Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,146 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- Qwen/Qwen2-VL-2B-Instruct
|
| 7 |
+
tags:
|
| 8 |
+
- remote-sensing
|
| 9 |
+
---
|
| 10 |
+
# Adapting Multimodal Large Language Models to Domains via Post-Training
|
| 11 |
+
|
| 12 |
+
This repos contains the **remote sensing MLLM developed from Qwen-2-VL-2B-Instruct** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
|
| 13 |
+
|
| 14 |
+
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
|
| 15 |
+
|
| 16 |
+
## Resources
|
| 17 |
+
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
|
| 18 |
+
|
| 19 |
+
| Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
|
| 20 |
+
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
|
| 21 |
+
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
|
| 22 |
+
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
|
| 23 |
+
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
| 24 |
+
| [AdaMLLM-remote-sensing-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/remote-sensing-Qwen2-VL-2B-Instruct | Remote Sensing | Qwen2-VL-2B-Instruct | [remote-sensing-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [remote-sensing-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
| 25 |
+
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
|
| 26 |
+
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
| 27 |
+
| [AdaMLLM-remote-sensing-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/remote-sensing-LLaVA-NeXT-Llama3-8B | Remote Sensing | open-llava-next-llama3-8b | [remote-sensing-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [remote-sensing-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
| 28 |
+
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
|
| 29 |
+
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
| 30 |
+
| [AdaMLLM-remote-sensing-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/remote-sensing-Llama-3.2-11B-Vision-Instruct | Remote Sensing | Llama-3.2-11B-Vision-Instruct | [remote-sensing-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [remote-sensing-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
|
| 31 |
+
|
| 32 |
+
**Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
|
| 33 |
+
|
| 34 |
+
## 1. To Chat with AdaMLLM
|
| 35 |
+
|
| 36 |
+
Our model architecture aligns with the base model: Qwen-2-VL-Instruct. We provide a usage example below, and you may refer to the official [Qwen-2-VL-Instruct repository](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) for more advanced usage instructions.
|
| 37 |
+
|
| 38 |
+
**Note:** For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
|
| 39 |
+
|
| 40 |
+
<details>
|
| 41 |
+
<summary> Click to expand </summary>
|
| 42 |
+
|
| 43 |
+
1. Set up
|
| 44 |
+
```bash
|
| 45 |
+
pip install qwen-vl-utils
|
| 46 |
+
```
|
| 47 |
+
2. Inference
|
| 48 |
+
```python
|
| 49 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 50 |
+
from qwen_vl_utils import process_vision_info
|
| 51 |
+
|
| 52 |
+
# default: Load the model on the available device(s)
|
| 53 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 54 |
+
"AdaptLLM/food-Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
| 58 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 59 |
+
# "AdaptLLM/food-Qwen2-VL-2B-Instruct",
|
| 60 |
+
# torch_dtype=torch.bfloat16,
|
| 61 |
+
# attn_implementation="flash_attention_2",
|
| 62 |
+
# device_map="auto",
|
| 63 |
+
# )
|
| 64 |
+
|
| 65 |
+
# default processer
|
| 66 |
+
processor = AutoProcessor.from_pretrained("AdaptLLM/remote-sensing-Qwen2-VL-2B-Instruct")
|
| 67 |
+
|
| 68 |
+
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
| 69 |
+
# min_pixels = 256*28*28
|
| 70 |
+
# max_pixels = 1280*28*28
|
| 71 |
+
# processor = AutoProcessor.from_pretrained("AdaptLLM/remote-sensing-Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
| 72 |
+
|
| 73 |
+
# NOTE: For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
|
| 74 |
+
messages = [
|
| 75 |
+
{
|
| 76 |
+
"role": "user",
|
| 77 |
+
"content": [
|
| 78 |
+
{
|
| 79 |
+
"type": "image",
|
| 80 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
| 81 |
+
},
|
| 82 |
+
{"type": "text", "text": "Describe this image."},
|
| 83 |
+
],
|
| 84 |
+
}
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Preparation for inference
|
| 88 |
+
text = processor.apply_chat_template(
|
| 89 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 90 |
+
)
|
| 91 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 92 |
+
inputs = processor(
|
| 93 |
+
text=[text],
|
| 94 |
+
images=image_inputs,
|
| 95 |
+
videos=video_inputs,
|
| 96 |
+
padding=True,
|
| 97 |
+
return_tensors="pt",
|
| 98 |
+
)
|
| 99 |
+
inputs = inputs.to("cuda")
|
| 100 |
+
|
| 101 |
+
# Inference: Generation of the output
|
| 102 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 103 |
+
generated_ids_trimmed = [
|
| 104 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 105 |
+
]
|
| 106 |
+
output_text = processor.batch_decode(
|
| 107 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 108 |
+
)
|
| 109 |
+
print(output_text)
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
</details>
|
| 113 |
+
|
| 114 |
+
## 2. To Evaluate Any MLLM on Domain-Specific Benchmarks
|
| 115 |
+
|
| 116 |
+
Refer to the [remote-sensing-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/remote-sensing-VQA-benchmark) to reproduce our results and evaluate many other MLLMs on domain-specific benchmarks.
|
| 117 |
+
|
| 118 |
+
## 3. To Reproduce this Domain-Adapted MLLM
|
| 119 |
+
|
| 120 |
+
See [Post-Train Guide](https://github.com/bigai-ai/QA-Synthesizer/blob/main/docs/Post_Train.md) to adapt MLLMs to domains.
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
## Citation
|
| 124 |
+
If you find our work helpful, please cite us.
|
| 125 |
+
|
| 126 |
+
[AdaMLLM](https://huggingface.co/papers/2411.19930)
|
| 127 |
+
```bibtex
|
| 128 |
+
@article{adamllm,
|
| 129 |
+
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
|
| 130 |
+
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
|
| 131 |
+
journal={arXiv preprint arXiv:2411.19930},
|
| 132 |
+
year={2024}
|
| 133 |
+
}
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
|
| 137 |
+
```bibtex
|
| 138 |
+
@inproceedings{
|
| 139 |
+
cheng2024adapting,
|
| 140 |
+
title={Adapting Large Language Models via Reading Comprehension},
|
| 141 |
+
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
|
| 142 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
| 143 |
+
year={2024},
|
| 144 |
+
url={https://openreview.net/forum?id=y886UXPEZ0}
|
| 145 |
+
}
|
| 146 |
+
```
|