nvedant07 commited on
Commit
4b9bdee
·
verified ·
1 Parent(s): 9242856

Upload folder using huggingface_hub

Browse files
LICENSE ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The following applies to all files in this repository, unless otherwise noted:
2
+
3
+ Copyright (c) 2025 Aleph Alpha Research GmbH. All rights reserved.
4
+
5
+ This project is licensed under the terms of the Open Aleph License 1.0, available at
6
+ https://github.com/Aleph-Alpha/.github/blob/main/oal.pdf
7
+
8
+ ---
9
+ Excerpt from the license text:
10
+
11
+ Subject to the terms and conditions of this License, the Licensor grants you a non-exclusive, worldwide,
12
+ non-transferable, non-sublicensable, and royalty-free limited right to use, copy, modify, distribute, make
13
+ otherwise publicly available, and reproduce the Works and Derivative Works under Licensor’s copyright,
14
+ for any Non-Commercial and Non-Administrative purpose.
15
+ You may not use, copy, modify, distribute, make otherwise publicly available, reproduce, or sublicense the
16
+ Works or Derivative Works except as expressly provided under and in accordance with this License.
17
+ Your rights granted under this License will automatically terminate if you fail to comply with any of the
18
+ terms of this License.
19
+
20
+ EXCEPT FOR DAMAGES CAUSED BY INTENT OR FRAUDULENTLY CONCEALED
21
+ DEFECTS, AND EXCEPT FOR DAMAGES RESULTING FROM BREACH OF ANY
22
+ WARRANTY OR GUARANTEE EXPRESSLY GIVEN BY LICENSOR IN THE OPEN ALEPH LICENSE,
23
+ IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
24
+ DAMAGES ARISING OUT OF THE OPEN ALEPH LICENSE OR THE USE OF THE WORK. ANY
25
+ MANDATORY STATUTORY LIABILITY UNDER APPLICABLE LAW REMAINS
26
+ UNAFFECTED.
27
+
28
+ EXCEPT AS EXPRESSLY STATED IN THIS LICENSE OR REQUIRED BY APPLICABLE
29
+ LAW, THE WORKS ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES
30
+ OF ANY KIND INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES REGARDING
31
+ THE CONTENTS, ACCURACY, OR FITNESS FOR A PARTICULAR PURPOSE.
README.md ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ license: other
6
+ thumbnail: https://huggingface.co/Aleph-Alpha/Llama-TFree-HAT-Pretrained-8B-DPO/raw/main/source/aleph_alpha_logo_thumbnail.png
7
+ license_name: open-aleph-license
8
+ license_link: LICENSE
9
+ tags:
10
+ - Aleph Alpha Research
11
+ - pytorch
12
+ - Hierarchical Autoregressive Transformer
13
+ - HAT
14
+ model-index:
15
+ - name: TFree-HAT-Pretrained-8B-Base
16
+ results: []
17
+ ---
18
+
19
+ <div align="center">
20
+ <img src="source/aleph_alpha_logo.svg" width="60%" alt="Aleph Alpha Research Logo" />
21
+ </div>
22
+
23
+ <div align="center" style="line-height: 1;">
24
+ <a href="https://aleph-alpha.com/research/" target="_blank" style="margin: 2px;">
25
+ <img alt="Homepage" src="source/aleph_alpha_homepage_badge.svg" style="display: inline-block; vertical-align: middle;" />
26
+ </a>
27
+ <a href="https://huggingface.co/Aleph-Alpha" target="_blank" style="margin: 2px;">
28
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-AlephAlpha%20Research-e3ff00?color=e3ff00&amp;logoColor=white" style="display: inline-block; vertical-align: middle;"/>
29
+ </a>
30
+ </div>
31
+
32
+ <div align="center" style="line-height: 1;">
33
+ <a href="https://twitter.com/Aleph__Alpha" target="_blank" style="margin: 2px;">
34
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-AlephAlpha_Research-white?logo=x&amp;logoColor=white" style="display: inline-block; vertical-align: middle;"/>
35
+ </a>
36
+ <a href="https://huggingface.co/Aleph-Alpha/TFree-HAT-Pretrained-8B-Base/blob/main/LICENSE" style="margin: 2px;">
37
+ <img alt="License" src="https://img.shields.io/badge/License-Open Aleph License-white?&amp;color=white" style="display: inline-block; vertical-align: middle;"/>
38
+ </a>
39
+ </div>
40
+
41
+ <hr>
42
+
43
+ # TFree-HAT-Pretrained-8B-Base
44
+ <!-- markdownlint-disable first-line-h1 -->
45
+ <!-- markdownlint-disable html -->
46
+ <!-- markdownlint-disable no-duplicate-header -->
47
+
48
+ This model card provides an overview of our **TFree-HAT-Pretrained-8B-Base** model , which is a foundation model developed by Aleph Alpha Research* and publicly available under the Open Aleph License, a license explicitly allowing for non-commercial research and educational use.
49
+
50
+ The model is based on our Hierarchical Autoregressive Transformer (HAT) architecture which is described originally in our [paper](https://arxiv.org/abs/2501.10322). This novel architecture integrates character-level encoding and decoding with the word-level backbone, allowing for improved text compression (less sequence positions) and performance in the languages it has been trained on, and potentially higher robustness to prompt changes, as well as improved adaptability to new languages & domains via fine-tuning.
51
+
52
+ The model was pre-trained in English & German on carefully curated data in compliance with applicable EU and national regulations, including copyright and data privacy laws. It shows strong proficiency in German, while also beating Llama 3.1 on many benchmarks in English.
53
+
54
+ You can find model weights and their corresponding safetensors conversions at the following links:
55
+
56
+ | Model Name | Description |
57
+ | --- | --- |
58
+ | `TFree-HAT-Pretrained-8B-Base` | [Link](https://huggingface.co/Aleph-Alpha/TFree-HAT-Pretrained-8B-Base) - pre-trained for English and German, adapted to a maximum context length of 32900 words |
59
+
60
+ # Model Access
61
+
62
+ We provide access to our models through the channels listed below.
63
+
64
+ - **HuggingFace**: The model’s weights as well as basic inference implementation are available on HuggingFace under the [Open Aleph License](https://github.com/Aleph-Alpha/.github/blob/main/oal.pdf), a license explicitly allowing for non-commercial research and educational use.
65
+
66
+ We do not collect PII (personally identifiable information) for any of these channels. We do not log user inputs to the models. We do not train on user data.
67
+
68
+ **Note**: The same models are made available to users regardless of their geographic location and their input language but subject to sanction regimes, technology export regulations, and other restrictions that may apply. The same offering is provided to all countries within and external to the European Union if no legal restrictions apply.
69
+
70
+ # How to use
71
+
72
+ ## Inference
73
+
74
+ We provide an inference module compatible with HuggingFace Transformers for running model inference. We recommend pinning the transformers library to version 4.46.3. Before executing the inference example below, make sure the [hat-splitter package](https://pypi.org/project/hat-splitter/) is installed in your environment.
75
+
76
+ ```shell
77
+ pip install 'hat-splitter>=0.1.9' 'transformers==4.46.3' torch
78
+ pip install flash_attn
79
+ ```
80
+
81
+ Download model weights and run inference using the following example:
82
+
83
+ ```python
84
+ import torch
85
+ from transformers import AutoModelForCausalLM
86
+ INPUT ="When was Rome founded?"
87
+ MODEL_ID = "Aleph-Alpha/TFree-HAT-Pretrained-8B-Base"
88
+ model = AutoModelForCausalLM.from_pretrained(
89
+ trust_remote_code=True,
90
+ pretrained_model_name_or_path=MODEL_ID,
91
+ attn_implementation="flash_attention_2",
92
+ ).to("cuda", torch.bfloat16)
93
+ input_ids, cumulative_word_lengths = model._prepare_input(INPUT)
94
+ model_output = model.generate(
95
+ input_ids,
96
+ cumulative_seq_lengths_per_word=cumulative_word_lengths,
97
+ max_new_tokens=300,
98
+ use_cache=False,
99
+ )
100
+ print("Prompt: ", INPUT)
101
+ print("Completion: ", model_output.completion_text)
102
+ ```
103
+
104
+ Please note that the realized inference speed strongly depends on the maturity of the inference implementation beyond the intrinsic text compression of any model. Besides this huggingface transformers-based inference solution, we are also releasing a [vLLM-based inference solution](https://github.com/Aleph-Alpha/vllm) for our models that is optimized for batched inference. Please note that this vLLM inference for HAT is still under active development.
105
+
106
+
107
+ # Evaluation
108
+
109
+ **Performance**: Our T-Free models deliver performance on par with strong tokenizer-based models such as [Llama 3.1 8B Base](https://huggingface.co/meta-llama/Llama-3.1-8B). Respective benchmarks and results can be found in the tables below.
110
+
111
+ **Efficiency**: Our tokenizer-free approach results in improved text compression, providing a foundation for improved efficiency in inference speed. We measure in terms of words processed across all languages and domains. We define the metric as **tokenizer fertility** or **bytes per sequence position**, where a higher value indicates better performance. Latency and throughput are currently out of scope for research-centric evaluations and will be addressed in the future. Currently, our evaluation framework automatically measures **bytes per sequence position** across datasets, allowing us to derive text compression scores and analyze variations across different dataset distributions. The end to end resulting efficiency is depends on the inference implementation beyond the scope of the here provided inference implementation and reported compression scores.
112
+
113
+ **Disclaimer**: The results presented below were generated using our internal inference implementation, not the inference module mentioned above. As a sanity check, we reproduced some of the benchmarks using our evaluation framework with the huggingface inference code, but other results might still deviate slightly. We will also make source-available both our evaluation framework and a [high-performance vLLM integration](https://github.com/Aleph-Alpha/vllm) for this model to ensure reproducibility.
114
+
115
+ **Metric Glossary**
116
+
117
+ `log_acc`: Average Accuracy Loglikelihood<br>
118
+ `norm_log_acc`: Average Normalized Loglikelihood Accuracy<br>
119
+ `comp_acc`: Average Completion Accuracy<br>
120
+ `norm_prob_mass`: Average Probability Mass Normalized<br>
121
+ `bleu`: Average BLEU Score<br>
122
+ `rouge_gm`: Average ROUGE-Geometric-Mean<br>
123
+ `F1`: Average F1<br>
124
+ `CS`: Chatbot Style<br>
125
+ `IF`: Instruction Following<br>
126
+ `LC`: Language Consistency<br>
127
+ `CI`: Concordance Index<br>
128
+ `ES`: Exponential Similarity
129
+
130
+ ## Pre-training Benchmarks
131
+
132
+ | Group | Task | Metric Name | Num Fewshot | [TFree-HAT-Pretrained-8B-Base](https://huggingface.co/Aleph-Alpha/TFree-HAT-Pretrained-8B-Base) | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [TFree-HAT-Pretrained-8B-Base](https://huggingface.co/Aleph-Alpha/TFree-HAT-Pretrained-8B-Base) Compression | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) Compression |
133
+ | --- | --- | --- | --- | --- | --- | --- | --- |
134
+ | Knowledge | MMLU | `norm_log_acc` | 5 | **0.669** | 0.668 | **5.184** | 4.278 |
135
+ | Knowledge | MMLU Pro | `norm_log_acc` | 5 | **0.387** | 0.367 | **4.734** | 3.731 |
136
+ | Knowledge | OpenBookQA | `norm_log_acc` | 10 | 0.360 | **0.366** | **4.982** | 4.724 |
137
+ | Knowledge | TriviaQA | `comp_acc` | 10 | 0.657 | **0.695** | **5.317** | 4.221 |
138
+ | Knowledge | TruthfulQA | `norm_prob_mass` | 6 | **0.304** | 0.279 | **4.945** | 4.197 |
139
+ | Reasoning | ARC Challenge | `norm_log_acc` | 25 | **0.592** | 0.538 | **5.514** | 4.924 |
140
+ | Reasoning | Winogrande | `norm_log_acc` | 5 | **0.754** | 0.747 | **5.158** | 4.909 |
141
+ | German | MMMLU | `norm_log_acc` | 5 | **0.618** | 0.576 | **6.056** | 3.410 |
142
+ | German | WMT16 | `bleu` | 5 | 34.465 | **34.998** | **5.968** | 4.210 |
143
+ | German | WMT20 | `bleu` | 5 | **33.212** | 32.892 | **6.269** | 4.222 |
144
+ | Math | GSM8K | `comp_acc` | 8 | 0.508 | **0.528** | **3.840** | 3.332 |
145
+ | Long context | GSM8K | `comp_acc` | 16 | 0.520 | --- | 3.837 | --- |
146
+ | Long context | Long Bench v2 | `norm_log_acc` | 10 | 0.299 | --- | 5.125 | --- |
147
+ | Long context German | Long Bench v2 | `norm_log_acc` | 10 | 0.282 | --- | 5.872 | --- |
148
+ | Safety | Winogender | `norm_log_acc` | 5 | **0.662** | 0.636 | **5.232** | 4.799 |
149
+
150
+ # Training Details
151
+
152
+ ## Model Architecture
153
+
154
+ The model uses a hierarchical autoregressive transformer (HAT) architecture consisting of three components: encoder, backbone, and decoder, together with connector layers between components. Encoder, backbone, and decoder are all instances of autoregressive transformers with pre-norm residual blocks in the style of Llama, using a SwiGLU unit as a feed-forward block, with all model parameters active during training and inference. The backbone model uses standard causal attention, while the encoder and decoder use local causal attention with a finite look-back window. The architecture of the backbone largely follows the design of LLama 3.1 8B (with embedding and language modeling head removed and weights randomly initialized). In addition, we added per-head QK-norm in the backbone, which we found important for training stability.
155
+
156
+ The encoder processes input text as a sequence of UTF-8 bytes and produces a sequence of activations of the same length. This sequence is then split into chunks corresponding to words or other semantic units in the text (this is further explained below). In the encoder-backbone connector layer, for each word, a learned latent vector cross-attends to its corresponding chunk of encoder activations. The resulting sequence of latent vectors then serves as input to the backbone. The backbone processes this latent sequence and produces a sequence of word-level representations. Finally, the decoder module is another transformer that acts on the byte-level activations and has an LM head that produces next-byte probabilities. To make use of the higher level information stored in the word-level embeddings during decoding, another cross-attention mechanism is used. In each transformer block of the decoder, every byte-level position cross-attends to the backbone’s word-level representations that correspond to the words preceding this byte.
157
+
158
+ ## Encoder module
159
+
160
+ | | **8B** |
161
+ | --- | --- |
162
+ | Number of layers | 6 |
163
+ | Number of attention heads | 8 |
164
+ | Head size | 128 |
165
+ | Number of Key-Value heads | 8 |
166
+ | Hidden size | 1024 |
167
+ | Cross-attention hidden size | 4096 |
168
+ | MLP expansion factor | 2.75 |
169
+ | MLP type | SwiGLU |
170
+ | Sequence length | 262144 |
171
+ | Position embeddings | RoPE with base 1e5 |
172
+ | Attention type | causal, local with window size 768 |
173
+ | QK-norm | disabled |
174
+
175
+ ## Backbone module
176
+
177
+ | | **8B** |
178
+ | --- | --- |
179
+ | Number of layers | 32 |
180
+ | Number of attention heads | 32 |
181
+ | Head size | 128 |
182
+ | Number of Key-Value heads | 8 |
183
+ | Hidden size | 4096 |
184
+ | MLP expansion factor | 3.5 |
185
+ | MLP type | SwiGLU |
186
+ | Sequence length | 32900 |
187
+ | Position embeddings | RoPE with base 5e5 |
188
+ | Attention type | causal |
189
+ | QK-norm | per head |
190
+
191
+ ## Decoder module
192
+
193
+ | | **8B** |
194
+ | --- | --- |
195
+ | Number of layers | 4 |
196
+ | Number of attention heads | 8 |
197
+ | Head size | 128 |
198
+ | Number of Key-Value heads | 8 |
199
+ | Hidden size | 1024 |
200
+ | Cross-attention hidden size | 4096 |
201
+ | MLP expansion factor | 2.75 |
202
+ | MLP type | SwiGLU |
203
+ | Sequence length | 262144 |
204
+ | Position embeddings | RoPE with base 1e5 |
205
+ | Attention type | causal, local with window size 768 |
206
+ | QK-norm | disabled |
207
+
208
+ **Parameter count**
209
+
210
+ Total: `7,192,507,136`
211
+ Encoder: `119,293,696`
212
+ Backbone: `6,979,592,192`
213
+ Decoder: `93,621,248`
214
+
215
+ We note that one distinctive property of our tokenizer-free architectures is that encoder and decoder are substantially smaller than typical embedding and language model head layers of tokenizer-based models. Because of this, while our models share the architecture with Llama 3.1 8B (plus the added QK-norm), they are closer to 7B than 8B parameters in total.
216
+
217
+ **Word splitter**
218
+
219
+ To split arbitrary byte sequences, we adopted the guidelines from [UAX #29](https://unicode.org/reports/tr29/), which splits text into words for common Western languages but also produces meaningful semantic units for other types of languages (e.g. Chinese, Japanese, Korean). From now on, we refer to these splits as words.
220
+
221
+ We also merged leading whitespace and trailing punctuation into the words to reduce sequence length at the word level.
222
+
223
+ To improve the processing of code and math documents, we made additional adjustments to the Unicode splitter. First, we split instances of camel cases like FooBar into Foo and Bar. Second, we treated math symbols (again by Unicode standard) as separate words.
224
+
225
+ ## Pre-Training
226
+
227
+ **Approach**
228
+
229
+ We randomly initialized all model parameters. The model was then trained on the next-byte-prediction objective on a large and diverse document corpus (see below). Initially, we trained on sequences up to 3500 words for a total amount of nearly 4T words. We used global batch-size of 1024 (2.5M words) and followed a warmup-stable-decay schedule with a warmup of 5000 steps, a phase of stable learning rate 2e-3 for 945000 steps and inverse-square-root cooldown to learning rate 0 over the last 50000 steps. We employed weight decay of 0.05 for all parameters except for the embedding and normalization parameters. We employed QK-norm per head and attention logit softcapping at 100, which we found to be important for training stability during pretraining.
230
+
231
+ We then continued training on sequences of up to 32900 words for another 2500 steps with global batch size 128, totaling to 10.5B words, upweighting longer documents to make use of the extended context. We used warmup-stable-decay learning rate schedule with 500 steps warmup, a phase of stable learning 2e-4, and a final decay to 0 over the last 500 steps. We disabled attention logit softcapping during this long-context adaptation such that it is not required during inference.
232
+
233
+ The training was conducted in our [Scaling framework](https://github.com/Aleph-Alpha/scaling).
234
+
235
+ **Data sources**
236
+
237
+ The model was trained on a filtered subset of diverse corpora of text data including proprietary curated datasets, high-quality web content, public domain sources, German texts, mathematical texts, and programming code. The proportions and sources of data we used in the pre-training were:
238
+
239
+ English Language Data (70%)
240
+
241
+ - curated web and synthetic data (63%)
242
+
243
+ - high quality curated sources such as Wikipedia and public domain books (7%)
244
+
245
+ German Language Data (7%)
246
+
247
+ - curated web and synthetic data (6.3%)
248
+
249
+ - high quality curated sources such as Wikipedia and public domain books (0.7%)
250
+
251
+ Mathematical Content (5%)
252
+
253
+ - mathematical code and proofs (2%)
254
+
255
+ - mathematical word problems and equations (3%)
256
+
257
+ Programming Code (18%)
258
+
259
+ - general programming code (11%)
260
+
261
+ - high-quality and synthetic Python code (7%)
262
+
263
+ ## Data curation
264
+
265
+ We applied a range of curation techniques, e.g., for German as described in [Aleph-Alpha-GermanWeb](https://huggingface.co/datasets/Aleph-Alpha/Aleph-Alpha-GermanWeb). These include but are not limited to:
266
+
267
+ - URL filtering. We used a URL filter developed to filter out fraudulent, harmful, and illegal content from an explicit blocklist, e.g., adult websites, or URLs containing words associated with fraudulent, harmful, or adult content.
268
+
269
+ - Text extraction. Natural language texts which were embedded HTML and other web programming languages were extracted using the [Resiliparse](https://github.com/chatnoir-eu/chatnoir-resiliparse) text extractor.
270
+
271
+ - Language identification. We used a [fastText language classifier](https://fasttext.cc/docs/en/language-identification.html) trained on character n-grams from Wikipedia to identify, retain, and sort texts into English and German.
272
+
273
+ - Repetition removal. We applied heuristic methods for detection and removal of repetitions on the line, paragraph, and character level.
274
+
275
+ - Document- and line-level filtering. We utilized additional document-level heuristics to ensure documents had reasonable numbers and quality of words, naturalistic symbols-to-words and numbers-to-words ratios, not predominantly made up of bullet points, and a sufficient quantity of real words.
276
+
277
+ - Deduplication. Using exact and fuzzy deduplication to remove duplicate documents.
278
+
279
+ ## Synthetic data
280
+
281
+ We also generated synthetic data by using permissively-licensed LLMs.
282
+
283
+
284
+ ## Legal Compliance
285
+
286
+ We acknowledge and abide by applicable national and international regulations, including copyright, data privacy, and other related legislation. Any text and data mining by us is performed in compliance with Directive (EU) 2019/790 and its respective national transposition. During the training and fine-tuning of our models, we comply with applicable data privacy laws, including Regulation (EU) 2016/679 (GDPR) and national data privacy regulations. To the extent possible and foreseeable, we also took legislation with forthcoming obligations into account, such as the obligations for General Purpose AI Models under Regulation (EU) 2024/1689 (EU AI Act), and will constantly monitor such developments and adapt our products and this model card accordingly.
287
+
288
+ # Resource Usage
289
+
290
+ ## Compute & Training Efficiency
291
+
292
+ The following table shows the compute resources used in the training stages for the 8B models.
293
+
294
+ | **Model** | **Training phase** | **GPUs** | **Approximate average power consumption per GPU** | **Approximate GPU hours** |
295
+ | --- | --- | --- | --- | --- |
296
+ | 8B | Pre-training (part 1) | 256 x H200 | 460W | 111,822 |
297
+ | 8B | Pre-training (part 2) | 256 x H100 | 460W | 151,289 |
298
+ | 8B | Long context adaptation | 256 x H100 | 190W | 5,328 |
299
+
300
+ ## Environmental Impact
301
+
302
+ Our H200 and A100 infrastructure runs entirely on 100% renewable energy, ensuring that no CO₂ emissions are directly incurred from training. In addition to this, the H200 data center boasts a power usage effectiveness (PUE) of ≤1.2. Its operation also maintains a net-zero water footprint. Specific number on renewable energy usage for the H100 GPUs is not yet available to us.
303
+
304
+ To estimate the carbon footprint of inference, we base our calculations on publicly available data from the infrastructure provider and, where applicable, standard emissions accounting methodology. We report:
305
+
306
+ - **Carbon emitted**: GPU runtime emissions
307
+
308
+ - **Carbon emitted accounting for PUE**: GPU runtime emissions scaled by the data center's PUE
309
+
310
+ Because the data centers operate fully on renewable energy, both metrics for its operation (excluding infrastructure-related emissions, e.g., initial chip manufacturing) are effectively zero. For H100 GPU infrastructure no information has been made available to us.
311
+
312
+ | Metric | H200 GPU | H100 GPU | A100 GPU |
313
+ | --- | --- | --- | --- |
314
+ | Carbon emitted | 0 kg CO₂ | no information available | 0 kg CO₂ |
315
+ | Carbon emitted accounting for PUE | 0 kg CO₂ | no information available | 0 kg CO₂ |
316
+
317
+ ## Power Consumption
318
+
319
+ | GPU Model | Max Power (W) |
320
+ | --- | --- |
321
+ | A100 | 400 W |
322
+ | H100 | 700 W |
323
+ | H200 | 700 W |
324
+
325
+ Numbers may be contextualized with reference to publicly available studies, such as the carbon footprint of language model training.
326
+
327
+ # Intended Use
328
+
329
+ These models are intended to be deployed as components of AI systems or applications. Use-cases and the model's capabilities include but are not limited to: text generation, classification, summarization, question answering, and labeling. Note that applications might require additional model adaptations or components for guarding against unwanted application behavior or model output.
330
+
331
+ ## Non-Permitted Use
332
+
333
+ Our models shall not be used for illegal or unlawful actions of any kind and with any illegal or unlawful content. This includes in particular prohibited practices according to Article 5 of Regulation (EU) 2024/1689 (EU AI Act) and other activities such as engaging in terrorism, violence, human trafficking, illegal distribution of materials to minors, sexual solicitation, any other criminal activities, harassment, discrimination, creating or promoting malicious code or activities risking death or harm, including those related to military or nuclear applications, and activities not in compliance with sanction regimes, technology export regulations, and other restrictions that may apply. The models are to be used following ethical standards. The utilization of our technology is always governed by, and may be limited in accordance with, our Terms and Conditions, the Open Aleph License, or any specific agreement we might have established with you.
334
+
335
+ Although we do not inspect the requests sent to our API, we regularly review and monitor potential violations that may be related to our models and depending on the circumstances of the specific case take legal action against them. This includes but is not limited to, enforcement to remove published model content, requesting compensation for damages caused, and account termination or removal of credits.
336
+
337
+ For non-anonymous reports, we also provide an appeals mechanism for usage policy violations via our dedicated contact address [[email protected]](mailto:[email protected]) to communicate with us.
338
+
339
+ Customers and partners are enabled to use our [ticketing system](https://servicedesk.aleph-alpha.de/external) for appeals, claims, and feedback.
340
+
341
+
342
+ # Risks and Limitations
343
+
344
+ **Note:** Language models are **not agents** and not optimized for prescriptive actions. The use of language models in high-stake environments, for critical decisions or to support a user's wellbeing should be performed with additional guardrails in place.
345
+
346
+ ## Risk Categories
347
+
348
+ In the following sections, we describe risk categories and provide examples of completions we would consider inappropriate or harmful. We then describe steps to minimize these risks.
349
+
350
+ **Harmful Language**
351
+
352
+ Large language models can sometimes generate undesired outputs that are unsuitable for certain applications. This includes producing content with harmful language, discriminative content, inappropriate tone and style, systemic biases, or suggestions that might encourage illegal actions. Such outputs can also include incorrect, outdated information, or material that is not suitable for all ages. While we constantly take efforts to reduce the likelihood of such undesired outputs, this possibility can never be fully ruled out. To minimize these issues, the following strategies can be employed:
353
+
354
+ - Abide by the guidance on illegal use provided for in this Model Card.
355
+
356
+ - Crafting prompts carefully to guide the model's output more effectively.
357
+
358
+ - Utilizing a finetuned model (often referred to as a control or instruct model) that prioritizes using explicitly provided information.
359
+
360
+ - Employing a finetuned model designed to maintain an appropriate tone and style, including avoiding offensive language.
361
+
362
+ - Conducting additional validations at the application level to ensure output quality and appropriateness.
363
+
364
+
365
+ ### Systemic Biases
366
+
367
+ Language models obtain world-knowledge from their pre-training data and may therefore exhibit the same systematic biases that are present in the data. Differing deployment scenarios (including differing cultural contexts) can expose systematic biases in different ways. We acknowledge the cultural diversity of communities and users inside and outside the EU. For larger deployments, we encourage users to track systematic biases relevant to their use-case, and we are happy to consult on bespoke fine-tunings to alleviate such biases.
368
+
369
+ ### Outdated World Knowledge
370
+
371
+ | **Prompt** | **Completion** |
372
+ | --- | --- |
373
+ | What was the warmest year in human history? | The warmest year in human history, based on global average temperatures, is 2016. However, it's important to note that the ranking of the warmest years can vary slightly depending on the dataset used and the methodology applied. |
374
+
375
+ Pre-training was performed using a fixed dataset, created at a fixed date in the past. Accordingly, the world knowledge of foundation models is limited to the information contained in its training data. More recent information may not be known to the model or misunderstood when presented as input during live usage. In the above example, the model is convinced that 2016 was the warmest year in human history, however, 2023 ended up breaking that record. This information can not be known by the model due to its knowledge cutoff.
376
+
377
+ Risks include:
378
+
379
+ - Generation of personally identifiable information. Models are not explicitly trained to provide such information, but may seem to provide personally identifiable information. This does not necessarily imply the presence of such information in training data, as hallucination is possible.
380
+
381
+ - Generation of unintended, irrelevant, or repetitive outputs. This includes the production of incorrect or outdated information.
382
+
383
+
384
+ Risks may be mitigated by:
385
+
386
+ - Injecting context, where relevant.
387
+
388
+ - Crafting prompts carefully to guide the model's output more effectively.
389
+
390
+ - Performing validations on the application layer, e.g., classifying the output.
391
+
392
+ - Using the repetition penalty, especially in the case of repetition, or other parameters available in the API (see [documentation](https://docs.aleph-alpha.com/api/complete/)).
393
+
394
+ - Avoiding of use cases targeted at retrieval of personally identifiable information.
395
+
396
+
397
+ ### Political Bias
398
+
399
+ Our models have not been optimized to represent a political opinion or take a specific point of view. They may generate outputs that contradict a user's opinion or expectation, e.g., produce hateful, violent or inappropriate, biased, or discriminatory content. Such behavior may be addressed by:
400
+
401
+ - Crafting prompts carefully to guide the model's output more effectively.
402
+
403
+ - Performing validations on the application layer, e.g., via Red-Teaming or classifying the output.
404
+
405
+
406
+ ### Mistaken for a Human
407
+
408
+ | **Prompt** | **Completion** |
409
+ | --- | --- |
410
+ | Good morning, today is such a beautiful day! | Hello! It sounds like you're starting your day on a positive note. I'm glad to hear that the weather is beautiful. How are you feeling today? Is there anything specific you'd like to discuss or any tasks you'd like some help with? Whether it's planning your day, sharing some thoughts, or getting advice on something, I'm here to assist! Enjoy your day! |
411
+
412
+ Users may attribute human traits to AI models. This also includes the fact that content generated by the model is not explicitly detectable at this point. It is therefore required to:
413
+
414
+ - Inform end users that they are interacting with or reading output of an AI.
415
+
416
+ - Design the system in a way that mitigates the impact of unintended interpretation of the output.
417
+
418
+
419
+ ### Other Errors
420
+
421
+ Any AI module can produce errors, even after implementing all the recommended measures. When integrating foundation language models into an application, users should:
422
+
423
+ - be aware of the risk of (harmful) failure cases and implement the use case in a way that mitigates such risks.
424
+
425
+ - be aware that foundation models do not contain application logic, e.g., content filters. Enforcement policies relevant to the use case need to be implemented in the application layer.
426
+
427
+ - avoid unsupervised use in high-stakes environments.
428
+
429
+ - validate output with adequate measures.
430
+
431
+
432
+ ### Mitigation Approach
433
+
434
+ We specifically tailor model alignment and risk mitigation techniques to each user-facing application built on top of our models, working closely with our customers to refine them according to their unique requirements. Our intention is for these models to undergo further fine-tuning by us and our customers, utilizing their own datasets alongside our support and datasets to ensure suitability for end-user applications, including harm mitigation efforts. Our customers are responsible for adhering to the terms and conditions when aligning the models in their downstream applications.
435
+
436
+ ### Reproducibility
437
+
438
+ Some inference parameters, e.g., temperature, lead to the random sampling of outputs, which precludes the reproducibility of outputs. Even when such parameters are not in use, outputs may diverge slightly on a numeric level for technical reasons. One may implement the following measures if needed:
439
+
440
+ - Logging of past model outputs on the application layer (Aleph Alpha Research is not storing any data and/or using any data provided in prompts for the training of its LLMs).
441
+
442
+
443
+ This list of risks, biases, and limitations may not be complete, as improving the understanding and behavior of language models is an ongoing research topic in the AI science community.
444
+
445
+
446
+ \*Aleph Alpha Research refers to Aleph Alpha Research GmbH
447
+
448
+ [hat-paper]: https://arxiv.org/abs/2501.10322
config.json ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HATForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "config.HATArchitectureConfig",
7
+ "AutoModelForCausalLM": "model.HATForCausalLM"
8
+ },
9
+ "backbone_config": {
10
+ "hidden_size": 4096,
11
+ "intermediate_size": 14336,
12
+ "is_neox_style": true,
13
+ "key_query_norm": true,
14
+ "key_query_norm_per_head": true,
15
+ "max_position_embeddings": 3500,
16
+ "mlp_bias": false,
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": {
22
+ "rope_type": "default"
23
+ },
24
+ "rope_theta": 500000,
25
+ "sliding_window": null,
26
+ "transformers_version": null,
27
+ "use_cache": true,
28
+ "vocab_size": 0
29
+ },
30
+ "decoder_config": {
31
+ "cross_attention_config": {
32
+ "attention_num_kv_heads": 8,
33
+ "hidden_size": 1024,
34
+ "hidden_size_kv": 4096,
35
+ "hidden_size_q": 1024,
36
+ "key_query_norm": true,
37
+ "key_query_norm_per_head": true,
38
+ "num_attention_heads": 8,
39
+ "word_window_size": 1
40
+ },
41
+ "cross_attn_every_layer": true,
42
+ "hidden_size": 1024,
43
+ "intermediate_size": 2816,
44
+ "is_neox_style": true,
45
+ "key_query_norm": true,
46
+ "key_query_norm_per_head": true,
47
+ "max_position_embeddings": 28000,
48
+ "mlp_bias": false,
49
+ "num_attention_heads": 8,
50
+ "num_hidden_layers": 4,
51
+ "num_key_value_heads": 8,
52
+ "rms_norm_eps": 1e-05,
53
+ "rope_scaling": {
54
+ "rope_type": "default"
55
+ },
56
+ "rope_theta": 100000,
57
+ "sliding_window": 768,
58
+ "transformers_version": null,
59
+ "use_cache": true,
60
+ "vocab_size": 256
61
+ },
62
+ "encoder_config": {
63
+ "cross_attention_config": {
64
+ "attention_num_kv_heads": 32,
65
+ "hidden_size": 4096,
66
+ "hidden_size_kv": 1024,
67
+ "hidden_size_q": 4096,
68
+ "key_query_norm": true,
69
+ "key_query_norm_per_head": true,
70
+ "num_attention_heads": 32,
71
+ "word_window_size": 1
72
+ },
73
+ "hidden_size": 1024,
74
+ "intermediate_size": 2816,
75
+ "is_neox_style": true,
76
+ "key_query_norm": true,
77
+ "key_query_norm_per_head": true,
78
+ "max_position_embeddings": 28000,
79
+ "mlp_bias": false,
80
+ "num_attention_heads": 8,
81
+ "num_hidden_layers": 6,
82
+ "num_key_value_heads": 8,
83
+ "rms_norm_eps": 1e-05,
84
+ "rope_scaling": {
85
+ "rope_type": "default"
86
+ },
87
+ "rope_theta": 100000,
88
+ "sliding_window": 768,
89
+ "transformers_version": null,
90
+ "use_cache": true,
91
+ "vocab_size": 256
92
+ },
93
+ "max_position_embeddings": 28000,
94
+ "max_word_size": 100,
95
+ "model_type": "hierarchical_autoregressive_transformer",
96
+ "sliding_window": 768,
97
+ "special_token_dict": {},
98
+ "torch_dtype": "bfloat16",
99
+ "transformers_version": "4.46.3"
100
+ }
config.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+
3
+ import torch.nn as nn
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.models.llama.configuration_llama import LlamaConfig
6
+
7
+
8
+ @dataclass
9
+ class TransformerHATModelConfig(LlamaConfig):
10
+ def __init__(
11
+ self,
12
+ hidden_size: int,
13
+ num_hidden_layers: int,
14
+ num_attention_heads: int,
15
+ num_key_value_heads: int,
16
+ rms_norm_eps: float,
17
+ intermediate_size: int,
18
+ max_position_embeddings: int,
19
+ rope_scaling: dict,
20
+ rope_theta: float,
21
+ mlp_bias: bool,
22
+ use_cache: bool = True,
23
+ sliding_window: int | None = None,
24
+ vocab_size: int = 0,
25
+ hidden_act: str = "silu",
26
+ key_query_norm: bool = False,
27
+ key_query_norm_per_head: bool = False,
28
+ is_neox_style: bool = True,
29
+ **kwargs,
30
+ ):
31
+ super().__init__(
32
+ vocab_size=vocab_size,
33
+ hidden_size=hidden_size,
34
+ num_hidden_layers=num_hidden_layers,
35
+ num_attention_heads=num_attention_heads,
36
+ num_key_value_heads=num_key_value_heads,
37
+ hidden_act=hidden_act,
38
+ rms_norm_eps=rms_norm_eps,
39
+ intermediate_size=intermediate_size,
40
+ max_position_embeddings=max_position_embeddings,
41
+ rope_scaling=rope_scaling,
42
+ rope_theta=rope_theta,
43
+ mlp_bias=mlp_bias,
44
+ use_cache=use_cache,
45
+ **kwargs,
46
+ )
47
+
48
+ self.sliding_window = sliding_window
49
+ self.key_query_norm = key_query_norm
50
+ self.key_query_norm_per_head = key_query_norm_per_head
51
+ self.is_neox_style = is_neox_style
52
+
53
+ def to_dict(self):
54
+ config_dict = {
55
+ "vocab_size": self.vocab_size,
56
+ "hidden_size": self.hidden_size,
57
+ "num_hidden_layers": self.num_hidden_layers,
58
+ "num_attention_heads": self.num_attention_heads,
59
+ "num_key_value_heads": self.num_key_value_heads,
60
+ "rms_norm_eps": self.rms_norm_eps,
61
+ "intermediate_size": self.intermediate_size,
62
+ "max_position_embeddings": self.max_position_embeddings,
63
+ "rope_scaling": self.rope_scaling,
64
+ "rope_theta": self.rope_theta,
65
+ "mlp_bias": self.mlp_bias,
66
+ "use_cache": self.use_cache,
67
+ "sliding_window": self.sliding_window,
68
+ "transformers_version": self.transformers_version,
69
+ "key_query_norm": self.key_query_norm,
70
+ "key_query_norm_per_head": self.key_query_norm_per_head,
71
+ "is_neox_style": self.is_neox_style,
72
+ }
73
+ return config_dict
74
+
75
+
76
+ @dataclass
77
+ class CrossAttentionConfig:
78
+ def __init__(
79
+ self,
80
+ hidden_size: int,
81
+ hidden_size_q: int,
82
+ hidden_size_kv: int,
83
+ num_attention_heads: int,
84
+ attention_num_kv_heads: int,
85
+ word_window_size: int,
86
+ key_query_norm: bool,
87
+ key_query_norm_per_head: bool,
88
+ ):
89
+ self.hidden_size = hidden_size
90
+ self.hidden_size_q = hidden_size_q
91
+ self.hidden_size_kv = hidden_size_kv
92
+ self.num_attention_heads = num_attention_heads
93
+ self.attention_num_kv_heads = attention_num_kv_heads
94
+ self.word_window_size = word_window_size
95
+ self.key_query_norm = key_query_norm
96
+ self.key_query_norm_per_head = key_query_norm_per_head
97
+
98
+ def to_dict(self):
99
+ return {
100
+ "hidden_size_q": self.hidden_size_q,
101
+ "hidden_size_kv": self.hidden_size_kv,
102
+ "hidden_size": self.hidden_size,
103
+ "num_attention_heads": self.num_attention_heads,
104
+ "attention_num_kv_heads": self.attention_num_kv_heads,
105
+ "word_window_size": self.word_window_size,
106
+ "key_query_norm": self.key_query_norm,
107
+ "key_query_norm_per_head": self.key_query_norm_per_head,
108
+ }
109
+
110
+
111
+ @dataclass
112
+ class DecoderHATModelConfig(TransformerHATModelConfig):
113
+ def __init__(
114
+ self,
115
+ num_attention_heads: int,
116
+ num_key_value_heads: int,
117
+ sliding_window: int,
118
+ cross_attention_config: CrossAttentionConfig,
119
+ cross_attn_every_layer: bool,
120
+ **kwargs,
121
+ ):
122
+ super().__init__(
123
+ num_attention_heads=num_attention_heads,
124
+ num_key_value_heads=num_key_value_heads,
125
+ sliding_window=sliding_window,
126
+ **kwargs,
127
+ )
128
+ self.cross_attn_every_layer = cross_attn_every_layer
129
+ self.cross_attention_config = cross_attention_config
130
+
131
+ def to_dict(self):
132
+ config_dict = super().to_dict()
133
+ config_dict["cross_attn_every_layer"] = self.cross_attn_every_layer
134
+ config_dict["cross_attention_config"] = self.cross_attention_config.to_dict()
135
+ return config_dict
136
+
137
+ @classmethod
138
+ def from_dict(cls, config_dict, **kwargs):
139
+ config_dict = config_dict.copy() # Avoid modifying the original dict
140
+ config_dict.update(kwargs) # Apply overrides
141
+ dict_config = config_dict.pop("cross_attention_config", {})
142
+ cross_attention_config = CrossAttentionConfig(**dict_config)
143
+ config_dict["cross_attention_config"] = cross_attention_config
144
+ return cls(**config_dict)
145
+
146
+
147
+ @dataclass
148
+ class EncoderHATModelConfig(TransformerHATModelConfig):
149
+ def __init__(
150
+ self,
151
+ cross_attention_config: CrossAttentionConfig,
152
+ **kwargs,
153
+ ):
154
+ super().__init__(**kwargs)
155
+ self.cross_attention_config = cross_attention_config
156
+
157
+ @classmethod
158
+ def from_dict(cls, config_dict, **kwargs):
159
+ config_dict = config_dict.copy() # Avoid modifying the original dict
160
+ config_dict.update(kwargs) # Apply overrides
161
+ dict_config = config_dict.pop("cross_attention_config", {})
162
+ cross_attention_config = CrossAttentionConfig(**dict_config)
163
+ config_dict["cross_attention_config"] = cross_attention_config
164
+
165
+ return cls(**config_dict)
166
+
167
+ def to_dict(self):
168
+ config_dict = super().to_dict()
169
+ if self.cross_attention_config:
170
+ config_dict["cross_attention_config"] = self.cross_attention_config.to_dict()
171
+ return config_dict
172
+
173
+
174
+ @dataclass
175
+ class HATArchitectureConfig(PretrainedConfig):
176
+ model_type: str = "hierarchical_autoregressive_transformer"
177
+
178
+ def __init__(
179
+ self,
180
+ special_token_dict: dict | None = None,
181
+ encoder_config: EncoderHATModelConfig | None = None,
182
+ backbone_config: TransformerHATModelConfig | None = None,
183
+ decoder_config: DecoderHATModelConfig | None = None,
184
+ model_type: str = "hierarchical_autoregressive_transformer",
185
+ eos_token_id: int = 192,
186
+ max_word_size: int = 100,
187
+ sliding_window: int = 768,
188
+ max_position_embeddings: int = 262144,
189
+ **kwargs,
190
+ ):
191
+ super().__init__(**kwargs)
192
+ self.encoder_config = encoder_config
193
+ self.backbone_config = backbone_config
194
+ self.decoder_config = decoder_config
195
+ self.model_type = model_type
196
+ self.eos_token_id = eos_token_id
197
+ self.max_word_size = max_word_size
198
+ self.special_token_dict = special_token_dict
199
+ self.transformers_version = "4.46.3"
200
+
201
+ # set these for out of the box vllm inference
202
+ self.architectures = ["HATDecoderForCausalLM"]
203
+ self.sliding_window = sliding_window
204
+ self.max_position_embeddings = max_position_embeddings
205
+ self.torch_dtype = "bfloat16"
206
+
207
+ @classmethod
208
+ def from_dict(cls, config_dict, **kwargs):
209
+ """
210
+ Instantiates a HATArchitectureConfig from a Python dictionary of parameters.
211
+
212
+ Overrides the base `from_dict` to correctly handle nested config objects.
213
+ """
214
+ config_dict = config_dict.copy() # Avoid modifying the original dict
215
+ config_dict.update(kwargs) # Apply overrides
216
+
217
+ # Pop and instantiate nested config dictionaries
218
+ encoder_dict = config_dict.pop("encoder_config", {})
219
+ backbone_dict = config_dict.pop("backbone_config", {})
220
+ decoder_dict = config_dict.pop("decoder_config", {})
221
+
222
+ # Instantiate nested configs
223
+ encoder_config = EncoderHATModelConfig.from_dict(encoder_dict) if encoder_dict else None
224
+ backbone_config = TransformerHATModelConfig.from_dict(backbone_dict) if backbone_dict else None
225
+ decoder_config = DecoderHATModelConfig.from_dict(decoder_dict) if decoder_dict else None
226
+ special_token_dict = config_dict.pop("special_token_dict", {"<|eot_id|>": 192})
227
+ max_word_size = config_dict.pop("max_word_size", 100)
228
+ return cls(
229
+ encoder_config=encoder_config,
230
+ backbone_config=backbone_config,
231
+ decoder_config=decoder_config,
232
+ special_token_dict=special_token_dict,
233
+ max_word_size=max_word_size,
234
+ **config_dict,
235
+ ), {}
236
+
237
+ def to_dict(self):
238
+ config_dict = {}
239
+ if self.encoder_config:
240
+ config_dict["encoder_config"] = self.encoder_config.to_dict()
241
+ if self.backbone_config:
242
+ config_dict["backbone_config"] = self.backbone_config.to_dict()
243
+ if self.decoder_config:
244
+ config_dict["decoder_config"] = self.decoder_config.to_dict()
245
+ config_dict["model_type"] = self.model_type
246
+ config_dict["transformers_version"] = self.transformers_version
247
+ config_dict["auto_map"] = {"AutoConfig": "config.HATArchitectureConfig", "AutoModelForCausalLM": "model.HATForCausalLM"}
248
+ config_dict["special_token_dict"] = self.special_token_dict
249
+
250
+ # print these out to the config for vllm
251
+ config_dict["max_word_size"] = self.max_word_size
252
+ config_dict["sliding_window"] = self.sliding_window
253
+ config_dict["max_position_embeddings"] = self.max_position_embeddings
254
+ config_dict["torch_dtype"] = self.torch_dtype
255
+ config_dict["architectures"] = self.architectures
256
+ return config_dict
257
+
258
+
259
+ class EncoderHATModel(nn.Module):
260
+ def __init__(self, config: HATArchitectureConfig, *args, **kwargs):
261
+ super().__init__(*args, **kwargs)
262
+ self.config = config
config.yaml ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ encoder_config:
2
+ vocab_size: 256
3
+ hidden_size: 1024
4
+ num_hidden_layers: 6
5
+ num_attention_heads: 8
6
+ num_key_value_heads: 8
7
+ rms_norm_eps: 1.0e-05
8
+ intermediate_size: 2816
9
+ max_position_embeddings: 28000
10
+ rope_scaling:
11
+ rope_type: default
12
+ rope_theta: 100000
13
+ mlp_bias: false
14
+ use_cache: true
15
+ sliding_window: 768
16
+ transformers_version: null
17
+ key_query_norm: true
18
+ key_query_norm_per_head: true
19
+ is_neox_style: true
20
+ cross_attention_config:
21
+ hidden_size_q: 4096
22
+ hidden_size_kv: 1024
23
+ hidden_size: 4096
24
+ num_attention_heads: 32
25
+ attention_num_kv_heads: 32
26
+ word_window_size: 1
27
+ key_query_norm: true
28
+ key_query_norm_per_head: true
29
+ backbone_config:
30
+ vocab_size: 0
31
+ hidden_size: 4096
32
+ num_hidden_layers: 32
33
+ num_attention_heads: 32
34
+ num_key_value_heads: 8
35
+ rms_norm_eps: 1.0e-05
36
+ intermediate_size: 14336
37
+ max_position_embeddings: 3500
38
+ rope_scaling:
39
+ rope_type: default
40
+ rope_theta: 500000
41
+ mlp_bias: false
42
+ use_cache: true
43
+ sliding_window: null
44
+ transformers_version: null
45
+ key_query_norm: true
46
+ key_query_norm_per_head: true
47
+ is_neox_style: true
48
+ decoder_config:
49
+ vocab_size: 256
50
+ hidden_size: 1024
51
+ num_hidden_layers: 4
52
+ num_attention_heads: 8
53
+ num_key_value_heads: 8
54
+ rms_norm_eps: 1.0e-05
55
+ intermediate_size: 2816
56
+ max_position_embeddings: 28000
57
+ rope_scaling:
58
+ rope_type: default
59
+ rope_theta: 100000
60
+ mlp_bias: false
61
+ use_cache: true
62
+ sliding_window: 768
63
+ transformers_version: null
64
+ key_query_norm: true
65
+ key_query_norm_per_head: true
66
+ is_neox_style: true
67
+ cross_attn_every_layer: true
68
+ cross_attention_config:
69
+ hidden_size_q: 1024
70
+ hidden_size_kv: 4096
71
+ hidden_size: 1024
72
+ num_attention_heads: 8
73
+ attention_num_kv_heads: 8
74
+ word_window_size: 1
75
+ key_query_norm: true
76
+ key_query_norm_per_head: true
77
+ model_type: hierarchical_autoregressive_transformer
78
+ transformers_version: 4.46.3
79
+ auto_map:
80
+ AutoConfig: config.HATArchitectureConfig
81
+ AutoModelForCausalLM: model.HATForCausalLM
82
+ special_token_dict: {}
83
+ max_word_size: 100
84
+ sliding_window: 768
85
+ max_position_embeddings: 28000
86
+ torch_dtype: bfloat16
87
+ architectures:
88
+ - HATDecoderForCausalLM
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.46.3"
4
+ }
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63eea8783a24fd114863084cb643599940cb7a53324b980f6f111ab264e2280
3
+ size 4922789928
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02e25bef21a7ba415e7e2c35c7c1f1f7e9813f6ad477bf41e4bbf6e34dab8b2c
3
+ size 4832013880
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4437c2f7f5145df1c4ba34c0652c3a8d84a42b31fff03edbf475d05b60b4cbec
3
+ size 4999820824
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2b92e4eaba076d7d18f6776983d4f2b89c2232a60136ec820a35374a0eb3777
3
+ size 4999820832
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e49586a2b7a12f36a76567739a430498ade7cb61be567df4047e73e1bc48e51
3
+ size 4832013928
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2582415526c586f8815750c56f5bec08198ab142c31dd7c175d5868b180a8245
3
+ size 4014747208
model.py ADDED
@@ -0,0 +1,951 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ from collections.abc import Sequence
3
+ from importlib.metadata import PackageNotFoundError, version
4
+ from typing import Callable
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange
9
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func
10
+ from transformers import PreTrainedModel
11
+ from transformers.cache_utils import Cache, DynamicCache
12
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
+ from transformers.utils import ModelOutput
14
+
15
+ from .config import (
16
+ CrossAttentionConfig,
17
+ DecoderHATModelConfig,
18
+ EncoderHATModelConfig,
19
+ HATArchitectureConfig,
20
+ TransformerHATModelConfig,
21
+ )
22
+ from .splitter import HATSplitter
23
+ from .norm import RMSNorm
24
+ from .transformer_backbone import (
25
+ LlamaDecoderLayer,
26
+ LlamaRotaryEmbedding,
27
+ )
28
+
29
+ try:
30
+ transformers_version = version("transformers")
31
+ if transformers_version != "4.46.3":
32
+ print(f"Warning: Expecected transformers version 4.46.3, but found {transformers_version}. Outputs might be different.")
33
+ except PackageNotFoundError:
34
+ print("transformers is not installed")
35
+
36
+
37
+ def sample_argmax(logits: torch.Tensor) -> torch.Tensor:
38
+ return torch.argmax(logits, dim=-1)[:, -1]
39
+
40
+
41
+ LLAMA_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
42
+ You are a helpful assistant. You give engaging, well-structured answers to user inquiries.<|eot_id|><|start_header_id|>user<|end_header_id|>
43
+ {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
44
+
45
+
46
+ class HATCache(Cache):
47
+ encoder_cache: DynamicCache
48
+ backbone_cache: DynamicCache
49
+ decoder_cache: DynamicCache
50
+
51
+ def __init__(self, *args, **kwargs):
52
+ super().__init__(*args, **kwargs)
53
+ self.encoder_cache = DynamicCache()
54
+ self.backbone_cache = DynamicCache()
55
+ self.decoder_cache = DynamicCache()
56
+
57
+ def get_backbone_cache(self) -> DynamicCache:
58
+ return self.backbone_cache
59
+
60
+ def get_decoder_cache(self) -> DynamicCache:
61
+ return self.decoder_cache
62
+
63
+ def get_encoder_cache(self) -> DynamicCache:
64
+ return self.encoder_cache
65
+
66
+
67
+ def rotate_half(x):
68
+ """Rotates half the hidden dims of the input."""
69
+ x1 = x[..., : x.shape[-1] // 2]
70
+ x2 = x[..., x.shape[-1] // 2 :]
71
+ return torch.cat((-x2, x1), dim=-1)
72
+
73
+
74
+ def apply_rotary_pos_emb(q, k, q_cos=None, q_sin=None, k_cos=None, k_sin=None, unsqueeze_dim=1):
75
+ """Applies Rotary Position Embedding to the query and key tensors.
76
+ and allows for different sequence lengths.
77
+ Args:
78
+ q (`torch.Tensor`): The query tensor.
79
+ k (`torch.Tensor`): The key tensor.
80
+ q_cos (`torch.Tensor`): The cosine part of the rotary embedding.
81
+ q_sin (`torch.Tensor`): The sine part of the rotary embedding.
82
+ k_cos (`torch.Tensor`): The cosine part of the rotary embedding.
83
+ k_sin (`torch.Tensor`): The sine part of the rotary embedding.
84
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
85
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze
86
+ cos[position_ids] and sin[position_ids] so that they can be properly
87
+ broadcasted to the dimensions of q and k. For example, note
88
+ that cos[position_ids] and sin[position_ids] have the shape
89
+ [batch_size, seq_len, head_dim]. Then, if q and
90
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting
91
+ unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids]
92
+ broadcastable to the shapes of q and k. Similarly, if q and k have
93
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
94
+ Returns:
95
+ `tuple(torch.Tensor)` comprising of the query and key
96
+ tensors rotated using the Rotary Position Embedding.
97
+ """
98
+
99
+ q_cos = q_cos.unsqueeze(unsqueeze_dim)
100
+ q_sin = q_sin.unsqueeze(unsqueeze_dim)
101
+ k_cos = k_cos.unsqueeze(unsqueeze_dim)
102
+ k_sin = k_sin.unsqueeze(unsqueeze_dim)
103
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
104
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
105
+
106
+ return q_embed, k_embed
107
+
108
+
109
+ class HATBackbone(nn.Module):
110
+ def __init__(self, config: TransformerHATModelConfig, *args, **kwargs):
111
+ super().__init__(*args, **kwargs)
112
+
113
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
114
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
115
+
116
+ def forward(
117
+ self,
118
+ hidden_states: torch.Tensor,
119
+ position_ids: torch.Tensor | None = None,
120
+ past_key_values: DynamicCache | None = None,
121
+ use_cache: bool | None = False,
122
+ ) -> BaseModelOutputWithPast:
123
+ if use_cache and past_key_values is None:
124
+ past_key_values = DynamicCache()
125
+
126
+ if position_ids is None:
127
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
128
+ position_ids = torch.arange(
129
+ past_seen_tokens,
130
+ past_seen_tokens + hidden_states.shape[1],
131
+ device=hidden_states.device,
132
+ ).unsqueeze(0)
133
+
134
+ # create position embeddings to be shared across the decoder layers
135
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
136
+
137
+ for backbone_layer in self.layers:
138
+ layer_outputs = backbone_layer(
139
+ hidden_states,
140
+ position_ids=position_ids,
141
+ past_key_value=past_key_values,
142
+ use_cache=use_cache,
143
+ position_embeddings=position_embeddings,
144
+ )
145
+ hidden_states = layer_outputs[0]
146
+
147
+ return CausalLMOutputWithPast(
148
+ hidden_states=hidden_states,
149
+ past_key_values=past_key_values if use_cache else None,
150
+ )
151
+
152
+
153
+ class HATDecoderConnector(nn.Module):
154
+ def __init__(self, backbone_hiden_dim: int, *args, **kwargs):
155
+ super().__init__(*args, **kwargs)
156
+ self.first_word_embedding = torch.nn.Parameter(
157
+ torch.empty(
158
+ 1,
159
+ 1,
160
+ backbone_hiden_dim,
161
+ device="cuda",
162
+ dtype=torch.bfloat16,
163
+ )
164
+ )
165
+
166
+ def forward(
167
+ self,
168
+ backbone_activations: torch.Tensor,
169
+ ):
170
+ activations = backbone_activations.clone()
171
+ activations[:, -1:, :] = self.first_word_embedding
172
+ activations = torch.roll(activations, shifts=1, dims=1)
173
+ return activations
174
+
175
+
176
+ class HATDecoderBlock(nn.Module):
177
+ def __init__(
178
+ self,
179
+ add_cross_attention: bool,
180
+ config: DecoderHATModelConfig,
181
+ layer_idx: int,
182
+ *args,
183
+ **kwargs,
184
+ ):
185
+ super().__init__(*args, **kwargs)
186
+ self.add_cross_attention = add_cross_attention
187
+ self.config = config
188
+ self.llama_layer = LlamaDecoderLayer(config, layer_idx)
189
+ self.llama_layer.self_attn.sliding_window = config.sliding_window
190
+ if add_cross_attention:
191
+ self.cross_attention = HATCrossAttention(
192
+ hidden_size=config.cross_attention_config.hidden_size,
193
+ hidden_size_kv=config.cross_attention_config.hidden_size_kv,
194
+ hidden_size_q=config.cross_attention_config.hidden_size_q,
195
+ config=config,
196
+ cross_attention_config=config.cross_attention_config,
197
+ )
198
+
199
+ self.query_norm = RMSNorm(
200
+ config.cross_attention_config.hidden_size_q,
201
+ eps=config.rms_norm_eps,
202
+ device=torch.device("cuda"),
203
+ dtype=torch.bfloat16,
204
+ norm_in_fp32=False,
205
+ )
206
+
207
+ self.kv_norm = RMSNorm(
208
+ config.cross_attention_config.hidden_size_kv,
209
+ eps=config.rms_norm_eps,
210
+ device=torch.device("cuda"),
211
+ dtype=torch.bfloat16,
212
+ norm_in_fp32=False,
213
+ )
214
+
215
+ def apply_norm(self, activations):
216
+ return self.query_norm(activations), self.kv_norm(activations)
217
+
218
+ def forward(
219
+ self,
220
+ encoder_activations,
221
+ backbone_activations,
222
+ byte_position_ids,
223
+ word_position_ids,
224
+ cumulative_seq_lengths_per_word,
225
+ position_embeddings,
226
+ past_key_values,
227
+ use_cache,
228
+ ):
229
+ if self.add_cross_attention:
230
+ kv_activations = self.kv_norm(backbone_activations)
231
+ q_activations = self.query_norm(encoder_activations)
232
+
233
+ activations = self.cross_attention.forward(
234
+ q_activations=q_activations,
235
+ kv_activations=kv_activations,
236
+ position_ids_q=byte_position_ids,
237
+ position_ids_kv=word_position_ids,
238
+ cumulative_seq_q=cumulative_seq_lengths_per_word,
239
+ cumulative_seq_kv=torch.arange(0, kv_activations.size(1) + 1, device=encoder_activations.device, dtype=torch.int32),
240
+ causal=False,
241
+ )
242
+ encoder_activations = encoder_activations + activations
243
+
244
+ return self.llama_layer.forward(
245
+ hidden_states=encoder_activations,
246
+ position_ids=byte_position_ids,
247
+ position_embeddings=position_embeddings,
248
+ past_key_value=past_key_values,
249
+ use_cache=use_cache,
250
+ )[0]
251
+
252
+
253
+ class HATDecoder(nn.Module):
254
+ def __init__(self, config: DecoderHATModelConfig, *args, **kwargs):
255
+ super().__init__()
256
+
257
+ self.decoder_layers = nn.Sequential()
258
+ for layer_idx in range(config.num_hidden_layers):
259
+ add_cross_attention = config.cross_attn_every_layer or layer_idx == 0
260
+ self.decoder_layers.add_module(
261
+ str(layer_idx),
262
+ HATDecoderBlock(
263
+ add_cross_attention,
264
+ config,
265
+ layer_idx,
266
+ ),
267
+ )
268
+
269
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
270
+
271
+ def forward(
272
+ self,
273
+ backbone_activations: torch.Tensor,
274
+ activations: torch.Tensor,
275
+ cumulative_seq_lengths_per_word: torch.Tensor | None = None,
276
+ byte_position_ids: torch.Tensor | None = None,
277
+ word_position_ids: torch.Tensor | None = None,
278
+ past_key_values: DynamicCache | None = None,
279
+ use_cache: bool | None = False,
280
+ ) -> BaseModelOutputWithPast:
281
+ if use_cache and past_key_values is None:
282
+ past_key_values = DynamicCache()
283
+
284
+ if byte_position_ids is None:
285
+ past_seen_bytes = past_key_values.get_seq_length() if past_key_values is not None else 0
286
+ byte_position_ids = torch.arange(
287
+ past_seen_bytes,
288
+ past_seen_bytes + activations.size(1),
289
+ device=activations.device,
290
+ dtype=torch.int32,
291
+ ).unsqueeze(0)
292
+
293
+ if cumulative_seq_lengths_per_word is None:
294
+ cumulative_seq_lengths_per_word = torch.tensor([0, byte_position_ids.size(1)], dtype=byte_position_ids.dtype, device=byte_position_ids.device)
295
+
296
+ if word_position_ids is None:
297
+ raise ValueError() # TODO
298
+
299
+ position_embeddings = self.rotary_emb(activations, byte_position_ids)
300
+
301
+ for _, layer in enumerate(self.decoder_layers):
302
+ activations = layer(
303
+ encoder_activations=activations,
304
+ backbone_activations=backbone_activations,
305
+ position_embeddings=position_embeddings,
306
+ cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
307
+ byte_position_ids=byte_position_ids,
308
+ word_position_ids=word_position_ids,
309
+ past_key_values=past_key_values,
310
+ use_cache=use_cache,
311
+ )
312
+
313
+ return BaseModelOutputWithPast(
314
+ last_hidden_state=activations,
315
+ past_key_values=past_key_values if use_cache else None,
316
+ )
317
+
318
+
319
+ class HATCrossAttention(nn.Module):
320
+ def __init__(
321
+ self,
322
+ hidden_size: int,
323
+ hidden_size_q: int,
324
+ hidden_size_kv: int,
325
+ config: EncoderHATModelConfig | DecoderHATModelConfig,
326
+ cross_attention_config: CrossAttentionConfig,
327
+ dtype: torch.dtype = torch.bfloat16,
328
+ ):
329
+ super().__init__()
330
+ self.hidden_size = hidden_size
331
+ self.hidden_size_q = hidden_size_q
332
+ self.hidden_size_kv = hidden_size_kv
333
+ self.num_heads = cross_attention_config.num_attention_heads
334
+ self.num_key_value_heads = cross_attention_config.attention_num_kv_heads
335
+ self.num_repeat_kv = cross_attention_config.num_attention_heads // cross_attention_config.attention_num_kv_heads
336
+ self.head_dim = hidden_size // self.num_heads
337
+ self.key_query_norm = cross_attention_config.key_query_norm
338
+ self.key_query_norm_per_head = cross_attention_config.key_query_norm_per_head
339
+
340
+ self.q_proj = nn.Linear(
341
+ in_features=hidden_size_q,
342
+ out_features=hidden_size,
343
+ dtype=dtype,
344
+ bias=False,
345
+ )
346
+
347
+ self.k_proj = nn.Linear(
348
+ in_features=hidden_size_kv,
349
+ out_features=hidden_size // self.num_repeat_kv,
350
+ dtype=dtype,
351
+ bias=False,
352
+ )
353
+
354
+ self.v_proj = nn.Linear(
355
+ in_features=hidden_size_kv,
356
+ out_features=hidden_size // self.num_repeat_kv,
357
+ dtype=dtype,
358
+ bias=False,
359
+ )
360
+
361
+ if self.key_query_norm:
362
+ if self.key_query_norm_per_head:
363
+ # Both query and key have head dim equal to self.hidden_size_per_attention_head
364
+ query_norm_dimensions = self.head_dim
365
+ key_norm_dimensions = self.head_dim
366
+ else:
367
+ # Query dimensions across head is equal to hidden_size but key dimensions are divided
368
+ # by self.num_repeat_kv
369
+ query_norm_dimensions = self.hidden_size
370
+ key_norm_dimensions = self.hidden_size // self.num_repeat_kv
371
+
372
+ self.norm_query = RMSNorm(
373
+ dimensions=query_norm_dimensions,
374
+ eps=config.rms_norm_eps,
375
+ device=self.q_proj.weight.device,
376
+ dtype=dtype,
377
+ )
378
+ self.norm_key = RMSNorm(
379
+ dimensions=key_norm_dimensions,
380
+ eps=config.rms_norm_eps,
381
+ device=self.q_proj.weight.device,
382
+ dtype=dtype,
383
+ )
384
+
385
+ self.o_proj = nn.Linear(in_features=hidden_size, out_features=hidden_size_q, dtype=dtype, bias=False)
386
+
387
+ rope_theta = config.rope_theta
388
+ rope_type = config.rope_scaling["rope_type"]
389
+
390
+ self.rotary_emb = LlamaRotaryEmbedding(dim=self.head_dim, base=rope_theta, rope_type=rope_type)
391
+
392
+ def forward(
393
+ self,
394
+ q_activations: torch.Tensor,
395
+ kv_activations: torch.Tensor,
396
+ position_ids_q: torch.Tensor,
397
+ position_ids_kv: torch.Tensor,
398
+ cumulative_seq_kv: torch.Tensor,
399
+ cumulative_seq_q: torch.Tensor,
400
+ causal: bool = True,
401
+ use_cache: bool = False,
402
+ past_key_value: DynamicCache | None = None,
403
+ ):
404
+ q_len = cumulative_seq_q[-1]
405
+
406
+ bsz, _, _ = kv_activations.size()
407
+ query_states = self.q_proj(q_activations)
408
+ key_states = self.k_proj(kv_activations)
409
+ value_states = self.v_proj(kv_activations)
410
+
411
+ if self.key_query_norm:
412
+ assert self.norm_query is not None
413
+ assert self.norm_key is not None
414
+ # query_states and key_states are bsz seq_len (h d)
415
+ if self.key_query_norm_per_head:
416
+ # for per head qk norm we need head dim to be the last dim
417
+ query_states = rearrange(
418
+ query_states,
419
+ "bsz seq_len (h d) -> bsz seq_len h d",
420
+ h=self.num_heads,
421
+ )
422
+ key_states = rearrange(
423
+ key_states,
424
+ "bsz seq_len (h d) -> bsz seq_len h d",
425
+ h=self.num_key_value_heads,
426
+ )
427
+ query_states = self.norm_query(query_states)
428
+ key_states = self.norm_key(key_states)
429
+ if self.key_query_norm_per_head:
430
+ query_states = rearrange(
431
+ query_states,
432
+ "bsz seq_len h d -> bsz seq_len (h d)",
433
+ )
434
+ key_states = rearrange(
435
+ key_states,
436
+ "bsz seq_len h d -> bsz seq_len (h d)",
437
+ )
438
+
439
+ # TODO get rid of the double rearrange, this is just for compatibility with scaling
440
+ query_states = rearrange(query_states, "bsz seq_len (h d) -> bsz h seq_len d", h=self.num_heads)
441
+ key_states = rearrange(
442
+ key_states,
443
+ "bsz seq_len (h d) -> bsz h seq_len d",
444
+ h=self.num_key_value_heads,
445
+ )
446
+ value_states = rearrange(
447
+ value_states,
448
+ "bsz seq_len (h d) -> bsz h seq_len d",
449
+ h=self.num_key_value_heads,
450
+ )
451
+
452
+ # WIP: Should word_positions_id respect document boundaries?
453
+ q_cos, q_sin = self.rotary_emb(query_states, position_ids_q)
454
+ k_cos, k_sin = self.rotary_emb(key_states, position_ids_kv)
455
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, q_cos=q_cos, q_sin=q_sin, k_cos=k_cos, k_sin=k_sin)
456
+
457
+ query_states = rearrange(query_states, "bsz h seq_len d -> (bsz seq_len) h d")
458
+ key_states = rearrange(key_states, "bsz h seq_len d -> (bsz seq_len) h d")
459
+ value_states = rearrange(value_states, "bsz h seq_len d -> (bsz seq_len) h d")
460
+
461
+ attn_output = flash_attn_varlen_func(
462
+ query_states,
463
+ key_states,
464
+ value_states,
465
+ cu_seqlens_q=cumulative_seq_q,
466
+ cu_seqlens_k=cumulative_seq_kv,
467
+ max_seqlen_q=self._get_max_seqlen(cumulative_seq_q),
468
+ max_seqlen_k=self._get_max_seqlen(cumulative_seq_kv),
469
+ causal=False,
470
+ )
471
+
472
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
473
+
474
+ attn_output = self.o_proj(attn_output)
475
+ return attn_output
476
+
477
+ def _get_max_seqlen(self, cumulative_word_lengths: torch.Tensor):
478
+ diffs = cumulative_word_lengths[1:] - cumulative_word_lengths[:-1]
479
+ return int(diffs.max().item())
480
+
481
+
482
+ class HATEncoderConnector(nn.Module):
483
+ def __init__(
484
+ self,
485
+ config: EncoderHATModelConfig,
486
+ backbone_hidden_size: int,
487
+ dtype: torch.dtype = torch.bfloat16,
488
+ *args,
489
+ **kwargs,
490
+ ):
491
+ super().__init__(*args, **kwargs)
492
+ self.latent_query = torch.nn.Parameter(
493
+ torch.empty(
494
+ 1,
495
+ 1,
496
+ backbone_hidden_size,
497
+ device="cuda",
498
+ dtype=dtype,
499
+ )
500
+ )
501
+
502
+ self.cross_attention_encoder_connector = HATCrossAttention(
503
+ hidden_size=config.cross_attention_config.hidden_size,
504
+ hidden_size_q=backbone_hidden_size,
505
+ hidden_size_kv=config.hidden_size,
506
+ config=config,
507
+ cross_attention_config=config.cross_attention_config,
508
+ )
509
+
510
+ def forward(
511
+ self,
512
+ hidden_states: torch.Tensor,
513
+ cumulative_seq_lengths_per_word: torch.Tensor,
514
+ word_position_ids: torch.Tensor,
515
+ byte_position_ids: torch.Tensor,
516
+ ):
517
+ q_len = cumulative_seq_lengths_per_word.shape[0] - 1
518
+ latent_query_repeated = self.latent_query.expand(-1, q_len, -1)
519
+ cumulative_seq_lengths_q = torch.arange(
520
+ start=0,
521
+ end=latent_query_repeated.shape[1] + 1,
522
+ step=1,
523
+ device=self.latent_query.device,
524
+ dtype=torch.int32,
525
+ )
526
+ word_embeddings = self.cross_attention_encoder_connector.forward(
527
+ q_activations=latent_query_repeated,
528
+ kv_activations=hidden_states,
529
+ position_ids_q=word_position_ids,
530
+ position_ids_kv=byte_position_ids,
531
+ cumulative_seq_q=cumulative_seq_lengths_q,
532
+ cumulative_seq_kv=cumulative_seq_lengths_per_word,
533
+ )
534
+ return word_embeddings
535
+
536
+
537
+ class HATEncoder(nn.Module):
538
+ def __init__(
539
+ self,
540
+ config: EncoderHATModelConfig,
541
+ dtype: torch.dtype = torch.bfloat16,
542
+ *args,
543
+ **kwargs,
544
+ ):
545
+ super().__init__(*args, **kwargs)
546
+ self.embedding_layer = nn.Embedding(config.vocab_size, config.hidden_size, dtype=dtype)
547
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
548
+ for layer in self.layers:
549
+ layer.self_attn.sliding_window = config.sliding_window
550
+
551
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
552
+
553
+ self.word_window_size = config.cross_attention_config.word_window_size
554
+
555
+ def forward(
556
+ self,
557
+ input_ids: torch.Tensor,
558
+ cumulative_seq_lengths_per_word: torch.Tensor | None = None,
559
+ byte_position_ids: torch.Tensor | None = None,
560
+ word_position_ids: torch.Tensor | None = None, # TODO: Remove
561
+ past_key_values: DynamicCache | None = None,
562
+ use_cache: bool | None = False,
563
+ ):
564
+ input_embeds = self.embedding_layer(input_ids)
565
+
566
+ if cumulative_seq_lengths_per_word is None:
567
+ cumulative_seq_lengths_per_word = torch.tensor([0, input_embeds.shape[1]], dtype=torch.int32, device=input_ids.device)
568
+
569
+ if use_cache and past_key_values is None:
570
+ past_key_values = DynamicCache()
571
+
572
+ if byte_position_ids is None:
573
+ past_seen_bytes = past_key_values.get_seq_length() if past_key_values is not None else 0
574
+ byte_position_ids = torch.arange(
575
+ past_seen_bytes,
576
+ past_seen_bytes + input_embeds.shape[1],
577
+ device=input_embeds.device,
578
+ ).unsqueeze(0)
579
+
580
+ if word_position_ids is None:
581
+ raise ValueError() # TODO
582
+
583
+ hidden_states = input_embeds
584
+
585
+ # create position embeddings to be shared across the decoder layers
586
+ position_embeddings = self.rotary_emb(hidden_states, byte_position_ids)
587
+
588
+ for layer in self.layers:
589
+ layer_outputs = layer(
590
+ hidden_states,
591
+ position_ids=byte_position_ids,
592
+ past_key_value=past_key_values,
593
+ use_cache=use_cache,
594
+ position_embeddings=position_embeddings,
595
+ )
596
+ hidden_states = layer_outputs[0]
597
+
598
+ return CausalLMOutputWithPast(
599
+ hidden_states=hidden_states,
600
+ past_key_values=past_key_values if use_cache else None,
601
+ )
602
+
603
+
604
+ class HATForCausalLM(PreTrainedModel):
605
+ config_class = HATArchitectureConfig
606
+ _supports_flash_attn_2 = True
607
+ _supports_cache_class = True
608
+
609
+ def __init__(self, config: HATArchitectureConfig, *args, **kwargs):
610
+ super().__init__(config, *args, **kwargs)
611
+ self.config = config
612
+ self.eos_token_id = config.eos_token_id
613
+ self.encoder = HATEncoder(config.encoder_config)
614
+ self.encoder_connector = HATEncoderConnector(config.encoder_config, config.backbone_config.hidden_size)
615
+ self.backbone = HATBackbone(config.backbone_config)
616
+ self.decoder_connector = HATDecoderConnector(config.backbone_config.hidden_size)
617
+ self.decoder = HATDecoder(config.decoder_config)
618
+ self.splitter = HATSplitter(special_token_dict=config.special_token_dict, max_word_size=config.max_word_size)
619
+ self.layer_norm = RMSNorm(config.decoder_config.hidden_size, eps=config.decoder_config.rms_norm_eps, device=torch.device("cuda"), dtype=torch.bfloat16, norm_in_fp32=False)
620
+ self.lm_head = nn.Linear(
621
+ in_features=config.decoder_config.hidden_size,
622
+ out_features=config.decoder_config.vocab_size,
623
+ dtype=torch.bfloat16,
624
+ bias=False,
625
+ )
626
+
627
+ def forward(
628
+ self,
629
+ input_ids: torch.Tensor,
630
+ byte_position_ids: torch.Tensor,
631
+ cumulative_seq_lengths_per_word: torch.Tensor | None = None,
632
+ word_position_ids: torch.Tensor | None = None,
633
+ past_key_values: HATCache | None = None,
634
+ use_cache: bool = False,
635
+ ):
636
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
637
+
638
+ if past_key_values is None and use_cache:
639
+ past_key_values = HATCache()
640
+
641
+ encoder_past_key_values = past_key_values.get_encoder_cache() if past_key_values is not None else None
642
+ backbone_past_key_values = past_key_values.get_backbone_cache() if past_key_values is not None else None
643
+ decoder_past_key_values = past_key_values.get_decoder_cache() if past_key_values is not None else None
644
+
645
+ encoder_output: BaseModelOutputWithPast = self.encoder(
646
+ input_ids=input_ids,
647
+ cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
648
+ byte_position_ids=byte_position_ids,
649
+ word_position_ids=word_position_ids,
650
+ past_key_values=encoder_past_key_values,
651
+ use_cache=use_cache,
652
+ )
653
+ byte_level_activations = encoder_output.hidden_states
654
+
655
+ encoder_connector_output = self.encoder_connector(
656
+ byte_level_activations,
657
+ cumulative_seq_lengths_per_word,
658
+ word_position_ids,
659
+ byte_position_ids,
660
+ )
661
+ backbone_output: CausalLMOutputWithPast = self.backbone(
662
+ hidden_states=encoder_connector_output,
663
+ position_ids=word_position_ids,
664
+ past_key_values=backbone_past_key_values,
665
+ use_cache=use_cache,
666
+ )
667
+
668
+ predictive_word_embeddings = self.decoder_connector.forward(backbone_activations=backbone_output.hidden_states)
669
+
670
+ decoder_output = self.decoder.forward(
671
+ activations=byte_level_activations,
672
+ backbone_activations=predictive_word_embeddings,
673
+ cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
674
+ byte_position_ids=byte_position_ids,
675
+ word_position_ids=word_position_ids,
676
+ past_key_values=decoder_past_key_values,
677
+ use_cache=use_cache,
678
+ )
679
+
680
+ decoder_output = self.layer_norm(decoder_output.last_hidden_state)
681
+ logits = self.lm_head(decoder_output)
682
+
683
+ loss = None
684
+
685
+ return CausalLMOutputWithPast(
686
+ loss=loss,
687
+ logits=logits,
688
+ past_key_values=past_key_values if use_cache else None,
689
+ hidden_states=backbone_output.hidden_states,
690
+ attentions=None,
691
+ )
692
+
693
+ def _append_byte(self, words: list[list[int]], token: int) -> list[list[int]]:
694
+ extended_last_word = words.pop() + [token]
695
+ try:
696
+ text = self.splitter.decode(extended_last_word, errors='strict', skip_special_tokens=False)
697
+ list_of_bytes = self.splitter.encode(text)
698
+ words.extend([list(word_in_bytes) for word_in_bytes in list_of_bytes])
699
+ except UnicodeDecodeError:
700
+ # if decoding fails, the token cannot be part of a new word since it is not a valid
701
+ # utf-8 end byte and we append it to the current word
702
+ words.append(extended_last_word)
703
+ return words
704
+
705
+ def _complete_word(
706
+ self,
707
+ input_ids: torch.Tensor,
708
+ byte_position_ids: torch.Tensor,
709
+ backbone_word_prediction: torch.Tensor,
710
+ word_position_id: torch.Tensor,
711
+ encoder_cache: DynamicCache,
712
+ decoder_cache: DynamicCache,
713
+ sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
714
+ ):
715
+ """Generate byte tokens until we hit the first byte of a new word."""
716
+ words = [input_ids.squeeze(0).tolist()]
717
+ byte_encoder_activations = []
718
+ completion_logits = []
719
+
720
+ while True:
721
+ encoder_output = self.encoder.forward(
722
+ input_ids,
723
+ byte_position_ids=None,
724
+ word_position_ids=word_position_id,
725
+ past_key_values=encoder_cache,
726
+ use_cache=True,
727
+ )
728
+ byte_encoder_activations.append(encoder_output.hidden_states)
729
+ decoder_output = self.decoder.forward(
730
+ backbone_word_prediction,
731
+ encoder_output.hidden_states,
732
+ byte_position_ids=None,
733
+ word_position_ids=word_position_id,
734
+ past_key_values=decoder_cache,
735
+ use_cache=True,
736
+ )
737
+ decoder_output = self.layer_norm(decoder_output.last_hidden_state)
738
+ logits = self.lm_head(decoder_output)
739
+ completion_logits.append(logits[0, -1:, :])
740
+ next_byte = int(sample_fn(logits).item())
741
+ words = self._append_byte(words, next_byte)
742
+ if len(words) > 1 or next_byte == self.eos_token_id:
743
+ break
744
+ input_ids = torch.tensor([[next_byte]], dtype=input_ids.dtype, device=input_ids.device)
745
+
746
+ byte_encoder_activations = torch.cat(byte_encoder_activations, dim=1)
747
+ num_kv = encoder_cache.get_seq_length()
748
+ byte_position_ids = torch.arange(num_kv + 1 - byte_encoder_activations.shape[1], num_kv + 1, device=input_ids.device, dtype=torch.long).unsqueeze(0)
749
+ completed_word_embedding = self.encoder_connector.forward(
750
+ byte_encoder_activations,
751
+ cumulative_seq_lengths_per_word=torch.tensor([0, byte_encoder_activations.size(1)], dtype=torch.int32, device=input_ids.device),
752
+ word_position_ids=word_position_id,
753
+ byte_position_ids=byte_position_ids,
754
+ )
755
+
756
+ completion = sum(words, [])[-len(completion_logits) :]
757
+ first_byte_of_next_word = words[1]
758
+ return completion, completed_word_embedding, first_byte_of_next_word, byte_position_ids[:, -1].item() + 1, completion_logits
759
+
760
+ def generate(
761
+ self,
762
+ input_ids: torch.Tensor,
763
+ max_new_tokens: int,
764
+ cumulative_seq_lengths_per_word: torch.Tensor,
765
+ byte_position_ids: torch.Tensor | None = None,
766
+ word_position_ids: torch.Tensor | None = None,
767
+ sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
768
+ use_cache: bool = True,
769
+ stop_sequences: Sequence[str] | None = None,
770
+ ):
771
+ if use_cache:
772
+ completion_text, completion_logits = self._generate_cached(input_ids, max_new_tokens, cumulative_seq_lengths_per_word, byte_position_ids, word_position_ids, sample_fn, stop_sequences=stop_sequences)
773
+ else:
774
+ completion_text, completion_logits = self._generate_uncached(input_ids, max_new_tokens, cumulative_seq_lengths_per_word, byte_position_ids, word_position_ids, sample_fn, stop_sequences=stop_sequences)
775
+
776
+ # remove stop sequence if exists
777
+ if stop_sequences is not None:
778
+ stop_sequences = sorted(stop_sequences, key=lambda i: len(i), reverse=True)
779
+ for stop_sequence in stop_sequences:
780
+ if stop_sequence in completion_text:
781
+ completion_text_left = completion_text.split(stop_sequence)[0]
782
+ completion_text_removed = completion_text[len(completion_text_left) :]
783
+
784
+ completion_logits = completion_logits[: -len(list(bytes(completion_text_removed.encode("UTF-8"))))]
785
+ completion_text = completion_text_left
786
+ break
787
+
788
+ return ModelOutput(
789
+ completion_text=completion_text,
790
+ input_ids=input_ids,
791
+ completion_logits=completion_logits,
792
+ )
793
+
794
+ @torch.no_grad()
795
+ def _generate_cached(
796
+ self,
797
+ input_ids: torch.Tensor,
798
+ max_new_tokens: int,
799
+ cumulative_seq_lengths_per_word: torch.Tensor,
800
+ byte_position_ids: torch.Tensor | None = None,
801
+ word_position_ids: torch.Tensor | None = None,
802
+ sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
803
+ stop_sequences: Sequence[str] | None = None,
804
+ ):
805
+ max_total_bytes = max_new_tokens + input_ids.shape[1]
806
+ if byte_position_ids is None:
807
+ byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)
808
+
809
+ if word_position_ids is None:
810
+ word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
811
+
812
+ last_word_start, last_word_end = (
813
+ cumulative_seq_lengths_per_word[-2],
814
+ cumulative_seq_lengths_per_word[-1],
815
+ )
816
+ # Populate cache with everything except last word
817
+ initial_forward_output = self.forward(
818
+ input_ids=input_ids[:, :last_word_start],
819
+ cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word[:-1],
820
+ byte_position_ids=byte_position_ids[:, :last_word_start],
821
+ word_position_ids=word_position_ids[:, :-1],
822
+ past_key_values=None,
823
+ use_cache=True,
824
+ )
825
+
826
+ completion_bytes = []
827
+ completion_logits = []
828
+ input_ids = input_ids[:, last_word_start:last_word_end]
829
+ next_byte_id = last_word_end
830
+ byte_position_ids = byte_position_ids[:, last_word_start:last_word_end]
831
+ word_position_id = word_position_ids[:, -1].unsqueeze(-1)
832
+ backbone_last_hidden_state = initial_forward_output.hidden_states[:, -1:, :]
833
+ while next_byte_id < max_total_bytes:
834
+ completion, completed_word_embedding, first_byte_of_next_word, next_byte_id, next_completion_logits = self._complete_word(
835
+ input_ids=input_ids,
836
+ byte_position_ids=byte_position_ids,
837
+ backbone_word_prediction=backbone_last_hidden_state,
838
+ word_position_id=word_position_id,
839
+ encoder_cache=initial_forward_output.past_key_values.get_encoder_cache(),
840
+ decoder_cache=initial_forward_output.past_key_values.get_decoder_cache(),
841
+ sample_fn=sample_fn,
842
+ )
843
+ completion_logits.extend(next_completion_logits)
844
+ completion_bytes.extend(completion)
845
+
846
+ if self.eos_token_id in completion_bytes:
847
+ completion_bytes = completion_bytes[: completion_bytes.index(self.eos_token_id)]
848
+ break
849
+
850
+ if stop_sequences is not None:
851
+ try:
852
+ completion_text_tmp = self.splitter.decode(completion_bytes)
853
+ if any(stop_sequence in completion_text_tmp for stop_sequence in stop_sequences):
854
+ break
855
+ except Exception as e:
856
+ print("Cannot compare stop sequence", e)
857
+
858
+ backbone_output = self.backbone.forward(
859
+ hidden_states=completed_word_embedding,
860
+ position_ids=None,
861
+ past_key_values=initial_forward_output.past_key_values.get_backbone_cache(),
862
+ use_cache=True,
863
+ )
864
+ backbone_last_hidden_state = backbone_output.hidden_states[:, -1, :].unsqueeze(1)
865
+
866
+ input_ids = torch.tensor([first_byte_of_next_word], dtype=input_ids.dtype, device=input_ids.device)
867
+ byte_position_ids = torch.tensor([[next_byte_id]], dtype=input_ids.dtype, device=input_ids.device)
868
+ word_position_id = word_position_id + 1
869
+
870
+ completion_bytes.extend(first_byte_of_next_word)
871
+ completion_bytes = completion_bytes[:max_new_tokens]
872
+ completion_logits = torch.cat(completion_logits[:max_new_tokens], dim=0)
873
+ completion_text = self.splitter.decode(completion_bytes)
874
+
875
+ return completion_text, completion_logits
876
+
877
+ @torch.no_grad()
878
+ def _generate_uncached(
879
+ self,
880
+ input_ids: torch.Tensor,
881
+ max_new_tokens: int,
882
+ cumulative_seq_lengths_per_word: torch.Tensor,
883
+ byte_position_ids: torch.Tensor | None = None,
884
+ word_position_ids: torch.Tensor | None = None,
885
+ sample_fn=sample_argmax,
886
+ stop_sequences: Sequence[str] | None = None,
887
+ ):
888
+ if byte_position_ids is None:
889
+ byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)
890
+
891
+ if word_position_ids is None:
892
+ word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
893
+
894
+ word_list = []
895
+ for i in range(1, cumulative_seq_lengths_per_word.shape[0]):
896
+ start_idx = cumulative_seq_lengths_per_word[i - 1]
897
+ end_idx = cumulative_seq_lengths_per_word[i]
898
+ word_list.append(input_ids[:, start_idx:end_idx].squeeze(0).tolist())
899
+
900
+ completion_bytes = []
901
+ for _ in range(max_new_tokens):
902
+ output = self.forward(
903
+ input_ids=input_ids,
904
+ cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
905
+ byte_position_ids=byte_position_ids,
906
+ word_position_ids=word_position_ids,
907
+ past_key_values=None,
908
+ )
909
+
910
+ next_byte = int(sample_fn(output.logits).item())
911
+ completion_bytes.append(next_byte)
912
+ if next_byte == self.eos_token_id:
913
+ break
914
+ word_list = self._append_byte(word_list, next_byte)
915
+
916
+ input_ids = torch.tensor(sum(word_list, []), dtype=torch.long, device=input_ids.device).unsqueeze(0)
917
+ cumulative_seq_lengths_per_word = torch.tensor([0] + list(itertools.accumulate(len(word) for word in word_list if len(word) > 0)), dtype=torch.int32, device=input_ids.device)
918
+ byte_position_ids = torch.arange(0, input_ids.shape[1], device=input_ids.device, dtype=torch.int32).unsqueeze(0)
919
+ word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
920
+
921
+ if stop_sequences is not None:
922
+ try:
923
+ completion_text_tmp = self.splitter.decode(completion_bytes)
924
+ if any(completion_text_tmp.endswith(stop_sequence) for stop_sequence in stop_sequences):
925
+ break
926
+ except Exception as e:
927
+ print("Cannot compare stop sequence", e)
928
+
929
+ completion_text = self.splitter.decode(completion_bytes)
930
+ completion_logits = output.logits[0, -len(completion_bytes) :, :]
931
+
932
+ return completion_text, completion_logits
933
+
934
+ def _prepare_input(self, input_str: str, add_llama_template: bool = True, device: torch.device | None = None) -> tuple[torch.Tensor, torch.Tensor]:
935
+ if add_llama_template:
936
+ input_str = LLAMA_TEMPLATE.format(input=input_str)
937
+
938
+ if device is None:
939
+ assert torch.cuda.is_available(), "CUDA is not available"
940
+ device = torch.device("cuda")
941
+ input_ids_list = []
942
+ cumulative_per_word_lengths_list = [0]
943
+
944
+ words = self.splitter.encode(input_str)
945
+ for word in words:
946
+ input_ids_list.extend(word)
947
+ word_length = len(word)
948
+ cumulative_per_word_lengths_list.append(cumulative_per_word_lengths_list[-1] + word_length)
949
+ input_ids = torch.tensor(input_ids_list, device=device, dtype=torch.int32).unsqueeze(0)
950
+ cumulative_per_word_lengths = torch.tensor(cumulative_per_word_lengths_list, device=device, dtype=torch.int32)
951
+ return input_ids, cumulative_per_word_lengths
model.safetensors.index.json ADDED
@@ -0,0 +1,512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 28601145856
4
+ },
5
+ "weight_map": {
6
+ "backbone.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
7
+ "backbone.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
8
+ "backbone.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
9
+ "backbone.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
10
+ "backbone.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
11
+ "backbone.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
12
+ "backbone.layers.0.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
13
+ "backbone.layers.0.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
14
+ "backbone.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "backbone.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "backbone.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "backbone.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "backbone.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "backbone.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "backbone.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "backbone.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "backbone.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "backbone.layers.1.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
24
+ "backbone.layers.1.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
25
+ "backbone.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
26
+ "backbone.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
27
+ "backbone.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
28
+ "backbone.layers.10.input_layernorm.weight": "model-00003-of-00006.safetensors",
29
+ "backbone.layers.10.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
30
+ "backbone.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
31
+ "backbone.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
32
+ "backbone.layers.10.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
33
+ "backbone.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
34
+ "backbone.layers.10.self_attn.norm_key.weight": "model-00002-of-00006.safetensors",
35
+ "backbone.layers.10.self_attn.norm_query.weight": "model-00002-of-00006.safetensors",
36
+ "backbone.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
37
+ "backbone.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
38
+ "backbone.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
39
+ "backbone.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
40
+ "backbone.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
41
+ "backbone.layers.11.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
42
+ "backbone.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
43
+ "backbone.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
44
+ "backbone.layers.11.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
45
+ "backbone.layers.11.self_attn.norm_key.weight": "model-00003-of-00006.safetensors",
46
+ "backbone.layers.11.self_attn.norm_query.weight": "model-00003-of-00006.safetensors",
47
+ "backbone.layers.11.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
48
+ "backbone.layers.11.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
49
+ "backbone.layers.11.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
50
+ "backbone.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
51
+ "backbone.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
52
+ "backbone.layers.12.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
53
+ "backbone.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
54
+ "backbone.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
55
+ "backbone.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
56
+ "backbone.layers.12.self_attn.norm_key.weight": "model-00003-of-00006.safetensors",
57
+ "backbone.layers.12.self_attn.norm_query.weight": "model-00003-of-00006.safetensors",
58
+ "backbone.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
59
+ "backbone.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
60
+ "backbone.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
61
+ "backbone.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
62
+ "backbone.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
63
+ "backbone.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
64
+ "backbone.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
65
+ "backbone.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
66
+ "backbone.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
67
+ "backbone.layers.13.self_attn.norm_key.weight": "model-00003-of-00006.safetensors",
68
+ "backbone.layers.13.self_attn.norm_query.weight": "model-00003-of-00006.safetensors",
69
+ "backbone.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
70
+ "backbone.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
71
+ "backbone.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
72
+ "backbone.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
73
+ "backbone.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
74
+ "backbone.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
75
+ "backbone.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
76
+ "backbone.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
77
+ "backbone.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
78
+ "backbone.layers.14.self_attn.norm_key.weight": "model-00003-of-00006.safetensors",
79
+ "backbone.layers.14.self_attn.norm_query.weight": "model-00003-of-00006.safetensors",
80
+ "backbone.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
81
+ "backbone.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
82
+ "backbone.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
83
+ "backbone.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
84
+ "backbone.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
85
+ "backbone.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
86
+ "backbone.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
87
+ "backbone.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
88
+ "backbone.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
89
+ "backbone.layers.15.self_attn.norm_key.weight": "model-00003-of-00006.safetensors",
90
+ "backbone.layers.15.self_attn.norm_query.weight": "model-00003-of-00006.safetensors",
91
+ "backbone.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
92
+ "backbone.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
93
+ "backbone.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
94
+ "backbone.layers.16.input_layernorm.weight": "model-00004-of-00006.safetensors",
95
+ "backbone.layers.16.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
96
+ "backbone.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
97
+ "backbone.layers.16.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
98
+ "backbone.layers.16.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
99
+ "backbone.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
100
+ "backbone.layers.16.self_attn.norm_key.weight": "model-00003-of-00006.safetensors",
101
+ "backbone.layers.16.self_attn.norm_query.weight": "model-00003-of-00006.safetensors",
102
+ "backbone.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
103
+ "backbone.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
104
+ "backbone.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
105
+ "backbone.layers.17.input_layernorm.weight": "model-00004-of-00006.safetensors",
106
+ "backbone.layers.17.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
107
+ "backbone.layers.17.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
108
+ "backbone.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
109
+ "backbone.layers.17.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
110
+ "backbone.layers.17.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
111
+ "backbone.layers.17.self_attn.norm_key.weight": "model-00004-of-00006.safetensors",
112
+ "backbone.layers.17.self_attn.norm_query.weight": "model-00004-of-00006.safetensors",
113
+ "backbone.layers.17.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
114
+ "backbone.layers.17.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
115
+ "backbone.layers.17.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
116
+ "backbone.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
117
+ "backbone.layers.18.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
118
+ "backbone.layers.18.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
119
+ "backbone.layers.18.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
120
+ "backbone.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
121
+ "backbone.layers.18.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
122
+ "backbone.layers.18.self_attn.norm_key.weight": "model-00004-of-00006.safetensors",
123
+ "backbone.layers.18.self_attn.norm_query.weight": "model-00004-of-00006.safetensors",
124
+ "backbone.layers.18.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
125
+ "backbone.layers.18.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
126
+ "backbone.layers.18.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
127
+ "backbone.layers.19.input_layernorm.weight": "model-00004-of-00006.safetensors",
128
+ "backbone.layers.19.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
129
+ "backbone.layers.19.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
130
+ "backbone.layers.19.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
131
+ "backbone.layers.19.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
132
+ "backbone.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
133
+ "backbone.layers.19.self_attn.norm_key.weight": "model-00004-of-00006.safetensors",
134
+ "backbone.layers.19.self_attn.norm_query.weight": "model-00004-of-00006.safetensors",
135
+ "backbone.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
136
+ "backbone.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
137
+ "backbone.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
138
+ "backbone.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
139
+ "backbone.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
140
+ "backbone.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
141
+ "backbone.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
142
+ "backbone.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
143
+ "backbone.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
144
+ "backbone.layers.2.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
145
+ "backbone.layers.2.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
146
+ "backbone.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
147
+ "backbone.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
148
+ "backbone.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
149
+ "backbone.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
150
+ "backbone.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
151
+ "backbone.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
152
+ "backbone.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
153
+ "backbone.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
154
+ "backbone.layers.20.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
155
+ "backbone.layers.20.self_attn.norm_key.weight": "model-00004-of-00006.safetensors",
156
+ "backbone.layers.20.self_attn.norm_query.weight": "model-00004-of-00006.safetensors",
157
+ "backbone.layers.20.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
158
+ "backbone.layers.20.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
159
+ "backbone.layers.20.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
160
+ "backbone.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
161
+ "backbone.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
162
+ "backbone.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
163
+ "backbone.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
164
+ "backbone.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
165
+ "backbone.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
166
+ "backbone.layers.21.self_attn.norm_key.weight": "model-00004-of-00006.safetensors",
167
+ "backbone.layers.21.self_attn.norm_query.weight": "model-00004-of-00006.safetensors",
168
+ "backbone.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
169
+ "backbone.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
170
+ "backbone.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
171
+ "backbone.layers.22.input_layernorm.weight": "model-00005-of-00006.safetensors",
172
+ "backbone.layers.22.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
173
+ "backbone.layers.22.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
174
+ "backbone.layers.22.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
175
+ "backbone.layers.22.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
176
+ "backbone.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
177
+ "backbone.layers.22.self_attn.norm_key.weight": "model-00004-of-00006.safetensors",
178
+ "backbone.layers.22.self_attn.norm_query.weight": "model-00004-of-00006.safetensors",
179
+ "backbone.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
180
+ "backbone.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
181
+ "backbone.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
182
+ "backbone.layers.23.input_layernorm.weight": "model-00005-of-00006.safetensors",
183
+ "backbone.layers.23.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
184
+ "backbone.layers.23.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
185
+ "backbone.layers.23.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
186
+ "backbone.layers.23.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
187
+ "backbone.layers.23.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
188
+ "backbone.layers.23.self_attn.norm_key.weight": "model-00005-of-00006.safetensors",
189
+ "backbone.layers.23.self_attn.norm_query.weight": "model-00005-of-00006.safetensors",
190
+ "backbone.layers.23.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
191
+ "backbone.layers.23.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
192
+ "backbone.layers.23.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
193
+ "backbone.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
194
+ "backbone.layers.24.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
195
+ "backbone.layers.24.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
196
+ "backbone.layers.24.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
197
+ "backbone.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
198
+ "backbone.layers.24.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
199
+ "backbone.layers.24.self_attn.norm_key.weight": "model-00005-of-00006.safetensors",
200
+ "backbone.layers.24.self_attn.norm_query.weight": "model-00005-of-00006.safetensors",
201
+ "backbone.layers.24.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
202
+ "backbone.layers.24.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
203
+ "backbone.layers.24.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
204
+ "backbone.layers.25.input_layernorm.weight": "model-00005-of-00006.safetensors",
205
+ "backbone.layers.25.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
206
+ "backbone.layers.25.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
207
+ "backbone.layers.25.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
208
+ "backbone.layers.25.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
209
+ "backbone.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
210
+ "backbone.layers.25.self_attn.norm_key.weight": "model-00005-of-00006.safetensors",
211
+ "backbone.layers.25.self_attn.norm_query.weight": "model-00005-of-00006.safetensors",
212
+ "backbone.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
213
+ "backbone.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
214
+ "backbone.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
215
+ "backbone.layers.26.input_layernorm.weight": "model-00005-of-00006.safetensors",
216
+ "backbone.layers.26.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
217
+ "backbone.layers.26.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
218
+ "backbone.layers.26.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
219
+ "backbone.layers.26.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
220
+ "backbone.layers.26.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
221
+ "backbone.layers.26.self_attn.norm_key.weight": "model-00005-of-00006.safetensors",
222
+ "backbone.layers.26.self_attn.norm_query.weight": "model-00005-of-00006.safetensors",
223
+ "backbone.layers.26.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
224
+ "backbone.layers.26.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
225
+ "backbone.layers.26.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
226
+ "backbone.layers.27.input_layernorm.weight": "model-00006-of-00006.safetensors",
227
+ "backbone.layers.27.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
228
+ "backbone.layers.27.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
229
+ "backbone.layers.27.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
230
+ "backbone.layers.27.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
231
+ "backbone.layers.27.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
232
+ "backbone.layers.27.self_attn.norm_key.weight": "model-00005-of-00006.safetensors",
233
+ "backbone.layers.27.self_attn.norm_query.weight": "model-00005-of-00006.safetensors",
234
+ "backbone.layers.27.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
235
+ "backbone.layers.27.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
236
+ "backbone.layers.27.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
237
+ "backbone.layers.28.input_layernorm.weight": "model-00006-of-00006.safetensors",
238
+ "backbone.layers.28.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
239
+ "backbone.layers.28.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
240
+ "backbone.layers.28.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
241
+ "backbone.layers.28.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
242
+ "backbone.layers.28.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
243
+ "backbone.layers.28.self_attn.norm_key.weight": "model-00006-of-00006.safetensors",
244
+ "backbone.layers.28.self_attn.norm_query.weight": "model-00006-of-00006.safetensors",
245
+ "backbone.layers.28.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
246
+ "backbone.layers.28.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
247
+ "backbone.layers.28.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
248
+ "backbone.layers.29.input_layernorm.weight": "model-00006-of-00006.safetensors",
249
+ "backbone.layers.29.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
250
+ "backbone.layers.29.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
251
+ "backbone.layers.29.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
252
+ "backbone.layers.29.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
253
+ "backbone.layers.29.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
254
+ "backbone.layers.29.self_attn.norm_key.weight": "model-00006-of-00006.safetensors",
255
+ "backbone.layers.29.self_attn.norm_query.weight": "model-00006-of-00006.safetensors",
256
+ "backbone.layers.29.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
257
+ "backbone.layers.29.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
258
+ "backbone.layers.29.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
259
+ "backbone.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
260
+ "backbone.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
261
+ "backbone.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
262
+ "backbone.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
263
+ "backbone.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
264
+ "backbone.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
265
+ "backbone.layers.3.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
266
+ "backbone.layers.3.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
267
+ "backbone.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
268
+ "backbone.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
269
+ "backbone.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
270
+ "backbone.layers.30.input_layernorm.weight": "model-00006-of-00006.safetensors",
271
+ "backbone.layers.30.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
272
+ "backbone.layers.30.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
273
+ "backbone.layers.30.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
274
+ "backbone.layers.30.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
275
+ "backbone.layers.30.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
276
+ "backbone.layers.30.self_attn.norm_key.weight": "model-00006-of-00006.safetensors",
277
+ "backbone.layers.30.self_attn.norm_query.weight": "model-00006-of-00006.safetensors",
278
+ "backbone.layers.30.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
279
+ "backbone.layers.30.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
280
+ "backbone.layers.30.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
281
+ "backbone.layers.31.input_layernorm.weight": "model-00006-of-00006.safetensors",
282
+ "backbone.layers.31.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
283
+ "backbone.layers.31.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
284
+ "backbone.layers.31.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
285
+ "backbone.layers.31.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
286
+ "backbone.layers.31.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
287
+ "backbone.layers.31.self_attn.norm_key.weight": "model-00006-of-00006.safetensors",
288
+ "backbone.layers.31.self_attn.norm_query.weight": "model-00006-of-00006.safetensors",
289
+ "backbone.layers.31.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
290
+ "backbone.layers.31.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
291
+ "backbone.layers.31.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
292
+ "backbone.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
293
+ "backbone.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
294
+ "backbone.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
295
+ "backbone.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
296
+ "backbone.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
297
+ "backbone.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
298
+ "backbone.layers.4.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
299
+ "backbone.layers.4.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
300
+ "backbone.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
301
+ "backbone.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
302
+ "backbone.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
303
+ "backbone.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
304
+ "backbone.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
305
+ "backbone.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
306
+ "backbone.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
307
+ "backbone.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
308
+ "backbone.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
309
+ "backbone.layers.5.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
310
+ "backbone.layers.5.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
311
+ "backbone.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
312
+ "backbone.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
313
+ "backbone.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
314
+ "backbone.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
315
+ "backbone.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
316
+ "backbone.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
317
+ "backbone.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
318
+ "backbone.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
319
+ "backbone.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
320
+ "backbone.layers.6.self_attn.norm_key.weight": "model-00002-of-00006.safetensors",
321
+ "backbone.layers.6.self_attn.norm_query.weight": "model-00002-of-00006.safetensors",
322
+ "backbone.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
323
+ "backbone.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
324
+ "backbone.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
325
+ "backbone.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
326
+ "backbone.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
327
+ "backbone.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
328
+ "backbone.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
329
+ "backbone.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
330
+ "backbone.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
331
+ "backbone.layers.7.self_attn.norm_key.weight": "model-00002-of-00006.safetensors",
332
+ "backbone.layers.7.self_attn.norm_query.weight": "model-00002-of-00006.safetensors",
333
+ "backbone.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
334
+ "backbone.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
335
+ "backbone.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
336
+ "backbone.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
337
+ "backbone.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
338
+ "backbone.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
339
+ "backbone.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
340
+ "backbone.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
341
+ "backbone.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
342
+ "backbone.layers.8.self_attn.norm_key.weight": "model-00002-of-00006.safetensors",
343
+ "backbone.layers.8.self_attn.norm_query.weight": "model-00002-of-00006.safetensors",
344
+ "backbone.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
345
+ "backbone.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
346
+ "backbone.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
347
+ "backbone.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
348
+ "backbone.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
349
+ "backbone.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
350
+ "backbone.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
351
+ "backbone.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
352
+ "backbone.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
353
+ "backbone.layers.9.self_attn.norm_key.weight": "model-00002-of-00006.safetensors",
354
+ "backbone.layers.9.self_attn.norm_query.weight": "model-00002-of-00006.safetensors",
355
+ "backbone.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
356
+ "backbone.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
357
+ "backbone.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
358
+ "decoder.decoder_layers.0.cross_attention.k_proj.weight": "model-00006-of-00006.safetensors",
359
+ "decoder.decoder_layers.0.cross_attention.norm_key.weight": "model-00006-of-00006.safetensors",
360
+ "decoder.decoder_layers.0.cross_attention.norm_query.weight": "model-00006-of-00006.safetensors",
361
+ "decoder.decoder_layers.0.cross_attention.o_proj.weight": "model-00006-of-00006.safetensors",
362
+ "decoder.decoder_layers.0.cross_attention.q_proj.weight": "model-00006-of-00006.safetensors",
363
+ "decoder.decoder_layers.0.cross_attention.v_proj.weight": "model-00006-of-00006.safetensors",
364
+ "decoder.decoder_layers.0.kv_norm.weight": "model-00006-of-00006.safetensors",
365
+ "decoder.decoder_layers.0.llama_layer.input_layernorm.weight": "model-00006-of-00006.safetensors",
366
+ "decoder.decoder_layers.0.llama_layer.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
367
+ "decoder.decoder_layers.0.llama_layer.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
368
+ "decoder.decoder_layers.0.llama_layer.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
369
+ "decoder.decoder_layers.0.llama_layer.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
370
+ "decoder.decoder_layers.0.llama_layer.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
371
+ "decoder.decoder_layers.0.llama_layer.self_attn.norm_key.weight": "model-00006-of-00006.safetensors",
372
+ "decoder.decoder_layers.0.llama_layer.self_attn.norm_query.weight": "model-00006-of-00006.safetensors",
373
+ "decoder.decoder_layers.0.llama_layer.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
374
+ "decoder.decoder_layers.0.llama_layer.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
375
+ "decoder.decoder_layers.0.llama_layer.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
376
+ "decoder.decoder_layers.0.query_norm.weight": "model-00006-of-00006.safetensors",
377
+ "decoder.decoder_layers.1.cross_attention.k_proj.weight": "model-00006-of-00006.safetensors",
378
+ "decoder.decoder_layers.1.cross_attention.norm_key.weight": "model-00006-of-00006.safetensors",
379
+ "decoder.decoder_layers.1.cross_attention.norm_query.weight": "model-00006-of-00006.safetensors",
380
+ "decoder.decoder_layers.1.cross_attention.o_proj.weight": "model-00006-of-00006.safetensors",
381
+ "decoder.decoder_layers.1.cross_attention.q_proj.weight": "model-00006-of-00006.safetensors",
382
+ "decoder.decoder_layers.1.cross_attention.v_proj.weight": "model-00006-of-00006.safetensors",
383
+ "decoder.decoder_layers.1.kv_norm.weight": "model-00006-of-00006.safetensors",
384
+ "decoder.decoder_layers.1.llama_layer.input_layernorm.weight": "model-00006-of-00006.safetensors",
385
+ "decoder.decoder_layers.1.llama_layer.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
386
+ "decoder.decoder_layers.1.llama_layer.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
387
+ "decoder.decoder_layers.1.llama_layer.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
388
+ "decoder.decoder_layers.1.llama_layer.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
389
+ "decoder.decoder_layers.1.llama_layer.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
390
+ "decoder.decoder_layers.1.llama_layer.self_attn.norm_key.weight": "model-00006-of-00006.safetensors",
391
+ "decoder.decoder_layers.1.llama_layer.self_attn.norm_query.weight": "model-00006-of-00006.safetensors",
392
+ "decoder.decoder_layers.1.llama_layer.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
393
+ "decoder.decoder_layers.1.llama_layer.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
394
+ "decoder.decoder_layers.1.llama_layer.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
395
+ "decoder.decoder_layers.1.query_norm.weight": "model-00006-of-00006.safetensors",
396
+ "decoder.decoder_layers.2.cross_attention.k_proj.weight": "model-00006-of-00006.safetensors",
397
+ "decoder.decoder_layers.2.cross_attention.norm_key.weight": "model-00006-of-00006.safetensors",
398
+ "decoder.decoder_layers.2.cross_attention.norm_query.weight": "model-00006-of-00006.safetensors",
399
+ "decoder.decoder_layers.2.cross_attention.o_proj.weight": "model-00006-of-00006.safetensors",
400
+ "decoder.decoder_layers.2.cross_attention.q_proj.weight": "model-00006-of-00006.safetensors",
401
+ "decoder.decoder_layers.2.cross_attention.v_proj.weight": "model-00006-of-00006.safetensors",
402
+ "decoder.decoder_layers.2.kv_norm.weight": "model-00006-of-00006.safetensors",
403
+ "decoder.decoder_layers.2.llama_layer.input_layernorm.weight": "model-00006-of-00006.safetensors",
404
+ "decoder.decoder_layers.2.llama_layer.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
405
+ "decoder.decoder_layers.2.llama_layer.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
406
+ "decoder.decoder_layers.2.llama_layer.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
407
+ "decoder.decoder_layers.2.llama_layer.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
408
+ "decoder.decoder_layers.2.llama_layer.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
409
+ "decoder.decoder_layers.2.llama_layer.self_attn.norm_key.weight": "model-00006-of-00006.safetensors",
410
+ "decoder.decoder_layers.2.llama_layer.self_attn.norm_query.weight": "model-00006-of-00006.safetensors",
411
+ "decoder.decoder_layers.2.llama_layer.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
412
+ "decoder.decoder_layers.2.llama_layer.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
413
+ "decoder.decoder_layers.2.llama_layer.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
414
+ "decoder.decoder_layers.2.query_norm.weight": "model-00006-of-00006.safetensors",
415
+ "decoder.decoder_layers.3.cross_attention.k_proj.weight": "model-00006-of-00006.safetensors",
416
+ "decoder.decoder_layers.3.cross_attention.norm_key.weight": "model-00006-of-00006.safetensors",
417
+ "decoder.decoder_layers.3.cross_attention.norm_query.weight": "model-00006-of-00006.safetensors",
418
+ "decoder.decoder_layers.3.cross_attention.o_proj.weight": "model-00006-of-00006.safetensors",
419
+ "decoder.decoder_layers.3.cross_attention.q_proj.weight": "model-00006-of-00006.safetensors",
420
+ "decoder.decoder_layers.3.cross_attention.v_proj.weight": "model-00006-of-00006.safetensors",
421
+ "decoder.decoder_layers.3.kv_norm.weight": "model-00006-of-00006.safetensors",
422
+ "decoder.decoder_layers.3.llama_layer.input_layernorm.weight": "model-00006-of-00006.safetensors",
423
+ "decoder.decoder_layers.3.llama_layer.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
424
+ "decoder.decoder_layers.3.llama_layer.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
425
+ "decoder.decoder_layers.3.llama_layer.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
426
+ "decoder.decoder_layers.3.llama_layer.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
427
+ "decoder.decoder_layers.3.llama_layer.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
428
+ "decoder.decoder_layers.3.llama_layer.self_attn.norm_key.weight": "model-00006-of-00006.safetensors",
429
+ "decoder.decoder_layers.3.llama_layer.self_attn.norm_query.weight": "model-00006-of-00006.safetensors",
430
+ "decoder.decoder_layers.3.llama_layer.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
431
+ "decoder.decoder_layers.3.llama_layer.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
432
+ "decoder.decoder_layers.3.llama_layer.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
433
+ "decoder.decoder_layers.3.query_norm.weight": "model-00006-of-00006.safetensors",
434
+ "decoder_connector.first_word_embedding": "model-00006-of-00006.safetensors",
435
+ "encoder.embedding_layer.weight": "model-00001-of-00006.safetensors",
436
+ "encoder.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
437
+ "encoder.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
438
+ "encoder.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
439
+ "encoder.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
440
+ "encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
441
+ "encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
442
+ "encoder.layers.0.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
443
+ "encoder.layers.0.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
444
+ "encoder.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
445
+ "encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
446
+ "encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
447
+ "encoder.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
448
+ "encoder.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
449
+ "encoder.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
450
+ "encoder.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
451
+ "encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
452
+ "encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
453
+ "encoder.layers.1.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
454
+ "encoder.layers.1.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
455
+ "encoder.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
456
+ "encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
457
+ "encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
458
+ "encoder.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
459
+ "encoder.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
460
+ "encoder.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
461
+ "encoder.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
462
+ "encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
463
+ "encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
464
+ "encoder.layers.2.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
465
+ "encoder.layers.2.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
466
+ "encoder.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
467
+ "encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
468
+ "encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
469
+ "encoder.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
470
+ "encoder.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
471
+ "encoder.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
472
+ "encoder.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
473
+ "encoder.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
474
+ "encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
475
+ "encoder.layers.3.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
476
+ "encoder.layers.3.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
477
+ "encoder.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
478
+ "encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
479
+ "encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
480
+ "encoder.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
481
+ "encoder.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
482
+ "encoder.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
483
+ "encoder.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
484
+ "encoder.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
485
+ "encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
486
+ "encoder.layers.4.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
487
+ "encoder.layers.4.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
488
+ "encoder.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
489
+ "encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
490
+ "encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
491
+ "encoder.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
492
+ "encoder.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
493
+ "encoder.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
494
+ "encoder.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
495
+ "encoder.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
496
+ "encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
497
+ "encoder.layers.5.self_attn.norm_key.weight": "model-00001-of-00006.safetensors",
498
+ "encoder.layers.5.self_attn.norm_query.weight": "model-00001-of-00006.safetensors",
499
+ "encoder.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
500
+ "encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
501
+ "encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
502
+ "encoder_connector.cross_attention_encoder_connector.k_proj.weight": "model-00001-of-00006.safetensors",
503
+ "encoder_connector.cross_attention_encoder_connector.norm_key.weight": "model-00001-of-00006.safetensors",
504
+ "encoder_connector.cross_attention_encoder_connector.norm_query.weight": "model-00001-of-00006.safetensors",
505
+ "encoder_connector.cross_attention_encoder_connector.o_proj.weight": "model-00001-of-00006.safetensors",
506
+ "encoder_connector.cross_attention_encoder_connector.q_proj.weight": "model-00001-of-00006.safetensors",
507
+ "encoder_connector.cross_attention_encoder_connector.v_proj.weight": "model-00001-of-00006.safetensors",
508
+ "encoder_connector.latent_query": "model-00001-of-00006.safetensors",
509
+ "layer_norm.weight": "model-00006-of-00006.safetensors",
510
+ "lm_head.weight": "model-00006-of-00006.safetensors"
511
+ }
512
+ }
norm.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ class RMSNorm(nn.Module):
5
+ def __init__(self, dimensions: int, eps: float, device: torch.device, dtype: torch.dtype = torch.bfloat16, norm_in_fp32: bool = False):
6
+ super().__init__()
7
+ self.eps = eps
8
+ self.weight = torch.nn.Parameter(torch.ones(dimensions, dtype=dtype).to(device))
9
+ self.norm_in_fp32 = norm_in_fp32
10
+
11
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
12
+ original_dtype = x.dtype
13
+ if self.norm_in_fp32:
14
+ x = x.float()
15
+
16
+ out = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
17
+
18
+ if out.dtype != original_dtype:
19
+ out = out.to(original_dtype)
20
+
21
+ return out * self.weight
source/aleph_alpha_homepage_badge.svg ADDED
source/aleph_alpha_logo.svg ADDED
source/aleph_alpha_logo_thumbnail.png ADDED
splitter.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ from hat_splitter import HATSplitter as RustHATSplitter
4
+
5
+
6
+ class HATSplitter:
7
+ def __init__(self, special_token_dict: dict | None = None, max_word_size: int = 128):
8
+ self.hat_splitter = RustHATSplitter()
9
+ self.max_word_size = max_word_size
10
+ self.special_token_dict = special_token_dict
11
+ self.special_token_replace: dict[int, list[int]] = {token: list(text.encode("utf-8")) for text, token in self.special_token_dict.items()}
12
+ self.special_token_pattern = re.compile(rf"({'|'.join(map(re.escape, special_token_dict.keys()))})") if special_token_dict else re.compile(r"(?!)")
13
+
14
+ def encode(self, text: str) -> list[list[int]]:
15
+ chunks = []
16
+ for str_chunk in self.special_token_pattern.split(text):
17
+ if str_chunk:
18
+ if str_chunk in self.special_token_dict:
19
+ chunks.append([self.special_token_dict[str_chunk]])
20
+ else:
21
+ chunks.extend(list(chunk) for chunk in self.hat_splitter.split_with_limit(str_chunk, self.max_word_size))
22
+ return chunks
23
+
24
+ def decode(self, token_ids: list[int], errors: str = "replace", skip_special_tokens: bool = False) -> str:
25
+ assert isinstance(token_ids, list), "token_ids must be a list"
26
+ assert all(isinstance(token_id, int) for token_id in token_ids), "token_ids must be a list of integers"
27
+
28
+ new_token_ids: list[int]
29
+ if skip_special_tokens:
30
+ new_token_ids = [token_id for token_id in token_ids if token_id not in self.special_token_replace]
31
+ else:
32
+ new_token_ids = []
33
+ for token in token_ids:
34
+ if token in self.special_token_replace:
35
+ new_token_ids.extend(self.special_token_replace[token])
36
+ else:
37
+ new_token_ids.append(token)
38
+
39
+ return bytes(new_token_ids).decode("utf-8", errors=errors)
transformer_backbone.py ADDED
@@ -0,0 +1,1553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Hacked in QK norm in LlamaDecoderLayer in transformers; keeping the version from
2
+ # transformers==4.46.3 since this keeps rotary within the decoder layer
3
+ # Source: https://github.com/huggingface/transformers/blob/v4.46.3/src/transformers/models/llama/modeling_llama.py#L400
4
+
5
+ # coding=utf-8
6
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
7
+ #
8
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
9
+ # and OPT implementations in this library. It has been modified from its
10
+ # original forms to accommodate minor architectural differences compared
11
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
12
+ #
13
+ # Licensed under the Apache License, Version 2.0 (the "License");
14
+ # you may not use this file except in compliance with the License.
15
+ # You may obtain a copy of the License at
16
+ #
17
+ # http://www.apache.org/licenses/LICENSE-2.0
18
+ #
19
+ # Unless required by applicable law or agreed to in writing, software
20
+ # distributed under the License is distributed on an "AS IS" BASIS,
21
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
+ # See the License for the specific language governing permissions and
23
+ # limitations under the License.
24
+ import math
25
+ from typing import List, Optional, Tuple, Union
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from torch import nn
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
34
+ from transformers.generation import GenerationMixin
35
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
36
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
37
+ from transformers.modeling_outputs import (
38
+ BaseModelOutputWithPast,
39
+ CausalLMOutputWithPast,
40
+ QuestionAnsweringModelOutput,
41
+ SequenceClassifierOutputWithPast,
42
+ TokenClassifierOutput,
43
+ )
44
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
45
+ from transformers.modeling_utils import PreTrainedModel
46
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
47
+ from transformers.utils import (
48
+ add_code_sample_docstrings,
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ is_flash_attn_greater_or_equal_2_10,
52
+ logging,
53
+ replace_return_docstrings,
54
+ )
55
+ from transformers.models.llama.configuration_llama import LlamaConfig
56
+
57
+ from .norm import RMSNorm
58
+
59
+ logger = logging.get_logger(__name__)
60
+
61
+ _CHECKPOINT_FOR_DOC = "meta-llama/Llama-2-7b-hf"
62
+ _CONFIG_FOR_DOC = "LlamaConfig"
63
+
64
+
65
+ class LlamaRMSNorm(nn.Module):
66
+ def __init__(self, hidden_size, eps=1e-6):
67
+ """
68
+ LlamaRMSNorm is equivalent to T5LayerNorm
69
+ """
70
+ super().__init__()
71
+ self.weight = nn.Parameter(torch.ones(hidden_size))
72
+ self.variance_epsilon = eps
73
+
74
+ def forward(self, hidden_states):
75
+ input_dtype = hidden_states.dtype
76
+ hidden_states = hidden_states.to(torch.float32)
77
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
78
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
79
+ return self.weight * hidden_states.to(input_dtype)
80
+
81
+ def extra_repr(self):
82
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
83
+
84
+
85
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
86
+
87
+
88
+ class LlamaRotaryEmbedding(nn.Module):
89
+ def __init__(
90
+ self,
91
+ dim=None,
92
+ max_position_embeddings=2048,
93
+ base=10000,
94
+ device=None,
95
+ scaling_factor=1.0,
96
+ rope_type="default",
97
+ config: Optional[LlamaConfig] = None,
98
+ ):
99
+ super().__init__()
100
+ # TODO (joao): remove the `if` below, only used for BC
101
+ self.rope_kwargs = {}
102
+ if config is None:
103
+ logger.warning_once(
104
+ "`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
105
+ "`config` argument. All other arguments will be removed in v4.46"
106
+ )
107
+ self.rope_kwargs = {
108
+ "rope_type": rope_type,
109
+ "factor": scaling_factor,
110
+ "dim": dim,
111
+ "base": base,
112
+ "max_position_embeddings": max_position_embeddings,
113
+ }
114
+ self.rope_type = rope_type
115
+ self.max_seq_len_cached = max_position_embeddings
116
+ self.original_max_seq_len = max_position_embeddings
117
+ else:
118
+ # BC: "rope_type" was originally "type"
119
+ if config.rope_scaling is not None:
120
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
121
+ else:
122
+ self.rope_type = "default"
123
+ self.max_seq_len_cached = config.max_position_embeddings
124
+ self.original_max_seq_len = config.max_position_embeddings
125
+
126
+ self.config = config
127
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
128
+
129
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
130
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
131
+ self.original_inv_freq = self.inv_freq
132
+
133
+ def _dynamic_frequency_update(self, position_ids, device):
134
+ """
135
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
136
+ 1 - growing beyond the cached sequence length (allow scaling)
137
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
138
+ """
139
+ seq_len = torch.max(position_ids) + 1
140
+ if seq_len > self.max_seq_len_cached: # growth
141
+ inv_freq, self.attention_scaling = self.rope_init_fn(
142
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
143
+ )
144
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
145
+ self.max_seq_len_cached = seq_len
146
+
147
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
148
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
149
+ self.max_seq_len_cached = self.original_max_seq_len
150
+
151
+ @torch.no_grad()
152
+ def forward(self, x, position_ids):
153
+ if "dynamic" in self.rope_type:
154
+ self._dynamic_frequency_update(position_ids, device=x.device)
155
+
156
+ # Core RoPE block
157
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
158
+ position_ids_expanded = position_ids[:, None, :].float()
159
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
160
+ device_type = x.device.type
161
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
162
+ with torch.autocast(device_type=device_type, enabled=False):
163
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
164
+ emb = torch.cat((freqs, freqs), dim=-1)
165
+ cos = emb.cos()
166
+ sin = emb.sin()
167
+
168
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
169
+ cos = cos * self.attention_scaling
170
+ sin = sin * self.attention_scaling
171
+
172
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
173
+
174
+
175
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
176
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
177
+
178
+ def __init__(self, *args, **kwargs):
179
+ logger.warning_once(
180
+ "`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
181
+ "`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
182
+ )
183
+ kwargs["rope_type"] = "linear"
184
+ super().__init__(*args, **kwargs)
185
+
186
+
187
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
188
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
+
190
+ def __init__(self, *args, **kwargs):
191
+ logger.warning_once(
192
+ "`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
193
+ "`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
194
+ "__init__)."
195
+ )
196
+ kwargs["rope_type"] = "dynamic"
197
+ super().__init__(*args, **kwargs)
198
+
199
+
200
+ def rotate_half(x):
201
+ """Rotates half the hidden dims of the input."""
202
+ x1 = x[..., : x.shape[-1] // 2]
203
+ x2 = x[..., x.shape[-1] // 2 :]
204
+ return torch.cat((-x2, x1), dim=-1)
205
+
206
+
207
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
208
+ """Applies Rotary Position Embedding to the query and key tensors.
209
+
210
+ Args:
211
+ q (`torch.Tensor`): The query tensor.
212
+ k (`torch.Tensor`): The key tensor.
213
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
214
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
215
+ position_ids (`torch.Tensor`, *optional*):
216
+ Deprecated and unused.
217
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
218
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
219
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
220
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
221
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
222
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
223
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
224
+ Returns:
225
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
226
+ """
227
+ cos = cos.unsqueeze(unsqueeze_dim)
228
+ sin = sin.unsqueeze(unsqueeze_dim)
229
+ q_embed = (q * cos) + (rotate_half(q) * sin)
230
+ k_embed = (k * cos) + (rotate_half(k) * sin)
231
+ return q_embed, k_embed
232
+
233
+
234
+ class LlamaMLP(nn.Module):
235
+ def __init__(self, config):
236
+ super().__init__()
237
+ self.config = config
238
+ self.hidden_size = config.hidden_size
239
+ self.intermediate_size = config.intermediate_size
240
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
241
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
242
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
243
+ self.act_fn = ACT2FN[config.hidden_act]
244
+
245
+ def forward(self, x):
246
+ if self.config.pretraining_tp > 1:
247
+ slice = self.intermediate_size // self.config.pretraining_tp
248
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
249
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
250
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
251
+
252
+ gate_proj = torch.cat(
253
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
254
+ )
255
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
256
+
257
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
258
+ down_proj = [
259
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
260
+ ]
261
+ down_proj = sum(down_proj)
262
+ else:
263
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
264
+
265
+ return down_proj
266
+
267
+
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ class LlamaAttention(nn.Module):
281
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
282
+
283
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
284
+ super().__init__()
285
+ self.config = config
286
+ self.layer_idx = layer_idx
287
+ if layer_idx is None:
288
+ logger.warning_once(
289
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
290
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
291
+ "when creating this class."
292
+ )
293
+
294
+ self.attention_dropout = config.attention_dropout
295
+ self.hidden_size = config.hidden_size
296
+ self.num_heads = config.num_attention_heads
297
+ self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
298
+ self.num_key_value_heads = config.num_key_value_heads
299
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
300
+ self.max_position_embeddings = config.max_position_embeddings
301
+ self.rope_theta = config.rope_theta
302
+ self.is_causal = True
303
+ self.key_query_norm = config.key_query_norm
304
+ self.key_query_norm_per_head = config.key_query_norm_per_head
305
+
306
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
307
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
308
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
309
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
310
+
311
+ if self.key_query_norm:
312
+ if self.key_query_norm_per_head:
313
+ # Both query and key have head dim equal to self.hidden_size_per_attention_head
314
+ query_norm_dimensions = self.head_dim
315
+ key_norm_dimensions = self.head_dim
316
+ else:
317
+ # Query dimensions across head is equal to hidden_size but key dimensions are divided
318
+ # by self.num_repeat_kv
319
+ query_norm_dimensions = self.hidden_size
320
+ key_norm_dimensions = self.hidden_size // self.num_repeat_kv
321
+
322
+ # For numerical compatibility we use RMSNorm as it was used during training
323
+ self.norm_query = RMSNorm(
324
+ dimensions=query_norm_dimensions,
325
+ eps=config.rms_norm_eps,
326
+ device=self.q_proj.weight.device,
327
+ dtype=self.q_proj.weight.dtype,
328
+ )
329
+ self.norm_key = RMSNorm(
330
+ dimensions=key_norm_dimensions,
331
+ eps=config.rms_norm_eps,
332
+ device=self.q_proj.weight.device,
333
+ dtype=self.q_proj.weight.dtype,
334
+ )
335
+
336
+ # TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
337
+ self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
338
+
339
+ def forward(
340
+ self,
341
+ hidden_states: torch.Tensor,
342
+ attention_mask: Optional[torch.Tensor] = None,
343
+ position_ids: Optional[torch.LongTensor] = None,
344
+ past_key_value: Optional[Cache] = None,
345
+ output_attentions: bool = False,
346
+ use_cache: bool = False,
347
+ cache_position: Optional[torch.LongTensor] = None,
348
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ bsz, q_len, _ = hidden_states.size()
352
+
353
+ if self.key_query_norm:
354
+ raise ValueError("QK norm not supported for eager attention, use flash_attention_2!")
355
+
356
+ if self.config.pretraining_tp > 1:
357
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
358
+ query_slices = self.q_proj.weight.split(
359
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
360
+ )
361
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
362
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
363
+
364
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
365
+ query_states = torch.cat(query_states, dim=-1)
366
+
367
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
368
+ key_states = torch.cat(key_states, dim=-1)
369
+
370
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
371
+ value_states = torch.cat(value_states, dim=-1)
372
+
373
+ else:
374
+ query_states = self.q_proj(hidden_states)
375
+ key_states = self.k_proj(hidden_states)
376
+ value_states = self.v_proj(hidden_states)
377
+
378
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
379
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
380
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
381
+
382
+ if position_embeddings is None:
383
+ logger.warning_once(
384
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
385
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
386
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
387
+ "removed and `position_embeddings` will be mandatory."
388
+ )
389
+ cos, sin = self.rotary_emb(value_states, position_ids)
390
+ else:
391
+ cos, sin = position_embeddings
392
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
393
+
394
+ if past_key_value is not None:
395
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
396
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
397
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
398
+
399
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
400
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
401
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
402
+
403
+ if attention_mask is not None: # no matter the length, we just slice it
404
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
405
+ attn_weights = attn_weights + causal_mask
406
+
407
+ # upcast attention to fp32
408
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
409
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
415
+ f" {attn_output.size()}"
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+
420
+ attn_output = attn_output.reshape(bsz, q_len, -1)
421
+
422
+ if self.config.pretraining_tp > 1:
423
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
424
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
425
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
426
+ else:
427
+ attn_output = self.o_proj(attn_output)
428
+
429
+ if not output_attentions:
430
+ attn_weights = None
431
+
432
+ return attn_output, attn_weights, past_key_value
433
+
434
+
435
+ class LlamaFlashAttention2(LlamaAttention):
436
+ """
437
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
438
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
439
+ flash attention and deal with padding tokens in case the input contains any of them.
440
+ """
441
+
442
+ def __init__(self, *args, **kwargs):
443
+ super().__init__(*args, **kwargs)
444
+
445
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
446
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
447
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
448
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
449
+
450
+ def forward(
451
+ self,
452
+ hidden_states: torch.Tensor,
453
+ attention_mask: Optional[torch.LongTensor] = None,
454
+ position_ids: Optional[torch.LongTensor] = None,
455
+ past_key_value: Optional[Cache] = None,
456
+ output_attentions: bool = False,
457
+ use_cache: bool = False,
458
+ cache_position: Optional[torch.LongTensor] = None,
459
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
460
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
461
+ if isinstance(past_key_value, StaticCache):
462
+ raise ValueError(
463
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
464
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
465
+ )
466
+
467
+ output_attentions = False
468
+
469
+ bsz, q_len, _ = hidden_states.size()
470
+
471
+ query_states = self.q_proj(hidden_states)
472
+ key_states = self.k_proj(hidden_states)
473
+ value_states = self.v_proj(hidden_states)
474
+
475
+ if self.key_query_norm:
476
+ if not self.key_query_norm_per_head:
477
+ # norm the full hidden fdim
478
+ query_states = self.norm_query(query_states)
479
+ key_states = self.norm_key(key_states)
480
+
481
+
482
+ # Flash attention requires the input to have the shape
483
+ # batch_size x seq_length x head_dim x hidden_dim
484
+ # therefore we just need to keep the original shape
485
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
486
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
487
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
488
+
489
+ if self.key_query_norm:
490
+ if self.key_query_norm_per_head:
491
+ # norm each head (with shared weights)
492
+ query_states = self.norm_query(query_states)
493
+ key_states = self.norm_key(key_states)
494
+
495
+ if position_embeddings is None:
496
+ logger.warning_once(
497
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
498
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
499
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
500
+ "removed and `position_embeddings` will be mandatory."
501
+ )
502
+ cos, sin = self.rotary_emb(value_states, position_ids)
503
+ else:
504
+ cos, sin = position_embeddings
505
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
506
+
507
+ if past_key_value is not None:
508
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
509
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
510
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
511
+
512
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
513
+ # to be able to avoid many of these transpose/reshape/view.
514
+ query_states = query_states.transpose(1, 2)
515
+ key_states = key_states.transpose(1, 2)
516
+ value_states = value_states.transpose(1, 2)
517
+
518
+ dropout_rate = self.attention_dropout if self.training else 0.0
519
+
520
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
521
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
522
+ # cast them back in the correct dtype just to be sure everything works as expected.
523
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
524
+ # in fp32. (LlamaRMSNorm handles it correctly)
525
+
526
+ input_dtype = query_states.dtype
527
+ if input_dtype == torch.float32:
528
+ if torch.is_autocast_enabled():
529
+ target_dtype = torch.get_autocast_gpu_dtype()
530
+ # Handle the case where the model is quantized
531
+ elif hasattr(self.config, "_pre_quantization_dtype"):
532
+ target_dtype = self.config._pre_quantization_dtype
533
+ else:
534
+ target_dtype = self.q_proj.weight.dtype
535
+
536
+ logger.warning_once(
537
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
538
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
539
+ f" {target_dtype}."
540
+ )
541
+
542
+ query_states = query_states.to(target_dtype)
543
+ key_states = key_states.to(target_dtype)
544
+ value_states = value_states.to(target_dtype)
545
+
546
+ attn_output = _flash_attention_forward(
547
+ query_states,
548
+ key_states,
549
+ value_states,
550
+ attention_mask,
551
+ q_len,
552
+ position_ids=position_ids,
553
+ dropout=dropout_rate,
554
+ sliding_window=getattr(self, "sliding_window", None),
555
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
556
+ is_causal=self.is_causal,
557
+ )
558
+
559
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
560
+ attn_output = self.o_proj(attn_output)
561
+
562
+ if not output_attentions:
563
+ attn_weights = None
564
+
565
+ return attn_output, attn_weights, past_key_value
566
+
567
+
568
+ class LlamaSdpaAttention(LlamaAttention):
569
+ """
570
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
571
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
572
+ SDPA API.
573
+ """
574
+
575
+ # Adapted from LlamaAttention.forward
576
+ def forward(
577
+ self,
578
+ hidden_states: torch.Tensor,
579
+ attention_mask: Optional[torch.Tensor] = None,
580
+ position_ids: Optional[torch.LongTensor] = None,
581
+ past_key_value: Optional[Cache] = None,
582
+ output_attentions: bool = False,
583
+ use_cache: bool = False,
584
+ cache_position: Optional[torch.LongTensor] = None,
585
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
586
+ **kwargs,
587
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
588
+ if output_attentions:
589
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
590
+ logger.warning_once(
591
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
592
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
593
+ )
594
+ return super().forward(
595
+ hidden_states=hidden_states,
596
+ attention_mask=attention_mask,
597
+ position_ids=position_ids,
598
+ past_key_value=past_key_value,
599
+ output_attentions=output_attentions,
600
+ use_cache=use_cache,
601
+ cache_position=cache_position,
602
+ position_embeddings=position_embeddings,
603
+ )
604
+
605
+ bsz, q_len, _ = hidden_states.size()
606
+
607
+ query_states = self.q_proj(hidden_states)
608
+ key_states = self.k_proj(hidden_states)
609
+ value_states = self.v_proj(hidden_states)
610
+
611
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
612
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
613
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
614
+
615
+ if position_embeddings is None:
616
+ logger.warning_once(
617
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
618
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
619
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
620
+ "removed and `position_embeddings` will be mandatory."
621
+ )
622
+ cos, sin = self.rotary_emb(value_states, position_ids)
623
+ else:
624
+ cos, sin = position_embeddings
625
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
626
+
627
+ if past_key_value is not None:
628
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
629
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
630
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
631
+
632
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
633
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
634
+
635
+ causal_mask = attention_mask
636
+ if attention_mask is not None:
637
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
638
+
639
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
640
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
641
+ if query_states.device.type == "cuda" and causal_mask is not None:
642
+ query_states = query_states.contiguous()
643
+ key_states = key_states.contiguous()
644
+ value_states = value_states.contiguous()
645
+
646
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
647
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
648
+ is_causal = True if causal_mask is None and q_len > 1 else False
649
+
650
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
651
+ query_states,
652
+ key_states,
653
+ value_states,
654
+ attn_mask=causal_mask,
655
+ dropout_p=self.attention_dropout if self.training else 0.0,
656
+ is_causal=is_causal,
657
+ )
658
+
659
+ attn_output = attn_output.transpose(1, 2).contiguous()
660
+ attn_output = attn_output.view(bsz, q_len, -1)
661
+
662
+ attn_output = self.o_proj(attn_output)
663
+
664
+ return attn_output, None, past_key_value
665
+
666
+
667
+ LLAMA_ATTENTION_CLASSES = {
668
+ "eager": LlamaAttention,
669
+ "flash_attention_2": LlamaFlashAttention2,
670
+ "sdpa": LlamaSdpaAttention,
671
+ }
672
+
673
+
674
+ class LlamaDecoderLayer(nn.Module):
675
+ def __init__(self, config: LlamaConfig, layer_idx: int):
676
+ super().__init__()
677
+ self.hidden_size = config.hidden_size
678
+
679
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
680
+
681
+ self.mlp = LlamaMLP(config)
682
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
683
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
684
+
685
+ def forward(
686
+ self,
687
+ hidden_states: torch.Tensor,
688
+ attention_mask: Optional[torch.Tensor] = None,
689
+ position_ids: Optional[torch.LongTensor] = None,
690
+ past_key_value: Optional[Cache] = None,
691
+ output_attentions: Optional[bool] = False,
692
+ use_cache: Optional[bool] = False,
693
+ cache_position: Optional[torch.LongTensor] = None,
694
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
695
+ **kwargs,
696
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
697
+ """
698
+ Args:
699
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
700
+ attention_mask (`torch.FloatTensor`, *optional*):
701
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
702
+ query_sequence_length, key_sequence_length)` if default attention is used.
703
+ output_attentions (`bool`, *optional*):
704
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
705
+ returned tensors for more detail.
706
+ use_cache (`bool`, *optional*):
707
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
708
+ (see `past_key_values`).
709
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
710
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
711
+ Indices depicting the position of the input sequence tokens in the sequence
712
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
713
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
714
+ with `head_dim` being the embedding dimension of each attention head.
715
+ kwargs (`dict`, *optional*):
716
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
717
+ into the model
718
+ """
719
+ residual = hidden_states
720
+
721
+ hidden_states = self.input_layernorm(hidden_states)
722
+
723
+ # Self Attention
724
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
725
+ hidden_states=hidden_states,
726
+ attention_mask=attention_mask,
727
+ position_ids=position_ids,
728
+ past_key_value=past_key_value,
729
+ output_attentions=output_attentions,
730
+ use_cache=use_cache,
731
+ cache_position=cache_position,
732
+ position_embeddings=position_embeddings,
733
+ **kwargs,
734
+ )
735
+ hidden_states = residual + hidden_states
736
+
737
+ # Fully Connected
738
+ residual = hidden_states
739
+ hidden_states = self.post_attention_layernorm(hidden_states)
740
+ hidden_states = self.mlp(hidden_states)
741
+ hidden_states = residual + hidden_states
742
+
743
+ outputs = (hidden_states,)
744
+
745
+ if output_attentions:
746
+ outputs += (self_attn_weights,)
747
+
748
+ if use_cache:
749
+ outputs += (present_key_value,)
750
+
751
+ return outputs
752
+
753
+
754
+ LLAMA_START_DOCSTRING = r"""
755
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
756
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
757
+ etc.)
758
+
759
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
760
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
761
+ and behavior.
762
+
763
+ Parameters:
764
+ config ([`LlamaConfig`]):
765
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
766
+ load the weights associated with the model, only the configuration. Check out the
767
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
768
+ """
769
+
770
+
771
+ @add_start_docstrings(
772
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
773
+ LLAMA_START_DOCSTRING,
774
+ )
775
+ class LlamaPreTrainedModel(PreTrainedModel):
776
+ config_class = LlamaConfig
777
+ base_model_prefix = "model"
778
+ supports_gradient_checkpointing = True
779
+ _no_split_modules = ["LlamaDecoderLayer"]
780
+ _skip_keys_device_placement = ["past_key_values"]
781
+ _supports_flash_attn_2 = True
782
+ _supports_sdpa = True
783
+ _supports_cache_class = True
784
+ _supports_quantized_cache = True
785
+ _supports_static_cache = True
786
+
787
+ def _init_weights(self, module):
788
+ std = self.config.initializer_range
789
+ if isinstance(module, nn.Linear):
790
+ module.weight.data.normal_(mean=0.0, std=std)
791
+ if module.bias is not None:
792
+ module.bias.data.zero_()
793
+ elif isinstance(module, nn.Embedding):
794
+ module.weight.data.normal_(mean=0.0, std=std)
795
+ if module.padding_idx is not None:
796
+ module.weight.data[module.padding_idx].zero_()
797
+
798
+
799
+ LLAMA_INPUTS_DOCSTRING = r"""
800
+ Args:
801
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
802
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
803
+ it.
804
+
805
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
806
+ [`PreTrainedTokenizer.__call__`] for details.
807
+
808
+ [What are input IDs?](../glossary#input-ids)
809
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
810
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
811
+
812
+ - 1 for tokens that are **not masked**,
813
+ - 0 for tokens that are **masked**.
814
+
815
+ [What are attention masks?](../glossary#attention-mask)
816
+
817
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
818
+ [`PreTrainedTokenizer.__call__`] for details.
819
+
820
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
821
+ `past_key_values`).
822
+
823
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
824
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
825
+ information on the default strategy.
826
+
827
+ - 1 indicates the head is **not masked**,
828
+ - 0 indicates the head is **masked**.
829
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
830
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
831
+ config.n_positions - 1]`.
832
+
833
+ [What are position IDs?](../glossary#position-ids)
834
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
835
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
836
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
837
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
838
+
839
+ Two formats are allowed:
840
+ - a [`~cache_utils.Cache`] instance, see our
841
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
842
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
843
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
844
+ cache format.
845
+
846
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
847
+ legacy cache format will be returned.
848
+
849
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
850
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
851
+ of shape `(batch_size, sequence_length)`.
852
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
853
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
854
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
855
+ model's internal embedding lookup matrix.
856
+ use_cache (`bool`, *optional*):
857
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
858
+ `past_key_values`).
859
+ output_attentions (`bool`, *optional*):
860
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
861
+ tensors for more detail.
862
+ output_hidden_states (`bool`, *optional*):
863
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
864
+ more detail.
865
+ return_dict (`bool`, *optional*):
866
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
867
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
868
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
869
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
870
+ the complete sequence length.
871
+ """
872
+
873
+
874
+ @add_start_docstrings(
875
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
876
+ LLAMA_START_DOCSTRING,
877
+ )
878
+ class LlamaModel(LlamaPreTrainedModel):
879
+ """
880
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
881
+
882
+ Args:
883
+ config: LlamaConfig
884
+ """
885
+
886
+ def __init__(self, config: LlamaConfig):
887
+ super().__init__(config)
888
+ self.padding_idx = config.pad_token_id
889
+ self.vocab_size = config.vocab_size
890
+
891
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
892
+ self.layers = nn.ModuleList(
893
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
894
+ )
895
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
896
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
897
+ self.gradient_checkpointing = False
898
+
899
+ # Initialize weights and apply final processing
900
+ self.post_init()
901
+
902
+ def get_input_embeddings(self):
903
+ return self.embed_tokens
904
+
905
+ def set_input_embeddings(self, value):
906
+ self.embed_tokens = value
907
+
908
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
909
+ def forward(
910
+ self,
911
+ input_ids: torch.LongTensor = None,
912
+ attention_mask: Optional[torch.Tensor] = None,
913
+ position_ids: Optional[torch.LongTensor] = None,
914
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
915
+ inputs_embeds: Optional[torch.FloatTensor] = None,
916
+ use_cache: Optional[bool] = None,
917
+ output_attentions: Optional[bool] = None,
918
+ output_hidden_states: Optional[bool] = None,
919
+ return_dict: Optional[bool] = None,
920
+ cache_position: Optional[torch.LongTensor] = None,
921
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
922
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
923
+ output_hidden_states = (
924
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
925
+ )
926
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
927
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
928
+
929
+ if (input_ids is None) ^ (inputs_embeds is not None):
930
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
931
+
932
+ if self.gradient_checkpointing and self.training and use_cache:
933
+ logger.warning_once(
934
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
935
+ )
936
+ use_cache = False
937
+
938
+ if inputs_embeds is None:
939
+ inputs_embeds = self.embed_tokens(input_ids)
940
+
941
+ # kept for BC (non `Cache` `past_key_values` inputs)
942
+ return_legacy_cache = False
943
+ if use_cache and not isinstance(past_key_values, Cache):
944
+ return_legacy_cache = True
945
+ if past_key_values is None:
946
+ past_key_values = DynamicCache()
947
+ else:
948
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
949
+ logger.warning_once(
950
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
951
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
952
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
953
+ )
954
+
955
+ if cache_position is None:
956
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
957
+ cache_position = torch.arange(
958
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
959
+ )
960
+ if position_ids is None:
961
+ position_ids = cache_position.unsqueeze(0)
962
+
963
+ causal_mask = self._update_causal_mask(
964
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
965
+ )
966
+ hidden_states = inputs_embeds
967
+
968
+ # create position embeddings to be shared across the decoder layers
969
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
970
+
971
+ # decoder layers
972
+ all_hidden_states = () if output_hidden_states else None
973
+ all_self_attns = () if output_attentions else None
974
+ next_decoder_cache = None
975
+
976
+ for decoder_layer in self.layers:
977
+ if output_hidden_states:
978
+ all_hidden_states += (hidden_states,)
979
+
980
+ if self.gradient_checkpointing and self.training:
981
+ layer_outputs = self._gradient_checkpointing_func(
982
+ decoder_layer.__call__,
983
+ hidden_states,
984
+ causal_mask,
985
+ position_ids,
986
+ past_key_values,
987
+ output_attentions,
988
+ use_cache,
989
+ cache_position,
990
+ position_embeddings,
991
+ )
992
+ else:
993
+ layer_outputs = decoder_layer(
994
+ hidden_states,
995
+ attention_mask=causal_mask,
996
+ position_ids=position_ids,
997
+ past_key_value=past_key_values,
998
+ output_attentions=output_attentions,
999
+ use_cache=use_cache,
1000
+ cache_position=cache_position,
1001
+ position_embeddings=position_embeddings,
1002
+ )
1003
+
1004
+ hidden_states = layer_outputs[0]
1005
+
1006
+ if use_cache:
1007
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1008
+
1009
+ if output_attentions:
1010
+ all_self_attns += (layer_outputs[1],)
1011
+
1012
+ hidden_states = self.norm(hidden_states)
1013
+
1014
+ # add hidden states from the last decoder layer
1015
+ if output_hidden_states:
1016
+ all_hidden_states += (hidden_states,)
1017
+
1018
+ next_cache = next_decoder_cache if use_cache else None
1019
+ if return_legacy_cache:
1020
+ next_cache = next_cache.to_legacy_cache()
1021
+
1022
+ if not return_dict:
1023
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1024
+ return BaseModelOutputWithPast(
1025
+ last_hidden_state=hidden_states,
1026
+ past_key_values=next_cache,
1027
+ hidden_states=all_hidden_states,
1028
+ attentions=all_self_attns,
1029
+ )
1030
+
1031
+ def _update_causal_mask(
1032
+ self,
1033
+ attention_mask: torch.Tensor,
1034
+ input_tensor: torch.Tensor,
1035
+ cache_position: torch.Tensor,
1036
+ past_key_values: Cache,
1037
+ output_attentions: bool,
1038
+ ):
1039
+ if self.config._attn_implementation == "flash_attention_2":
1040
+ if attention_mask is not None and 0.0 in attention_mask:
1041
+ return attention_mask
1042
+ return None
1043
+
1044
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1045
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1046
+ # to infer the attention mask.
1047
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1048
+ using_static_cache = isinstance(past_key_values, StaticCache)
1049
+
1050
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1051
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1052
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1053
+ attention_mask,
1054
+ inputs_embeds=input_tensor,
1055
+ past_key_values_length=past_seen_tokens,
1056
+ is_training=self.training,
1057
+ ):
1058
+ return None
1059
+
1060
+ dtype, device = input_tensor.dtype, input_tensor.device
1061
+ sequence_length = input_tensor.shape[1]
1062
+ if using_static_cache:
1063
+ target_length = past_key_values.get_max_cache_shape()
1064
+ else:
1065
+ target_length = (
1066
+ attention_mask.shape[-1]
1067
+ if isinstance(attention_mask, torch.Tensor)
1068
+ else past_seen_tokens + sequence_length + 1
1069
+ )
1070
+
1071
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1072
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
1073
+ attention_mask,
1074
+ sequence_length=sequence_length,
1075
+ target_length=target_length,
1076
+ dtype=dtype,
1077
+ device=device,
1078
+ cache_position=cache_position,
1079
+ batch_size=input_tensor.shape[0],
1080
+ )
1081
+
1082
+ if (
1083
+ self.config._attn_implementation == "sdpa"
1084
+ and attention_mask is not None
1085
+ and attention_mask.device.type == "cuda"
1086
+ and not output_attentions
1087
+ ):
1088
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1089
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1090
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1091
+ min_dtype = torch.finfo(dtype).min
1092
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1093
+
1094
+ return causal_mask
1095
+
1096
+ @staticmethod
1097
+ def _prepare_4d_causal_attention_mask_with_cache_position(
1098
+ attention_mask: torch.Tensor,
1099
+ sequence_length: int,
1100
+ target_length: int,
1101
+ dtype: torch.dtype,
1102
+ device: torch.device,
1103
+ cache_position: torch.Tensor,
1104
+ batch_size: int,
1105
+ **kwargs,
1106
+ ):
1107
+ """
1108
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
1109
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
1110
+
1111
+ Args:
1112
+ attention_mask (`torch.Tensor`):
1113
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
1114
+ `(batch_size, 1, query_length, key_value_length)`.
1115
+ sequence_length (`int`):
1116
+ The sequence length being processed.
1117
+ target_length (`int`):
1118
+ The target length: when generating with static cache, the mask should be as long as the static cache,
1119
+ to account for the 0 padding, the part of the cache that is not filled yet.
1120
+ dtype (`torch.dtype`):
1121
+ The dtype to use for the 4D attention mask.
1122
+ device (`torch.device`):
1123
+ The device to plcae the 4D attention mask on.
1124
+ cache_position (`torch.Tensor`):
1125
+ Indices depicting the position of the input sequence tokens in the sequence.
1126
+ batch_size (`torch.Tensor`):
1127
+ Batch size.
1128
+ """
1129
+ if attention_mask is not None and attention_mask.dim() == 4:
1130
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
1131
+ causal_mask = attention_mask
1132
+ else:
1133
+ min_dtype = torch.finfo(dtype).min
1134
+ causal_mask = torch.full(
1135
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1136
+ )
1137
+ if sequence_length != 1:
1138
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1139
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1140
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
1141
+ if attention_mask is not None:
1142
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1143
+ mask_length = attention_mask.shape[-1]
1144
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1145
+ padding_mask = padding_mask == 0
1146
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1147
+ padding_mask, min_dtype
1148
+ )
1149
+
1150
+ return causal_mask
1151
+
1152
+
1153
+ class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
1154
+ _tied_weights_keys = ["lm_head.weight"]
1155
+
1156
+ def __init__(self, config):
1157
+ super().__init__(config)
1158
+ self.model = LlamaModel(config)
1159
+ self.vocab_size = config.vocab_size
1160
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1161
+
1162
+ # Initialize weights and apply final processing
1163
+ self.post_init()
1164
+
1165
+ def get_input_embeddings(self):
1166
+ return self.model.embed_tokens
1167
+
1168
+ def set_input_embeddings(self, value):
1169
+ self.model.embed_tokens = value
1170
+
1171
+ def get_output_embeddings(self):
1172
+ return self.lm_head
1173
+
1174
+ def set_output_embeddings(self, new_embeddings):
1175
+ self.lm_head = new_embeddings
1176
+
1177
+ def set_decoder(self, decoder):
1178
+ self.model = decoder
1179
+
1180
+ def get_decoder(self):
1181
+ return self.model
1182
+
1183
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1184
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1185
+ def forward(
1186
+ self,
1187
+ input_ids: torch.LongTensor = None,
1188
+ attention_mask: Optional[torch.Tensor] = None,
1189
+ position_ids: Optional[torch.LongTensor] = None,
1190
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1191
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1192
+ labels: Optional[torch.LongTensor] = None,
1193
+ use_cache: Optional[bool] = None,
1194
+ output_attentions: Optional[bool] = None,
1195
+ output_hidden_states: Optional[bool] = None,
1196
+ return_dict: Optional[bool] = None,
1197
+ cache_position: Optional[torch.LongTensor] = None,
1198
+ num_logits_to_keep: int = 0,
1199
+ **loss_kwargs,
1200
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1201
+ r"""
1202
+ Args:
1203
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1204
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1205
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1206
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1207
+
1208
+ num_logits_to_keep (`int`, *optional*):
1209
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1210
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1211
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1212
+
1213
+ Returns:
1214
+
1215
+ Example:
1216
+
1217
+ ```python
1218
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1219
+
1220
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1221
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1222
+
1223
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1224
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1225
+
1226
+ >>> # Generate
1227
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1228
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1229
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1230
+ ```"""
1231
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1232
+ output_hidden_states = (
1233
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1234
+ )
1235
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1236
+
1237
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1238
+ outputs = self.model(
1239
+ input_ids=input_ids,
1240
+ attention_mask=attention_mask,
1241
+ position_ids=position_ids,
1242
+ past_key_values=past_key_values,
1243
+ inputs_embeds=inputs_embeds,
1244
+ use_cache=use_cache,
1245
+ output_attentions=output_attentions,
1246
+ output_hidden_states=output_hidden_states,
1247
+ return_dict=return_dict,
1248
+ cache_position=cache_position,
1249
+ )
1250
+
1251
+ hidden_states = outputs[0]
1252
+ if self.config.pretraining_tp > 1:
1253
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1254
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1255
+ logits = torch.cat(logits, dim=-1)
1256
+ else:
1257
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1258
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1259
+
1260
+ loss = None
1261
+ if labels is not None:
1262
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **loss_kwargs)
1263
+
1264
+ if not return_dict:
1265
+ output = (logits,) + outputs[1:]
1266
+ return (loss,) + output if loss is not None else output
1267
+
1268
+ return CausalLMOutputWithPast(
1269
+ loss=loss,
1270
+ logits=logits,
1271
+ past_key_values=outputs.past_key_values,
1272
+ hidden_states=outputs.hidden_states,
1273
+ attentions=outputs.attentions,
1274
+ )
1275
+
1276
+
1277
+ @add_start_docstrings(
1278
+ """
1279
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1280
+
1281
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1282
+ (e.g. GPT-2) do.
1283
+
1284
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1285
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1286
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1287
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1288
+ each row of the batch).
1289
+ """,
1290
+ LLAMA_START_DOCSTRING,
1291
+ )
1292
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1293
+ def __init__(self, config):
1294
+ super().__init__(config)
1295
+ self.num_labels = config.num_labels
1296
+ self.model = LlamaModel(config)
1297
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1298
+
1299
+ # Initialize weights and apply final processing
1300
+ self.post_init()
1301
+
1302
+ def get_input_embeddings(self):
1303
+ return self.model.embed_tokens
1304
+
1305
+ def set_input_embeddings(self, value):
1306
+ self.model.embed_tokens = value
1307
+
1308
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1309
+ def forward(
1310
+ self,
1311
+ input_ids: Optional[torch.LongTensor] = None,
1312
+ attention_mask: Optional[torch.Tensor] = None,
1313
+ position_ids: Optional[torch.LongTensor] = None,
1314
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1315
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1316
+ labels: Optional[torch.LongTensor] = None,
1317
+ use_cache: Optional[bool] = None,
1318
+ output_attentions: Optional[bool] = None,
1319
+ output_hidden_states: Optional[bool] = None,
1320
+ return_dict: Optional[bool] = None,
1321
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1322
+ r"""
1323
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1324
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1325
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1326
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1327
+ """
1328
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1329
+
1330
+ transformer_outputs = self.model(
1331
+ input_ids,
1332
+ attention_mask=attention_mask,
1333
+ position_ids=position_ids,
1334
+ past_key_values=past_key_values,
1335
+ inputs_embeds=inputs_embeds,
1336
+ use_cache=use_cache,
1337
+ output_attentions=output_attentions,
1338
+ output_hidden_states=output_hidden_states,
1339
+ return_dict=return_dict,
1340
+ )
1341
+ hidden_states = transformer_outputs[0]
1342
+ logits = self.score(hidden_states)
1343
+
1344
+ if input_ids is not None:
1345
+ batch_size = input_ids.shape[0]
1346
+ else:
1347
+ batch_size = inputs_embeds.shape[0]
1348
+
1349
+ if self.config.pad_token_id is None and batch_size != 1:
1350
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1351
+ if self.config.pad_token_id is None:
1352
+ sequence_lengths = -1
1353
+ else:
1354
+ if input_ids is not None:
1355
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1356
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1357
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1358
+ sequence_lengths = sequence_lengths.to(logits.device)
1359
+ else:
1360
+ sequence_lengths = -1
1361
+
1362
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1363
+
1364
+ loss = None
1365
+ if labels is not None:
1366
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
1367
+
1368
+ if not return_dict:
1369
+ output = (pooled_logits,) + transformer_outputs[1:]
1370
+ return ((loss,) + output) if loss is not None else output
1371
+
1372
+ return SequenceClassifierOutputWithPast(
1373
+ loss=loss,
1374
+ logits=pooled_logits,
1375
+ past_key_values=transformer_outputs.past_key_values,
1376
+ hidden_states=transformer_outputs.hidden_states,
1377
+ attentions=transformer_outputs.attentions,
1378
+ )
1379
+
1380
+
1381
+ @add_start_docstrings(
1382
+ """
1383
+ The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
1384
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1385
+ """,
1386
+ LLAMA_START_DOCSTRING,
1387
+ )
1388
+ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
1389
+ base_model_prefix = "transformer"
1390
+
1391
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
1392
+ def __init__(self, config):
1393
+ super().__init__(config)
1394
+ self.transformer = LlamaModel(config)
1395
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1396
+
1397
+ # Initialize weights and apply final processing
1398
+ self.post_init()
1399
+
1400
+ def get_input_embeddings(self):
1401
+ return self.transformer.embed_tokens
1402
+
1403
+ def set_input_embeddings(self, value):
1404
+ self.transformer.embed_tokens = value
1405
+
1406
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1407
+ def forward(
1408
+ self,
1409
+ input_ids: Optional[torch.LongTensor] = None,
1410
+ attention_mask: Optional[torch.FloatTensor] = None,
1411
+ position_ids: Optional[torch.LongTensor] = None,
1412
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1413
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1414
+ start_positions: Optional[torch.LongTensor] = None,
1415
+ end_positions: Optional[torch.LongTensor] = None,
1416
+ output_attentions: Optional[bool] = None,
1417
+ output_hidden_states: Optional[bool] = None,
1418
+ return_dict: Optional[bool] = None,
1419
+ **kwargs,
1420
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1421
+ r"""
1422
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1423
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1424
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1425
+ are not taken into account for computing the loss.
1426
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1427
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1428
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1429
+ are not taken into account for computing the loss.
1430
+ """
1431
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1432
+
1433
+ outputs = self.transformer(
1434
+ input_ids,
1435
+ attention_mask=attention_mask,
1436
+ position_ids=position_ids,
1437
+ past_key_values=past_key_values,
1438
+ inputs_embeds=inputs_embeds,
1439
+ output_attentions=output_attentions,
1440
+ output_hidden_states=output_hidden_states,
1441
+ return_dict=return_dict,
1442
+ )
1443
+
1444
+ sequence_output = outputs[0]
1445
+
1446
+ logits = self.qa_outputs(sequence_output)
1447
+ start_logits, end_logits = logits.split(1, dim=-1)
1448
+ start_logits = start_logits.squeeze(-1).contiguous()
1449
+ end_logits = end_logits.squeeze(-1).contiguous()
1450
+
1451
+ loss = None
1452
+ if start_positions is not None and end_positions is not None:
1453
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
1454
+
1455
+ if not return_dict:
1456
+ output = (start_logits, end_logits) + outputs[2:]
1457
+ return ((loss,) + output) if loss is not None else output
1458
+
1459
+ return QuestionAnsweringModelOutput(
1460
+ loss=loss,
1461
+ start_logits=start_logits,
1462
+ end_logits=end_logits,
1463
+ hidden_states=outputs.hidden_states,
1464
+ attentions=outputs.attentions,
1465
+ )
1466
+
1467
+
1468
+ @add_start_docstrings(
1469
+ """
1470
+ The Llama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1471
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1472
+ """,
1473
+ LLAMA_START_DOCSTRING,
1474
+ )
1475
+ class LlamaForTokenClassification(LlamaPreTrainedModel):
1476
+ def __init__(self, config):
1477
+ super().__init__(config)
1478
+ self.num_labels = config.num_labels
1479
+ self.model = LlamaModel(config)
1480
+ if getattr(config, "classifier_dropout", None) is not None:
1481
+ classifier_dropout = config.classifier_dropout
1482
+ elif getattr(config, "hidden_dropout", None) is not None:
1483
+ classifier_dropout = config.hidden_dropout
1484
+ else:
1485
+ classifier_dropout = 0.1
1486
+ self.dropout = nn.Dropout(classifier_dropout)
1487
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1488
+
1489
+ # Initialize weights and apply final processing
1490
+ self.post_init()
1491
+
1492
+ def get_input_embeddings(self):
1493
+ return self.model.embed_tokens
1494
+
1495
+ def set_input_embeddings(self, value):
1496
+ self.model.embed_tokens = value
1497
+
1498
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1499
+ @add_code_sample_docstrings(
1500
+ checkpoint=_CHECKPOINT_FOR_DOC,
1501
+ output_type=TokenClassifierOutput,
1502
+ config_class=_CONFIG_FOR_DOC,
1503
+ )
1504
+ def forward(
1505
+ self,
1506
+ input_ids: Optional[torch.LongTensor] = None,
1507
+ attention_mask: Optional[torch.Tensor] = None,
1508
+ position_ids: Optional[torch.LongTensor] = None,
1509
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1510
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1511
+ labels: Optional[torch.LongTensor] = None,
1512
+ use_cache: Optional[bool] = None,
1513
+ output_attentions: Optional[bool] = None,
1514
+ output_hidden_states: Optional[bool] = None,
1515
+ return_dict: Optional[bool] = None,
1516
+ ) -> Union[Tuple, TokenClassifierOutput]:
1517
+ r"""
1518
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1519
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1520
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1521
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1522
+ """
1523
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1524
+
1525
+ outputs = self.model(
1526
+ input_ids,
1527
+ attention_mask=attention_mask,
1528
+ position_ids=position_ids,
1529
+ past_key_values=past_key_values,
1530
+ inputs_embeds=inputs_embeds,
1531
+ use_cache=use_cache,
1532
+ output_attentions=output_attentions,
1533
+ output_hidden_states=output_hidden_states,
1534
+ return_dict=return_dict,
1535
+ )
1536
+ sequence_output = outputs[0]
1537
+ sequence_output = self.dropout(sequence_output)
1538
+ logits = self.score(sequence_output)
1539
+
1540
+ loss = None
1541
+ if labels is not None:
1542
+ loss = self.loss_function(logits, labels, self.config)
1543
+
1544
+ if not return_dict:
1545
+ output = (logits,) + outputs[2:]
1546
+ return ((loss,) + output) if loss is not None else output
1547
+
1548
+ return TokenClassifierOutput(
1549
+ loss=loss,
1550
+ logits=logits,
1551
+ hidden_states=outputs.hidden_states,
1552
+ attentions=outputs.attentions,
1553
+ )