File size: 46,700 Bytes
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ac6c6
4b9bdee
 
6a30f3b
4b9bdee
 
 
 
6a30f3b
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a30f3b
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d4a54
4b9bdee
 
 
 
 
 
 
 
 
61d4a54
4b9bdee
 
 
 
 
61d4a54
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d4a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9bdee
 
 
 
61d4a54
4b9bdee
 
 
 
61d4a54
4b9bdee
 
61d4a54
 
 
 
 
 
 
 
 
4b9bdee
 
 
 
 
 
 
 
 
 
 
61d4a54
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
61d4a54
 
 
 
 
 
4b9bdee
 
 
 
61d4a54
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9bdee
61d4a54
 
4b9bdee
 
 
 
61d4a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d4a54
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9bdee
 
 
 
 
 
 
 
 
 
 
61d4a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9bdee
 
 
61d4a54
4b9bdee
 
61d4a54
4b9bdee
 
 
 
61d4a54
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d4a54
 
 
 
 
 
 
 
 
 
 
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d4a54
4b9bdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
import itertools
from collections.abc import Sequence
from importlib.metadata import PackageNotFoundError, version
from typing import Callable

import torch
import torch.nn as nn
from einops import rearrange
from flash_attn.flash_attn_interface import flash_attn_varlen_func
from transformers import PreTrainedModel
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import ModelOutput

from .config import (
    CrossAttentionConfig,
    DecoderHATModelConfig,
    EncoderHATModelConfig,
    HATArchitectureConfig,
    TransformerHATModelConfig,
)
from .splitter import HATSplitter
from .norm import RMSNorm
from .transformer_backbone import (
    LlamaDecoderLayer,
    LlamaRotaryEmbedding,
)



def sample_argmax(logits: torch.Tensor) -> torch.Tensor:
    return torch.argmax(logits, dim=-1)[:, -1]


LLAMA_TEMPLATE = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant. You give engaging, well-structured answers to user inquiries.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"


class HATCache:
    encoder_cache: DynamicCache
    backbone_cache: DynamicCache
    decoder_cache: DynamicCache

    def __init__(self):
        self.encoder_cache = DynamicCache()
        self.backbone_cache = DynamicCache()
        self.decoder_cache = DynamicCache()

    def get_backbone_cache(self) -> DynamicCache:
        return self.backbone_cache

    def get_decoder_cache(self) -> DynamicCache:
        return self.decoder_cache

    def get_encoder_cache(self) -> DynamicCache:
        return self.encoder_cache


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, q_cos=None, q_sin=None, k_cos=None, k_sin=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.
    and allows for different sequence lengths.
    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        q_cos (`torch.Tensor`): The cosine part of the rotary embedding.
        q_sin (`torch.Tensor`): The sine part of the rotary embedding.
        k_cos (`torch.Tensor`): The cosine part of the rotary embedding.
        k_sin (`torch.Tensor`): The sine part of the rotary embedding.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze
            cos[position_ids] and sin[position_ids] so that they can be properly
            broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape
            [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting
            unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids]
            broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key
        tensors rotated using the Rotary Position Embedding.
    """

    q_cos = q_cos.unsqueeze(unsqueeze_dim)
    q_sin = q_sin.unsqueeze(unsqueeze_dim)
    k_cos = k_cos.unsqueeze(unsqueeze_dim)
    k_sin = k_sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
    k_embed = (k * k_cos) + (rotate_half(k) * k_sin)

    return q_embed, k_embed


class HATBackbone(nn.Module):
    def __init__(self, config: TransformerHATModelConfig, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
        self.rotary_emb = LlamaRotaryEmbedding(config=config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_ids: torch.Tensor | None = None,
        past_key_values: DynamicCache | None = None,
        use_cache: bool | None = False,
    ) -> BaseModelOutputWithPast:
        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if position_ids is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            position_ids = torch.arange(
                past_seen_tokens,
                past_seen_tokens + hidden_states.shape[1],
                device=hidden_states.device,
            ).unsqueeze(0)

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        for backbone_layer in self.layers:
            layer_outputs = backbone_layer(
                hidden_states,
                position_ids=position_ids,
                past_key_value=past_key_values,
                use_cache=use_cache,
                position_embeddings=position_embeddings,
            )
            hidden_states = layer_outputs[0]

        return CausalLMOutputWithPast(
            hidden_states=hidden_states,
            past_key_values=past_key_values if use_cache else None,
        )


class HATDecoderConnector(nn.Module):
    def __init__(self, backbone_hiden_dim: int, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.first_word_embedding = torch.nn.Parameter(
            torch.empty(
                1,
                1,
                backbone_hiden_dim,
                device="cuda",
                dtype=torch.bfloat16,
            )
        )

    def forward(
        self,
        backbone_activations: torch.Tensor,
    ):
        activations = backbone_activations.clone()
        activations[:, -1:, :] = self.first_word_embedding
        activations = torch.roll(activations, shifts=1, dims=1)
        return activations


class HATDecoderBlock(nn.Module):
    def __init__(
        self,
        add_cross_attention: bool,
        config: DecoderHATModelConfig,
        layer_idx: int,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.add_cross_attention = add_cross_attention
        self.config = config
        self.llama_layer = LlamaDecoderLayer(config, layer_idx)
        self.llama_layer.self_attn.sliding_window = config.sliding_window
        if add_cross_attention:
            self.cross_attention = HATCrossAttention(
                hidden_size=config.cross_attention_config.hidden_size,
                hidden_size_kv=config.cross_attention_config.hidden_size_kv,
                hidden_size_q=config.cross_attention_config.hidden_size_q,
                config=config,
                cross_attention_config=config.cross_attention_config,
            )

        self.query_norm = RMSNorm(
            config.cross_attention_config.hidden_size_q,
            eps=config.rms_norm_eps,
            device=torch.device("cuda"),
            dtype=torch.bfloat16,
            norm_in_fp32=False,
        )

        self.kv_norm = RMSNorm(
            config.cross_attention_config.hidden_size_kv,
            eps=config.rms_norm_eps,
            device=torch.device("cuda"),
            dtype=torch.bfloat16,
            norm_in_fp32=False,
        )

    def apply_norm(self, activations):
        return self.query_norm(activations), self.kv_norm(activations)

    def forward(
        self,
        encoder_activations,
        backbone_activations,
        byte_position_ids,
        word_position_ids,
        cumulative_seq_lengths_per_word,
        position_embeddings,
        past_key_values,
        use_cache,
    ):
        if self.add_cross_attention:
            kv_activations = self.kv_norm(backbone_activations)
            q_activations = self.query_norm(encoder_activations)

            activations = self.cross_attention.forward(
                q_activations=q_activations,
                kv_activations=kv_activations,
                position_ids_q=byte_position_ids,
                position_ids_kv=word_position_ids,
                cumulative_seq_q=cumulative_seq_lengths_per_word,
                cumulative_seq_kv=torch.arange(0, kv_activations.size(1) + 1, device=encoder_activations.device, dtype=torch.int32),
                causal=False,
            )
            encoder_activations = encoder_activations + activations

        return self.llama_layer.forward(
            hidden_states=encoder_activations,
            position_ids=byte_position_ids,
            position_embeddings=position_embeddings,
            past_key_value=past_key_values,
            use_cache=use_cache,
        )[0]


class HATDecoder(nn.Module):
    def __init__(self, config: DecoderHATModelConfig, *args, **kwargs):
        super().__init__()

        self.decoder_layers = nn.Sequential()
        for layer_idx in range(config.num_hidden_layers):
            add_cross_attention = config.cross_attn_every_layer or layer_idx == 0
            self.decoder_layers.add_module(
                str(layer_idx),
                HATDecoderBlock(
                    add_cross_attention,
                    config,
                    layer_idx,
                ),
            )

        self.rotary_emb = LlamaRotaryEmbedding(config=config)

    def forward(
        self,
        backbone_activations: torch.Tensor,
        activations: torch.Tensor,
        cumulative_seq_lengths_per_word: torch.Tensor | None = None,
        byte_position_ids: torch.Tensor | None = None,
        word_position_ids: torch.Tensor | None = None,
        past_key_values: DynamicCache | None = None,
        use_cache: bool | None = False,
    ) -> BaseModelOutputWithPast:
        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if byte_position_ids is None:
            past_seen_bytes = past_key_values.get_seq_length() if past_key_values is not None else 0
            byte_position_ids = torch.arange(
                past_seen_bytes,
                past_seen_bytes + activations.size(1),
                device=activations.device,
                dtype=torch.int32,
            ).unsqueeze(0)

        if cumulative_seq_lengths_per_word is None:
            cumulative_seq_lengths_per_word = torch.tensor([0, byte_position_ids.size(1)], dtype=byte_position_ids.dtype, device=byte_position_ids.device)

        if word_position_ids is None:
            raise ValueError()  # TODO

        position_embeddings = self.rotary_emb(activations, byte_position_ids)

        for _, layer in enumerate(self.decoder_layers):
            activations = layer(
                encoder_activations=activations,
                backbone_activations=backbone_activations,
                position_embeddings=position_embeddings,
                cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
                byte_position_ids=byte_position_ids,
                word_position_ids=word_position_ids,
                past_key_values=past_key_values,
                use_cache=use_cache,
            )

        return BaseModelOutputWithPast(
            last_hidden_state=activations,
            past_key_values=past_key_values if use_cache else None,
        )


class HATCrossAttention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        hidden_size_q: int,
        hidden_size_kv: int,
        config: EncoderHATModelConfig | DecoderHATModelConfig,
        cross_attention_config: CrossAttentionConfig,
        dtype: torch.dtype = torch.bfloat16,
    ):
        super().__init__()
        self.hidden_size = hidden_size
        self.hidden_size_q = hidden_size_q
        self.hidden_size_kv = hidden_size_kv
        self.num_heads = cross_attention_config.num_attention_heads
        self.num_key_value_heads = cross_attention_config.attention_num_kv_heads
        self.num_repeat_kv = cross_attention_config.num_attention_heads // cross_attention_config.attention_num_kv_heads
        self.head_dim = hidden_size // self.num_heads
        self.key_query_norm = cross_attention_config.key_query_norm
        self.key_query_norm_per_head = cross_attention_config.key_query_norm_per_head

        self.q_proj = nn.Linear(
            in_features=hidden_size_q,
            out_features=hidden_size,
            dtype=dtype,
            bias=False,
        )

        self.k_proj = nn.Linear(
            in_features=hidden_size_kv,
            out_features=hidden_size // self.num_repeat_kv,
            dtype=dtype,
            bias=False,
        )

        self.v_proj = nn.Linear(
            in_features=hidden_size_kv,
            out_features=hidden_size // self.num_repeat_kv,
            dtype=dtype,
            bias=False,
        )

        if self.key_query_norm:
            if self.key_query_norm_per_head:
                # Both query and key have head dim equal to self.hidden_size_per_attention_head
                query_norm_dimensions = self.head_dim
                key_norm_dimensions = self.head_dim
            else:
                # Query dimensions across head is equal to hidden_size but key dimensions are divided
                # by self.num_repeat_kv
                query_norm_dimensions = self.hidden_size
                key_norm_dimensions = self.hidden_size // self.num_repeat_kv

            self.norm_query = RMSNorm(
                dimensions=query_norm_dimensions,
                eps=config.rms_norm_eps,
                device=self.q_proj.weight.device,
                dtype=dtype,
            )
            self.norm_key = RMSNorm(
                dimensions=key_norm_dimensions,
                eps=config.rms_norm_eps,
                device=self.q_proj.weight.device,
                dtype=dtype,
            )

        self.o_proj = nn.Linear(in_features=hidden_size, out_features=hidden_size_q, dtype=dtype, bias=False)

        self.rotary_emb = LlamaRotaryEmbedding(config=config)

    def forward(
        self,
        q_activations: torch.Tensor,
        kv_activations: torch.Tensor,
        position_ids_q: torch.Tensor,
        position_ids_kv: torch.Tensor,
        cumulative_seq_kv: torch.Tensor,
        cumulative_seq_q: torch.Tensor,
        causal: bool = True,
        use_cache: bool = False,
        past_key_value: DynamicCache | None = None,
    ):
        q_len = cumulative_seq_q[-1]

        bsz, _, _ = kv_activations.size()
        query_states = self.q_proj(q_activations)
        key_states = self.k_proj(kv_activations)
        value_states = self.v_proj(kv_activations)

        if self.key_query_norm:
            assert self.norm_query is not None
            assert self.norm_key is not None
            # query_states and key_states are bsz seq_len (h d)
            if self.key_query_norm_per_head:
                # for per head qk norm we need head dim to be the last dim
                query_states = rearrange(
                    query_states,
                    "bsz seq_len (h d) -> bsz seq_len h d",
                    h=self.num_heads,
                )
                key_states = rearrange(
                    key_states,
                    "bsz seq_len (h d) -> bsz seq_len h d",
                    h=self.num_key_value_heads,
                )
            query_states = self.norm_query(query_states)
            key_states = self.norm_key(key_states)
            if self.key_query_norm_per_head:
                query_states = rearrange(
                    query_states,
                    "bsz seq_len h d -> bsz seq_len (h d)",
                )
                key_states = rearrange(
                    key_states,
                    "bsz seq_len h d -> bsz seq_len (h d)",
                )

        # TODO get rid of the double rearrange, this is just for compatibility with scaling
        query_states = rearrange(query_states, "bsz seq_len (h d) -> bsz h seq_len d", h=self.num_heads)
        key_states = rearrange(
            key_states,
            "bsz seq_len (h d) -> bsz h seq_len d",
            h=self.num_key_value_heads,
        )
        value_states = rearrange(
            value_states,
            "bsz seq_len (h d) -> bsz h seq_len d",
            h=self.num_key_value_heads,
        )

        # WIP: Should word_positions_id respect document boundaries?
        q_cos, q_sin = self.rotary_emb(query_states, position_ids_q)
        k_cos, k_sin = self.rotary_emb(key_states, position_ids_kv)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, q_cos=q_cos, q_sin=q_sin, k_cos=k_cos, k_sin=k_sin)

        query_states = rearrange(query_states, "bsz h seq_len d -> (bsz seq_len) h d")
        key_states = rearrange(key_states, "bsz h seq_len d -> (bsz seq_len) h d")
        value_states = rearrange(value_states, "bsz h seq_len d -> (bsz seq_len) h d")

        attn_output = flash_attn_varlen_func(
            query_states,
            key_states,
            value_states,
            cu_seqlens_q=cumulative_seq_q,
            cu_seqlens_k=cumulative_seq_kv,
            max_seqlen_q=self._get_max_seqlen(cumulative_seq_q),
            max_seqlen_k=self._get_max_seqlen(cumulative_seq_kv),
            causal=False,
        )

        attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()

        attn_output = self.o_proj(attn_output)
        return attn_output

    def _get_max_seqlen(self, cumulative_word_lengths: torch.Tensor):
        diffs = cumulative_word_lengths[1:] - cumulative_word_lengths[:-1]
        return int(diffs.max().item())


class HATEncoderConnector(nn.Module):
    def __init__(
        self,
        config: EncoderHATModelConfig,
        backbone_hidden_size: int,
        dtype: torch.dtype = torch.bfloat16,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.latent_query = torch.nn.Parameter(
            torch.empty(
                1,
                1,
                backbone_hidden_size,
                device="cuda",
                dtype=dtype,
            )
        )

        self.cross_attention_encoder_connector = HATCrossAttention(
            hidden_size=config.cross_attention_config.hidden_size,
            hidden_size_q=backbone_hidden_size,
            hidden_size_kv=config.hidden_size,
            config=config,
            cross_attention_config=config.cross_attention_config,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        cumulative_seq_lengths_per_word: torch.Tensor,
        word_position_ids: torch.Tensor,
        byte_position_ids: torch.Tensor,
    ):
        q_len = cumulative_seq_lengths_per_word.shape[0] - 1
        latent_query_repeated = self.latent_query.expand(-1, q_len, -1)
        cumulative_seq_lengths_q = torch.arange(
            start=0,
            end=latent_query_repeated.shape[1] + 1,
            step=1,
            device=self.latent_query.device,
            dtype=torch.int32,
        )
        word_embeddings = self.cross_attention_encoder_connector.forward(
            q_activations=latent_query_repeated,
            kv_activations=hidden_states,
            position_ids_q=word_position_ids,
            position_ids_kv=byte_position_ids,
            cumulative_seq_q=cumulative_seq_lengths_q,
            cumulative_seq_kv=cumulative_seq_lengths_per_word,
        )
        return word_embeddings


class HATEncoder(nn.Module):
    def __init__(
        self,
        config: EncoderHATModelConfig,
        dtype: torch.dtype = torch.bfloat16,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.embedding_layer = nn.Embedding(config.vocab_size, config.hidden_size, dtype=dtype)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
        for layer in self.layers:
            layer.self_attn.sliding_window = config.sliding_window

        self.rotary_emb = LlamaRotaryEmbedding(config=config)

        self.word_window_size = config.cross_attention_config.word_window_size

    def forward(
        self,
        input_ids: torch.Tensor,
        cumulative_seq_lengths_per_word: torch.Tensor | None = None,
        byte_position_ids: torch.Tensor | None = None,
        word_position_ids: torch.Tensor | None = None,  # TODO: Remove
        past_key_values: DynamicCache | None = None,
        use_cache: bool | None = False,
    ):
        input_embeds = self.embedding_layer(input_ids)

        if cumulative_seq_lengths_per_word is None:
            cumulative_seq_lengths_per_word = torch.tensor([0, input_embeds.shape[1]], dtype=torch.int32, device=input_ids.device)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if byte_position_ids is None:
            past_seen_bytes = past_key_values.get_seq_length() if past_key_values is not None else 0
            byte_position_ids = torch.arange(
                past_seen_bytes,
                past_seen_bytes + input_embeds.shape[1],
                device=input_embeds.device,
            ).unsqueeze(0)

        if word_position_ids is None:
            raise ValueError()  # TODO

        hidden_states = input_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, byte_position_ids)

        for layer in self.layers:
            layer_outputs = layer(
                hidden_states,
                position_ids=byte_position_ids,
                past_key_value=past_key_values,
                use_cache=use_cache,
                position_embeddings=position_embeddings,
            )
            hidden_states = layer_outputs[0]

        return CausalLMOutputWithPast(
            hidden_states=hidden_states,
            past_key_values=past_key_values if use_cache else None,
        )


class HATForCausalLM(PreTrainedModel):
    config_class = HATArchitectureConfig
    _supports_flash_attn_2 = True
    _supports_cache_class = True

    def __init__(self, config: HATArchitectureConfig, *args, **kwargs):
        super().__init__(config, *args, **kwargs)
        self.config = config
        self.eos_token_id = config.eos_token_id
        self.encoder = HATEncoder(config.encoder_config)
        self.encoder_connector = HATEncoderConnector(config.encoder_config, config.backbone_config.hidden_size)
        self.backbone = HATBackbone(config.backbone_config)
        self.decoder_connector = HATDecoderConnector(config.backbone_config.hidden_size)
        self.decoder = HATDecoder(config.decoder_config)
        self.splitter = HATSplitter(special_token_dict=config.special_token_dict, max_word_size=config.max_word_size)
        self.layer_norm = RMSNorm(config.decoder_config.hidden_size, eps=config.decoder_config.rms_norm_eps, device=torch.device("cuda"), dtype=torch.bfloat16, norm_in_fp32=False)
        self.lm_head = nn.Linear(
            in_features=config.decoder_config.hidden_size,
            out_features=config.decoder_config.vocab_size,
            dtype=torch.bfloat16,
            bias=False,
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        byte_position_ids: torch.Tensor,
        cumulative_seq_lengths_per_word: torch.Tensor | None = None,
        word_position_ids: torch.Tensor | None = None,
        past_key_values: HATCache | None = None,
        use_cache: bool = False,
    ):
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if past_key_values is None and use_cache:
            past_key_values = HATCache()

        encoder_past_key_values = past_key_values.get_encoder_cache() if past_key_values is not None else None
        backbone_past_key_values = past_key_values.get_backbone_cache() if past_key_values is not None else None
        decoder_past_key_values = past_key_values.get_decoder_cache() if past_key_values is not None else None

        encoder_output: BaseModelOutputWithPast = self.encoder.forward(
            input_ids=input_ids,
            cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
            byte_position_ids=byte_position_ids,
            word_position_ids=word_position_ids,
            past_key_values=encoder_past_key_values,
            use_cache=use_cache,
        )
        byte_level_activations = encoder_output.hidden_states

        encoder_connector_output = self.encoder_connector.forward(
            byte_level_activations,
            cumulative_seq_lengths_per_word,
            word_position_ids,
            byte_position_ids,
        )
        backbone_output: CausalLMOutputWithPast = self.backbone.forward(
            hidden_states=encoder_connector_output,
            position_ids=word_position_ids,
            past_key_values=backbone_past_key_values,
            use_cache=use_cache,
        )

        predictive_word_embeddings = self.decoder_connector.forward(backbone_activations=backbone_output.hidden_states)

        decoder_output = self.decoder.forward(
            activations=byte_level_activations,
            backbone_activations=predictive_word_embeddings,
            cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
            byte_position_ids=byte_position_ids,
            word_position_ids=word_position_ids,
            past_key_values=decoder_past_key_values,
            use_cache=use_cache,
        )

        decoder_output = self.layer_norm(decoder_output.last_hidden_state)
        logits = self.lm_head(decoder_output)

        loss = None

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=backbone_output.hidden_states,
            attentions=None,
        )

    def _append_byte(self, words: list[list[int]], token: int) -> list[list[int]]:
        extended_last_word = words.pop() + [token]
        try:
            text = self.splitter.decode(extended_last_word, errors='strict', skip_special_tokens=False)
            list_of_bytes = self.splitter.encode(text)
            words.extend([list(word_in_bytes) for word_in_bytes in list_of_bytes])
        except UnicodeDecodeError:
            # if decoding fails, the token cannot be part of a new word since it is not a valid
            # utf-8 end byte and we append it to the current word
            words.append(extended_last_word)
        return words

    def _split_encoder_activations(
        self,
        byte_encoder_activations: torch.Tensor,
        words: list[list[int]],
        previous_encoder_activations: torch.Tensor | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor | None]:
        """Split encoder activations between first word and next word.

        Args:
            byte_encoder_activations: Tensor of shape [batch_size, seq_len, hidden_size] containing all encoder activations which were computed in the current iteration
            words: List of word byte sequences which were completed in previous iteration and current iteration
            previous_encoder_activations: Optional tensor of shape [batch_size, prev_seq_len, hidden_size] containing precomputed activations from the previous iteration

        Returns:
            tuple containing:
                - first_word_encoder_activations: Tensor of shape [batch_size, first_word_len, hidden_size]
                - next_word_encoder_activations: Tensor of shape [batch_size, remaining_len, hidden_size]
        """

        assert sum(len(word) for word in words) - 1 == byte_encoder_activations.shape[1] + (previous_encoder_activations.shape[1] if previous_encoder_activations is not None else 0), "Length of (words - 1) must match the sum of byte_encoder_activations and previous_encoder_activations dimensions"

        next_word_encoder_activations = None
        if previous_encoder_activations is not None:
            # We have already precomputed first word's encoder activations partially in the previous iteration
            new_bytes_of_first_words = len(words[0]) - previous_encoder_activations.shape[1]
            # Concatenate the precomputed activations with the new activations that still belong to the first word
            first_word_encoder_activations = torch.cat([previous_encoder_activations, byte_encoder_activations[:, :new_bytes_of_first_words]], dim=1)
            if len(words[1]) > 1:
                # The remaining activations that belong to the next word
                next_word_encoder_activations = byte_encoder_activations[:, new_bytes_of_first_words:]
            else:
                next_word_encoder_activations = None
        else:
            # We have not precomputed any activations for the first word previously
            first_word_encoder_activations = byte_encoder_activations[:, : len(words[0])]

            if len(words[1]) > 1:
                next_word_encoder_activations = byte_encoder_activations[:, len(words[0]) :]
            else:
                next_word_encoder_activations = None

        return first_word_encoder_activations, next_word_encoder_activations

    def _complete_word(
        self,
        input_ids: torch.Tensor,
        byte_position_ids: torch.Tensor,
        predictive_word_embeddings: torch.Tensor,
        word_position_id: torch.Tensor,
        encoder_cache: DynamicCache,
        decoder_cache: DynamicCache,
        sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
        previous_encoder_activations: torch.Tensor | None = None,
    ):
        """Generate byte tokens until we hit the first byte of a new word."""
        words: list[list[int]] = [input_ids.squeeze(0).tolist()]
        byte_encoder_activations: list[torch.Tensor] = []
        completion_logits: list[torch.Tensor] = []

        if previous_encoder_activations is not None:
            # we need to pass all inputs in order to get the correct encoding/decoding by the splitter
            # but only the last byte is used for the generation
            # since the cache is already populated with the first word's activations
            input_ids = input_ids[:, -1:]

        while True:
            encoder_output = self.encoder.forward(
                input_ids,
                byte_position_ids=None,
                word_position_ids=word_position_id,
                past_key_values=encoder_cache,
                use_cache=True,
            )
            byte_encoder_activations.append(encoder_output.hidden_states)
            decoder_output = self.decoder.forward(
                predictive_word_embeddings,
                encoder_output.hidden_states,
                byte_position_ids=None,
                word_position_ids=word_position_id,
                past_key_values=decoder_cache,
                use_cache=True,
            )
            decoder_output = self.layer_norm(decoder_output.last_hidden_state)
            logits = self.lm_head(decoder_output)
            completion_logits.append(logits[0, -1:, :])
            next_byte = int(sample_fn(logits).item())
            words = self._append_byte(words, next_byte)
            if len(words) > 1 or next_byte == self.eos_token_id:
                byte_encoder_activations = torch.cat(byte_encoder_activations, dim=1)
                first_word_encoder_activations, next_word_encoder_activations = self._split_encoder_activations(
                    byte_encoder_activations,
                    words,
                    previous_encoder_activations,
                )
                break
            input_ids = torch.tensor([[next_byte]], dtype=input_ids.dtype, device=input_ids.device)

        num_kv = encoder_cache.get_seq_length()

        completion = sum(words, [])[-len(completion_logits) :]
        if next_word_encoder_activations is not None:
            start_idx = num_kv - first_word_encoder_activations.shape[1] - next_word_encoder_activations.shape[1]
            end_idx = num_kv - next_word_encoder_activations.shape[1]
            # We do not want to return the logits for the second word went into the mulitbyte starting character case
            # When that happens we remove the logits and post-hoc fix the decoder cache and compute new logits
            # This is breaking causality but we want to imitate uncached generation/training behavior
            completion_logits = completion_logits[:-next_word_encoder_activations.shape[1]]
        else:
            start_idx = num_kv - first_word_encoder_activations.shape[1]
            end_idx = num_kv

        byte_position_ids = torch.arange(start_idx, end_idx, device=input_ids.device, dtype=torch.long).unsqueeze(0)
        completed_word_embedding = self.encoder_connector.forward(
            first_word_encoder_activations,
            cumulative_seq_lengths_per_word=torch.tensor([0, first_word_encoder_activations.size(1)], dtype=torch.int32, device=input_ids.device),
            word_position_ids=word_position_id,
            byte_position_ids=byte_position_ids,
        )

        bytes_of_next_word = words[1]

        return (
            completion,
            completed_word_embedding,
            bytes_of_next_word,
            byte_position_ids[:, -1].item() + 1,
            completion_logits,
            next_word_encoder_activations,
        )

    def _populate_cache(
        self,
        input_ids: torch.Tensor,
        cumulative_seq_lengths_per_word: torch.Tensor,
        byte_position_ids: torch.Tensor,
        word_position_ids: torch.Tensor,
    ):
        last_word_start = cumulative_seq_lengths_per_word[-2]
        last_word_end = cumulative_seq_lengths_per_word[-1]

        # Populate cache with everything except last word
        initial_forward_output = self.forward(
            input_ids=input_ids[:, :last_word_start],
            cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word[:-1],
            byte_position_ids=byte_position_ids[:, :last_word_start],
            word_position_ids=word_position_ids[:, :-1],
            past_key_values=None,
            use_cache=True,
        )
        return initial_forward_output, last_word_start, last_word_end

    def _initialize_generation_state(
        self,
        input_ids: torch.Tensor,
        max_new_tokens: int,
        cumulative_seq_lengths_per_word: torch.Tensor,
        byte_position_ids: torch.Tensor | None = None,
        word_position_ids: torch.Tensor | None = None,
    ):
        max_total_bytes = max_new_tokens + input_ids.shape[1]
        if byte_position_ids is None:
            byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)

        if word_position_ids is None:
            word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)

        initial_forward_output, last_word_start, last_word_end = self._populate_cache(
            input_ids=input_ids,
            cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
            byte_position_ids=byte_position_ids,
            word_position_ids=word_position_ids,
        )

        completion_bytes: list[int] = []
        completion_logits: list[torch.Tensor] = []
        # Slice input_ids and byte_position_ids to only contain the last word for the generation loop
        current_input_ids = input_ids[:, last_word_start:last_word_end]
        next_byte_id = last_word_end.item()  # Ensure this is an int
        current_byte_position_ids = byte_position_ids[:, last_word_start:last_word_end]
        current_word_position_id = word_position_ids[:, -1].unsqueeze(-1)
        backbone_last_hidden_state = initial_forward_output.hidden_states[:, -1:, :]
        next_word_encoder_activations = None
        return (
            initial_forward_output,
            completion_bytes,
            completion_logits,
            current_input_ids,
            next_byte_id,
            current_byte_position_ids,
            current_word_position_id,
            backbone_last_hidden_state,
            next_word_encoder_activations,
            max_total_bytes,
        )

    def generate(
        self,
        input_ids: torch.Tensor,
        max_new_tokens: int,
        cumulative_seq_lengths_per_word: torch.Tensor,
        byte_position_ids: torch.Tensor | None = None,
        word_position_ids: torch.Tensor | None = None,
        sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
        use_cache: bool = True,
        stop_sequences: Sequence[str] | None = None,
    ):
        if use_cache:
            completion_text, completion_logits = self._generate_cached(input_ids, max_new_tokens, cumulative_seq_lengths_per_word, byte_position_ids, word_position_ids, sample_fn, stop_sequences=stop_sequences)
        else:
            completion_text, completion_logits = self._generate_uncached(input_ids, max_new_tokens, cumulative_seq_lengths_per_word, byte_position_ids, word_position_ids, sample_fn, stop_sequences=stop_sequences)

        # remove stop sequence if exists
        if stop_sequences is not None:
            stop_sequences = sorted(stop_sequences, key=lambda i: len(i), reverse=True)
            for stop_sequence in stop_sequences:
                if stop_sequence in completion_text:
                    completion_text_left = completion_text.split(stop_sequence)[0]
                    completion_text_removed = completion_text[len(completion_text_left) :]

                    completion_logits = completion_logits[: -len(list(bytes(completion_text_removed.encode("UTF-8"))))]
                    completion_text = completion_text_left
                    break

        return ModelOutput(
            completion_text=completion_text,
            input_ids=input_ids,
            completion_logits=completion_logits,
        )

    def _fix_decoder_cache(self, predictive_word_embeddings: torch.Tensor, encoder_activions: torch.Tensor, decoder_cache: DynamicCache, word_position_id: torch.Tensor):
        decoder_cache.crop(decoder_cache.get_seq_length() - encoder_activions.shape[1])
        real_decoder_logits = self.decoder.forward(
            predictive_word_embeddings,
            encoder_activions,
            byte_position_ids=None,
            word_position_ids=word_position_id,
            past_key_values=decoder_cache,
        ).last_hidden_state

        decoder_output = self.layer_norm(real_decoder_logits)
        logits = self.lm_head(decoder_output)
        return logits

    @torch.no_grad()
    def _generate_cached(
        self,
        input_ids: torch.Tensor,
        max_new_tokens: int,
        cumulative_seq_lengths_per_word: torch.Tensor,
        byte_position_ids: torch.Tensor | None = None,
        word_position_ids: torch.Tensor | None = None,
        sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
        stop_sequences: Sequence[str] | None = None,
    ):
        (
            initial_forward_output,
            completion_bytes,  # empty list
            completion_logits,  # empty list
            input_ids,  # This is now the sliced input_ids for the last word
            next_byte_id,
            byte_position_ids,  # This is now the sliced byte_position_ids for the last word
            word_position_id,
            backbone_last_hidden_state,
            next_word_encoder_activations,  # None for the first iteration
            max_total_bytes,
        ) = self._initialize_generation_state(
            input_ids=input_ids,
            max_new_tokens=max_new_tokens,
            cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
            byte_position_ids=byte_position_ids,
            word_position_ids=word_position_ids,
        )

        while next_byte_id < max_total_bytes:
            completion, completed_word_embedding, bytes_of_next_word, next_byte_id, next_completion_logits, next_word_encoder_activations = self._complete_word(
                input_ids=input_ids,
                byte_position_ids=byte_position_ids,
                predictive_word_embeddings=backbone_last_hidden_state,
                word_position_id=word_position_id,
                encoder_cache=initial_forward_output.past_key_values.get_encoder_cache(),
                decoder_cache=initial_forward_output.past_key_values.get_decoder_cache(),
                sample_fn=sample_fn,
                previous_encoder_activations=next_word_encoder_activations,
            )
            completion_logits.extend(next_completion_logits)
            completion_bytes.extend(completion)

            if self.eos_token_id in completion_bytes:
                completion_bytes = completion_bytes[: completion_bytes.index(self.eos_token_id)]
                break

            if stop_sequences is not None:
                try:
                    completion_text_tmp = self.splitter.decode(completion_bytes)
                    if any(stop_sequence in completion_text_tmp for stop_sequence in stop_sequences):
                        break
                except Exception as e:
                    print("Cannot compare stop sequence", e)

            backbone_output = self.backbone.forward(
                hidden_states=completed_word_embedding,
                position_ids=None,
                past_key_values=initial_forward_output.past_key_values.get_backbone_cache(),
                use_cache=True,
            )
            backbone_last_hidden_state = backbone_output.hidden_states[:, -1, :].unsqueeze(1)

            word_position_id = word_position_id + 1
            if len(bytes_of_next_word) > 1:
                real_decoder_logits = self._fix_decoder_cache(
                    predictive_word_embeddings=backbone_last_hidden_state,
                    encoder_activions=next_word_encoder_activations,
                    decoder_cache=initial_forward_output.past_key_values.get_decoder_cache(),
                    word_position_id=word_position_id,
                )
                completion_logits.extend(real_decoder_logits)

            input_ids = torch.tensor([bytes_of_next_word], dtype=input_ids.dtype, device=input_ids.device)
            byte_position_ids = torch.tensor([[next_byte_id]], dtype=input_ids.dtype, device=input_ids.device)

        completion_bytes = completion_bytes[:max_new_tokens]
        completion_logits = torch.cat(completion_logits[:max_new_tokens], dim=0)
        completion_text = self.splitter.decode(completion_bytes)

        return completion_text, completion_logits

    @torch.no_grad()
    def _generate_uncached(
        self,
        input_ids: torch.Tensor,
        max_new_tokens: int,
        cumulative_seq_lengths_per_word: torch.Tensor,
        byte_position_ids: torch.Tensor | None = None,
        word_position_ids: torch.Tensor | None = None,
        sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
        stop_sequences: Sequence[str] | None = None,
    ):
        if byte_position_ids is None:
            byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)

        if word_position_ids is None:
            word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)

        word_list = []
        for i in range(1, cumulative_seq_lengths_per_word.shape[0]):
            start_idx = cumulative_seq_lengths_per_word[i - 1]
            end_idx = cumulative_seq_lengths_per_word[i]
            word_list.append(input_ids[:, start_idx:end_idx].squeeze(0).tolist())

        completion_bytes = []
        for _ in range(max_new_tokens):
            output = self.forward(
                input_ids=input_ids,
                cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
                byte_position_ids=byte_position_ids,
                word_position_ids=word_position_ids,
                past_key_values=None,
            )

            next_byte = int(sample_fn(output.logits).item())
            completion_bytes.append(next_byte)
            if next_byte == self.eos_token_id:
                break
            word_list = self._append_byte(word_list, next_byte)

            input_ids = torch.tensor(sum(word_list, []), dtype=torch.long, device=input_ids.device).unsqueeze(0)
            cumulative_seq_lengths_per_word = torch.tensor([0] + list(itertools.accumulate(len(word) for word in word_list if len(word) > 0)), dtype=torch.int32, device=input_ids.device)
            byte_position_ids = torch.arange(0, input_ids.shape[1], device=input_ids.device, dtype=torch.int32).unsqueeze(0)
            word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)

            if stop_sequences is not None:
                try:
                    completion_text_tmp = self.splitter.decode(completion_bytes)
                    if any(completion_text_tmp.endswith(stop_sequence) for stop_sequence in stop_sequences):
                        break
                except Exception as e:
                    print("Cannot compare stop sequence", e)

        completion_text = self.splitter.decode(completion_bytes)
        completion_logits = output.logits[0, -len(completion_bytes) :, :]

        return completion_text, completion_logits

    def _prepare_input(self, input_str: str, add_llama_template: bool = True, device: torch.device | None = None) -> tuple[torch.Tensor, torch.Tensor]:
        if add_llama_template:
            input_str = LLAMA_TEMPLATE.format(input=input_str)

        if device is None:
            assert torch.cuda.is_available(), "CUDA is not available"
            device = torch.device("cuda")
        input_ids_list = []
        cumulative_per_word_lengths_list = [0]

        words = self.splitter.encode(input_str)
        for word in words:
            input_ids_list.extend(word)
            word_length = len(word)
            cumulative_per_word_lengths_list.append(cumulative_per_word_lengths_list[-1] + word_length)
        input_ids = torch.tensor(input_ids_list, device=device, dtype=torch.int32).unsqueeze(0)
        cumulative_per_word_lengths = torch.tensor(cumulative_per_word_lengths_list, device=device, dtype=torch.int32)
        return input_ids, cumulative_per_word_lengths