, 1:6]
|
| 720 |
patches = x[:, 6:]
|
| 721 |
+
|
| 722 |
return {
|
| 723 |
'global_cls': global_cls,
|
| 724 |
'vertex_cls': vertex_cls,
|
| 725 |
'patches': patches
|
| 726 |
}
|
| 727 |
+
|
| 728 |
+
def forward(self, x: torch.Tensor, targets: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
|
| 729 |
+
"""
|
| 730 |
+
Forward pass through the model.
|
| 731 |
|
| 732 |
+
Args:
|
| 733 |
+
x: Input images [B, 3, H, W]
|
| 734 |
+
targets: Optional target labels for class-aware processing [B]
|
| 735 |
+
"""
|
| 736 |
+
# During training, use target labels for class-specific CLS initialization
|
| 737 |
+
class_indices = targets if self.training and targets is not None else None
|
| 738 |
|
| 739 |
+
features = self.forward_features(x, class_indices)
|
| 740 |
+
|
| 741 |
+
# Primary classification using prototype matching
|
| 742 |
+
if self.use_prototype_classifier:
|
| 743 |
+
# Get class prototypes from vocabulary
|
| 744 |
+
prototypes = self.cls_tokens.get_class_prototypes() # [C, D]
|
| 745 |
+
prototypes = F.normalize(prototypes, dim=-1)
|
| 746 |
+
|
| 747 |
+
# Normalize global CLS tokens
|
| 748 |
+
global_cls_norm = F.normalize(features['global_cls'], dim=-1) # [B, D]
|
| 749 |
+
|
| 750 |
+
# Compute similarity to prototypes
|
| 751 |
+
logits = torch.matmul(global_cls_norm, prototypes.T) * 20.0 # Scale for better gradients
|
| 752 |
+
else:
|
| 753 |
+
# Traditional linear classification
|
| 754 |
+
logits = self.head(features['global_cls'])
|
| 755 |
+
|
| 756 |
# Auxiliary classification using vertex tokens
|
| 757 |
B = features['vertex_cls'].shape[0]
|
| 758 |
vertex_flat = features['vertex_cls'].reshape(B, -1)
|
| 759 |
aux_logits = self.head_aux(vertex_flat)
|
| 760 |
+
|
| 761 |
# Geometric alignment scores
|
| 762 |
geometric_alignments = self.geometric_proj(
|
| 763 |
+
features['patches'],
|
| 764 |
self.cls_tokens.class_pentachora
|
| 765 |
)
|
| 766 |
+
|
| 767 |
return {
|
| 768 |
'logits': logits,
|
| 769 |
'aux_logits': aux_logits,
|
|
|
|
| 785 |
self.aux_weight = aux_weight
|
| 786 |
self.geo_weight = geo_weight
|
| 787 |
self.criterion = nn.CrossEntropyLoss(label_smoothing=smoothing)
|
| 788 |
+
|
| 789 |
def forward(self, outputs: Dict[str, torch.Tensor], targets: torch.Tensor) -> torch.Tensor:
|
| 790 |
"""Compute combined loss."""
|
| 791 |
# Primary classification loss
|
| 792 |
loss = self.criterion(outputs['logits'], targets)
|
| 793 |
+
|
| 794 |
# Auxiliary loss from vertex tokens
|
| 795 |
if 'aux_logits' in outputs and self.aux_weight > 0:
|
| 796 |
aux_loss = self.criterion(outputs['aux_logits'], targets)
|
| 797 |
loss = loss + self.aux_weight * aux_loss
|
| 798 |
+
|
| 799 |
# Geometric alignment loss
|
| 800 |
if 'geometric_alignments' in outputs and self.geo_weight > 0:
|
| 801 |
# Average over patches
|
| 802 |
geo_logits = outputs['geometric_alignments'].mean(dim=1)
|
| 803 |
geo_loss = self.criterion(geo_logits, targets)
|
| 804 |
loss = loss + self.geo_weight * geo_loss
|
| 805 |
+
|
| 806 |
return loss
|
| 807 |
|
| 808 |
# ============================================
|
|
|
|
| 811 |
|
| 812 |
MODEL_CONFIGS = {
|
| 813 |
'pentachora_spark': PentachoraConfig(
|
| 814 |
+
dim=100, depth=5, heads=4, mlp_ratio=4.0,
|
| 815 |
+
preserve_structure_until_layer=1,
|
| 816 |
dropout_rate=0.0, drop_path_rate=0.0
|
| 817 |
),
|
| 818 |
'pentachora_tiny': PentachoraConfig(
|
|
|
|
| 842 |
**kwargs) -> PentachoraViT:
|
| 843 |
"""
|
| 844 |
Create PentachoraViT model.
|
| 845 |
+
|
| 846 |
Args:
|
| 847 |
variant: Model variant name
|
| 848 |
pretrained: Whether to load pretrained weights
|
| 849 |
**kwargs: Override config parameters (including vocab_dim)
|
| 850 |
+
|
| 851 |
Returns:
|
| 852 |
PentachoraViT model
|
| 853 |
"""
|
| 854 |
if variant not in MODEL_CONFIGS:
|
| 855 |
raise ValueError(f"Unknown variant: {variant}. Choose from {list(MODEL_CONFIGS.keys())}")
|
| 856 |
+
|
| 857 |
config = MODEL_CONFIGS[variant]
|
| 858 |
+
|
| 859 |
# Override config with kwargs
|
| 860 |
for key, value in kwargs.items():
|
| 861 |
setattr(config, key, value)
|
| 862 |
+
|
| 863 |
model = PentachoraViT(config)
|
| 864 |
+
|
| 865 |
if pretrained:
|
| 866 |
warnings.warn("Pretrained weights not available yet")
|
| 867 |
+
|
| 868 |
return model
|
| 869 |
|
| 870 |
+
# Convenience functions for each variant
|
| 871 |
def pentachora_vit_spark(pretrained: bool = False, **kwargs) -> PentachoraViT:
|
| 872 |
"""Create spark variant (smallest)."""
|
| 873 |
return create_pentachora_vit('pentachora_spark', pretrained=pretrained, **kwargs)
|