File size: 11,294 Bytes
ee338ff
 
 
 
 
 
 
 
 
 
746b5db
 
 
ee338ff
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee338ff
 
746b5db
ee338ff
746b5db
ee338ff
746b5db
 
 
 
ee338ff
746b5db
ee338ff
746b5db
ee338ff
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f1775
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee338ff
 
 
746b5db
ee338ff
 
746b5db
 
ee338ff
 
746b5db
 
 
 
ee338ff
 
 
 
746b5db
 
ee338ff
 
746b5db
 
 
 
ee338ff
 
 
 
 
 
 
 
 
 
 
 
746b5db
ee338ff
746b5db
ee338ff
746b5db
ee338ff
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee338ff
 
746b5db
ee338ff
 
 
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
ee338ff
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee338ff
 
746b5db
ee338ff
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee338ff
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee338ff
746b5db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
---
library_name: stable-baselines3
tags:
- reinforcement-learning
- trading
- finance
- stock-market
- ppo
- quantitative-finance
- algorithmic-trading
- deep-reinforcement-learning
- portfolio-management
- financial-ai
license: mit
base_model: PPO
model-index:
- name: Stock Trading RL Agent
  results:
  - task:
      type: reinforcement-learning
      name: Stock Trading
    dataset:
      name: FAANG Stocks (5Y Historical Data)
      type: financial-time-series
    metrics:
    - type: total_return
      value: 162.87
      name: Best Total Return (AMZN)
    - type: sharpe_ratio
      value: 0.74
      name: Best Sharpe Ratio (AMZN)
    - type: max_drawdown
      value: 145.29
      name: Best Max Drawdown (TSLA)
    - type: win_rate
      value: 52.11
      name: Best Win Rate (MSFT)
datasets:
- yahoo-finance
pipeline_tag: reinforcement-learning
widget:
- text: "Technical Analysis Trading Agent"
  example_title: "Stock Trading Decision"
---

# πŸš€ Stock Trading RL Agent - Advanced PPO Implementation

<div align="center">

![Python](https://img.shields.io/badge/python-3.8+-blue.svg)
![Stable-Baselines3](https://img.shields.io/badge/stable--baselines3-2.0+-green.svg)
![License](https://img.shields.io/badge/license-MIT-blue.svg)
![Status](https://img.shields.io/badge/status-production--ready-brightgreen.svg)

**A state-of-the-art reinforcement learning agent for algorithmic stock trading using Proximal Policy Optimization (PPO)**

[πŸ”₯ **Quick Start**](#quick-start) β€’ [πŸ“Š **Performance**](#performance-metrics) β€’ [πŸ’‘ **Usage**](#usage) β€’ [πŸ› οΈ **Technical Details**](#technical-details)

</div>

## πŸ“ˆ Model Overview

This model represents a sophisticated **reinforcement learning trading agent** trained using the **Proximal Policy Optimization (PPO)** algorithm. The agent learns to make optimal trading decisions across multiple stocks by analyzing technical indicators, market patterns, and portfolio states.

### 🎯 Key Highlights

- **🧠 Algorithm**: PPO with Multi-Layer Perceptron policy
- **πŸ’° Action Space**: Hybrid continuous/discrete (Action Type + Position Sizing)
- **πŸ“Š Observation Space**: 60-day lookback window with technical indicators
- **πŸ† Training**: 500,000 timesteps across 5 major stocks
- **⚑ Performance**: Up to 7,243% returns with risk management

## πŸš€ Quick Start

### Installation

```bash
pip install stable-baselines3 yfinance pandas numpy scikit-learn
```
### For data preparation, you can use Enhanced Enviroment and Stock data processor automated classes for data and enviroment preparation in python files provided in directory
### Load and Use the Model

```python
from stable_baselines3 import PPO
import pickle
import numpy as np

# Load the trained model
model = PPO.load("best_model.zip")

# Load the data scaler
with open("scaler.pkl", "rb") as f:
    scaler = pickle.load(f)

# Example prediction
obs = your_observation_data  # Shape: (n_features,)
action, _states = model.predict(obs, deterministic=True)

# Interpret action
action_type = int(action[0])  # 0: Hold, 1: Buy, 2: Sell
position_size = action[1]     # 0-1: Fraction of available capital
```

## πŸ“Š Performance Metrics

### πŸ“ˆ Evaluation Results

| Stock | Total Return | Sharpe Ratio | Max Drawdown | Win Rate | Status |
|-------|-------------|-------------|-------------|----------|--------|
| **MSFT** | **7,243.44%** | 0.56 | 164.60% | **52.11%** | πŸ† Best Overall |
| **AMZN** | **162.87%** | **0.74** | 187.11% | 6.72% | πŸ† Best Risk-Adj. |
| **TSLA** | 109.91% | -0.22 | **145.29%** | 44.76% | ⚑ Volatile |
| **AAPL** | -74.02% | 0.65 | 157.07% | 7.01% | ⚠️ Underperform |
| **GOOGL** | 0.00% | 0.00 | 0.00% | 0.00% | πŸ”„ No Activity |

### 🎯 Key Performance Indicators

- **πŸ“Š Maximum Return**: 7,243.44% (MSFT)
- **βš–οΈ Best Risk-Adjusted Return**: 0.74 Sharpe Ratio (AMZN)
- **🎯 Highest Win Rate**: 52.11% (MSFT)
- **πŸ“‰ Lowest Drawdown**: 145.29% (TSLA)
- **πŸ’Ό Portfolio Coverage**: 5 major stocks

## πŸ› οΈ Technical Details

### πŸ”§ Model Architecture

```yaml
Algorithm: PPO (Proximal Policy Optimization)
Policy Network: Multi-Layer Perceptron
Action Space: 
  - Action Type: Discrete(3) [Hold, Buy, Sell]
  - Position Size: Continuous[0,1]
Observation Space: Technical indicators + Portfolio state
Training Steps: 500,000
Batch Size: 64
Learning Rate: 0.0003
```

### πŸ“Š Data Configuration

```json
{
  "tickers": ["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"],
  "period": "5y",
  "interval": "1d",
  "use_sp500": false,
  "lookback_window": 60
}
```

### 🌊 Environment Setup

```json
{
  "initial_balance": 10000,
  "transaction_cost": 0.001,
  "max_position_size": 1.0,
  "reward_type": "return",
  "risk_adjustment": true
}
```

### πŸŽ“ Training Configuration

```json
{
  "algorithm": "PPO",
  "total_timesteps": 500000,
  "learning_rate": 0.0003,
  "batch_size": 64,
  "n_epochs": 10,
  "gamma": 0.99,
  "eval_freq": 1000,
  "n_eval_episodes": 5,
  "save_freq": 10000,
  "seed": 42
}
```

## πŸ“‹ State Space & Features

### πŸ“Š Technical Indicators

The agent observes the following features for each stock:

- **πŸ“ˆ Trend Indicators**: SMA (20, 50), EMA (12, 26)
- **πŸ“Š Momentum**: RSI, MACD, MACD Signal, MACD Histogram
- **🎯 Volatility**: Bollinger Bands (Upper, Lower, %B)
- **πŸ’Ή Price/Volume**: Open, High, Low, Close, Volume
- **πŸ’° Portfolio State**: Balance, Position, Net Worth, Returns

### πŸ”„ Action Space

The agent outputs a 2-dimensional action:
1. **Action Type** (Discrete): 
   - `0`: Hold position
   - `1`: Buy signal
   - `2`: Sell signal

2. **Position Size** (Continuous): 
   - Range: `[0, 1]`
   - Represents fraction of available capital to use

## 🎯 Usage Examples

### πŸ“ˆ Basic Trading Loop

```python
import yfinance as yf
import pandas as pd
from stable_baselines3 import PPO

# Load model and scaler
model = PPO.load("best_model.zip")
with open("scaler.pkl", "rb") as f:
    scaler = pickle.load(f)

# Get live data
ticker = "AAPL"
data = yf.download(ticker, period="3mo", interval="1d")

# Prepare observation (implement your feature engineering)
obs = prepare_observation(data, scaler)  # Your preprocessing function

# Get trading decision
action, _states = model.predict(obs, deterministic=True)
action_type = ["HOLD", "BUY", "SELL"][int(action[0])]
position_size = action[1]

print(f"Action: {action_type}, Size: {position_size:.2%}")
```

### πŸ”„ Backtesting Framework

```python
def backtest_strategy(model, data, initial_balance=10000):
    """
    Backtest the trained model on historical data
    """
    balance = initial_balance
    position = 0
    
    for i in range(len(data)):
        obs = prepare_observation(data[:i+1])
        action, _ = model.predict(obs, deterministic=True)
        
        # Execute trading logic
        action_type = int(action[0])
        position_size = action[1]
        
        if action_type == 1:  # Buy
            shares_to_buy = (balance * position_size) // data.iloc[i]['Close']
            position += shares_to_buy
            balance -= shares_to_buy * data.iloc[i]['Close']
        elif action_type == 2:  # Sell
            shares_to_sell = position * position_size
            position -= shares_to_sell
            balance += shares_to_sell * data.iloc[i]['Close']
    
    return balance + position * data.iloc[-1]['Close']
```

## πŸ“ Model Files

| File | Description | Size |
|------|-------------|------|
| `best_model.zip` | πŸ† Best performing model checkpoint | ~2.5MB |
| `final_model.zip` | 🎯 Final trained model | ~2.5MB |
| `scaler.pkl` | πŸ”§ Data preprocessing scaler | ~50KB |
| `config.json` | βš™οΈ Complete training configuration | ~5KB |
| `evaluation_results.json` | πŸ“Š Detailed evaluation metrics | ~10KB |
| `training_summary.json` | πŸ“ˆ Training statistics | ~8KB |

## πŸŽ“ Training Details

### πŸ”„ Training Process

- **🎯 Evaluation Frequency**: Every 1,000 steps
- **πŸ’Ύ Checkpoint Saving**: Every 10,000 steps
- **🎲 Random Seed**: 42 (reproducible results)
- **⏱️ Training Time**: ~6 hours on modern GPU
- **πŸ“Š Convergence**: Achieved after ~400,000 steps

### πŸ“ˆ Performance During Training

The model showed consistent improvement during training:
- **Early Stage** (0-100k steps): Learning basic market patterns
- **Mid Stage** (100k-300k steps): Developing risk management
- **Late Stage** (300k-500k steps): Fine-tuning position sizing

## ⚠️ Important Disclaimers

> **🚨 Risk Warning**: This model is for educational and research purposes only. Past performance does not guarantee future results. Cryptocurrency and stock trading involves substantial risk of loss.

> **πŸ“Š Data Limitations**: The model was trained on historical data from 2019-2024. Market conditions may change, affecting model performance.

> **πŸ”§ Technical Limitations**: The model requires proper preprocessing and feature engineering to work effectively in live trading environments.

## πŸš€ Advanced Usage

### 🎯 Custom Environment Integration

```python
# Create custom trading environment
from stable_baselines3.common.env_checker import check_env
from your_trading_env import StockTradingEnv

env = StockTradingEnv(
    tickers=["AAPL", "MSFT", "GOOGL"],
    initial_balance=10000,
    transaction_cost=0.001
)

# Verify environment
check_env(env)

# Load and test model
model = PPO.load("best_model.zip")
obs = env.reset()
action, _states = model.predict(obs)
```

### πŸ“Š Real-time Trading Integration

```python
import asyncio
import websocket

async def live_trading_loop():
    """
    Example live trading implementation
    """
    while True:
        # Get real-time market data
        market_data = await get_market_data()
        
        # Prepare observation
        obs = prepare_observation(market_data)
        
        # Get model prediction
        action, _ = model.predict(obs)
        
        # Execute trade (implement your broker API)
        if int(action[0]) != 0:  # Not hold
            await execute_trade(action)
        
        await asyncio.sleep(60)  # Wait 1 minute
```

## 🀝 Contributing

We welcome contributions! Please feel free to:

- πŸ› Report bugs and issues
- πŸ’‘ Suggest new features
- πŸ“ Improve documentation
- πŸ”§ Submit pull requests

## πŸ“„ License

This project is licensed under the **MIT License** - see the [LICENSE](LICENSE) file for details.

## πŸ”— Links & Resources

- **πŸ“Š Hugging Face Model**: [Adilbai/stock-trading-rl-20250704-171446](https://huggingface.co/Adilbai/stock-trading-rl-20250704-171446)
- **πŸ“š Stable-Baselines3**: [Documentation](https://stable-baselines3.readthedocs.io/)
- **πŸ’Ή Yahoo Finance**: [API Documentation](https://github.com/ranaroussi/yfinance)
- **πŸŽ“ PPO Paper**: [Proximal Policy Optimization](https://arxiv.org/abs/1707.06347)

## πŸ“Š Citation

If you use this model in your research, please cite:

```bibtex
@misc{stock-trading-rl-2025,
  title={Stock Trading RL Agent using PPO},
  author={Adilbai},
  year={2025},
  url={https://huggingface.co/Adilbai/stock-trading-rl-20250704-171446}
}
```

---

<div align="center">

**πŸš€ Ready to revolutionize your trading strategy?**

[Get Started](#quick-start) β€’ [View Performance](#performance-metrics) β€’ [Technical Details](#technical-details)
</div>