Upload law model with 16 experts (11.4B params)
Browse files- .gitattributes +1 -0
- README.md +348 -0
- chat_template.jinja +331 -0
- citation.json +9 -0
- config.json +123 -0
- expert_mapping.json +434 -0
- generation_config.json +10 -0
- model-00001-of-00013.safetensors +3 -0
- model-00002-of-00013.safetensors +3 -0
- model-00003-of-00013.safetensors +3 -0
- model-00004-of-00013.safetensors +3 -0
- model-00005-of-00013.safetensors +3 -0
- model-00006-of-00013.safetensors +3 -0
- model-00007-of-00013.safetensors +3 -0
- model-00008-of-00013.safetensors +3 -0
- model-00009-of-00013.safetensors +3 -0
- model-00010-of-00013.safetensors +3 -0
- model-00011-of-00013.safetensors +3 -0
- model-00012-of-00013.safetensors +3 -0
- model-00013-of-00013.safetensors +3 -0
- model.safetensors.index.json +419 -0
- special_tokens_map.json +23 -0
- tokenizer.json +3 -0
- tokenizer_config.json +183 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
tags:
|
| 9 |
+
- mixture-of-experts
|
| 10 |
+
- moe
|
| 11 |
+
- expert-pruning
|
| 12 |
+
- gpt-oss
|
| 13 |
+
- openai
|
| 14 |
+
- reasoning
|
| 15 |
+
- law
|
| 16 |
+
- specialized
|
| 17 |
+
- efficient
|
| 18 |
+
- transformer
|
| 19 |
+
- causal-lm
|
| 20 |
+
- text-generation
|
| 21 |
+
- pytorch
|
| 22 |
+
- pruned-model
|
| 23 |
+
- domain-specific
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
# Law GPT-OSS Model (16 Experts)
|
| 27 |
+
|
| 28 |
+
**Project**: https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/
|
| 29 |
+
|
| 30 |
+
<div align="center">
|
| 31 |
+
|
| 32 |
+
### 👥 Follow the Authors
|
| 33 |
+
|
| 34 |
+
**Aman Priyanshu**
|
| 35 |
+
[](https://www.linkedin.com/in/aman-priyanshu/)
|
| 36 |
+
[](https://x.com/AmanPriyanshu6)
|
| 37 |
+
[](https://amanpriyanshu.github.io/)
|
| 38 |
+
|
| 39 |
+
**Supriti Vijay**
|
| 40 |
+
[](https://www.linkedin.com/in/supriti-vijay/)
|
| 41 |
+
[](https://x.com/SupritiVijay)
|
| 42 |
+
[](https://supritivijay.github.io/)
|
| 43 |
+
|
| 44 |
+
</div>
|
| 45 |
+
|
| 46 |
+
## Introduction
|
| 47 |
+
|
| 48 |
+
This is a pruned variant of OpenAI's GPT-OSS-20B model, reduced to 16 experts per layer based on activation patterns from the [AmanPriyanshu/GPT-OSS-20B MoE Expert Activations dataset](https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations). We analyzed router decisions across evaluation benchmarks to identify and retain experts most relevant for law tasks.
|
| 49 |
+
|
| 50 |
+
**⚠️ Experimental Model**: This is an experimental pruned model that may not work well - check the [examples below](#model-examples) to see if the outputs meet your needs before use.
|
| 51 |
+
|
| 52 |
+
This pruning approach reduces the model size while attempting to preserve performance on the target domain.
|
| 53 |
+
|
| 54 |
+
## Model Architecture & Statistics
|
| 55 |
+
|
| 56 |
+
| Metric | Value |
|
| 57 |
+
|--------|-------|
|
| 58 |
+
| **Base Model** | openai/gpt-oss-20b |
|
| 59 |
+
| **Architecture** | Mixture-of-Experts Transformer |
|
| 60 |
+
| **Total Parameters** | ~11.4B (pruned from 21B) |
|
| 61 |
+
| **Original Experts per Layer** | 32 |
|
| 62 |
+
| **Pruned Experts per Layer** | 16 |
|
| 63 |
+
| **Layers** | 24 |
|
| 64 |
+
| **Top-k Routing** | 4 |
|
| 65 |
+
| **Context Length** | 128K tokens |
|
| 66 |
+
| **Attention Heads** | 64 (Query), 8 (Key-Value) |
|
| 67 |
+
| **Residual Dimension** | 2880 |
|
| 68 |
+
| **Attention Pattern** | Alternating dense & sliding window (128 tokens) |
|
| 69 |
+
| **Positional Encoding** | RoPE (Rotary Position Embedding) |
|
| 70 |
+
| **Normalization** | RMSNorm |
|
| 71 |
+
| **Precision** | BF16 |
|
| 72 |
+
| **License** | Apache 2.0 |
|
| 73 |
+
| **Specialization** | Law |
|
| 74 |
+
|
| 75 |
+
## Pruning Methodology
|
| 76 |
+
|
| 77 |
+
### What is Expert Pruning?
|
| 78 |
+
Mixture-of-Experts models contain multiple specialized sub-networks (experts) per layer. During inference, only a subset of experts are activated for each token. Expert pruning involves:
|
| 79 |
+
|
| 80 |
+
1. **Analyzing Usage Patterns**: Tracking which experts activate most frequently for specific tasks
|
| 81 |
+
2. **Removing Underutilized Experts**: Discarding experts with low activation rates for the target domain
|
| 82 |
+
3. **Preserving Router Functionality**: Maintaining the routing mechanism with fewer available experts
|
| 83 |
+
|
| 84 |
+
### Our Approach
|
| 85 |
+
- **Data-Driven Selection**: Used activation patterns from law evaluation tasks
|
| 86 |
+
- **Systematic Reduction**: Reduced from 32 to 16 experts per layer
|
| 87 |
+
- **No Retraining**: Direct removal without additional training steps
|
| 88 |
+
|
| 89 |
+
## Performance & Applications
|
| 90 |
+
|
| 91 |
+
### Pruning Benefits
|
| 92 |
+
- **Smaller Memory Footprint**: 50.0% of original expert parameters
|
| 93 |
+
- **Reduced Computational Load**: Fewer routing decisions during inference
|
| 94 |
+
- **Focused Capabilities**: Retains experts relevant to law tasks
|
| 95 |
+
|
| 96 |
+
### Use Cases
|
| 97 |
+
- **Speculative Decoding**: Draft model for full GPT-OSS-20B
|
| 98 |
+
- **Resource-Constrained Deployment**: Edge devices, mobile applications
|
| 99 |
+
- **Research**: Study expert specialization in MoE models
|
| 100 |
+
- **Fine-tuning**: Smaller base model for domain adaptation
|
| 101 |
+
|
| 102 |
+
*Note: Performance may vary depending on how well the pruned experts match your specific use case.*
|
| 103 |
+
|
| 104 |
+
## Motivation & Expert Selection
|
| 105 |
+
|
| 106 |
+
This legal domain model employs experts that demonstrated expertise during law-related tasks from MMLU legal subjects. These experts excel at legal reasoning, jurisprudence, and understanding of legal frameworks and procedures.
|
| 107 |
+
|
| 108 |
+
The expert selection process utilized our comprehensive analysis of router activation patterns across multiple evaluation benchmarks:
|
| 109 |
+
|
| 110 |
+
- **GPQA**: Graduate-level questions in physics, chemistry, biology (Diamond & Expert subsets)
|
| 111 |
+
- **MMLU/MMLU-Pro**: Comprehensive knowledge across 57+ subjects including science, medicine, law
|
| 112 |
+
- **SORRY-Bench**: Safety evaluation across harmful content categories
|
| 113 |
+
- **Tulu3**: Persona-driven instruction following with verifiable constraints
|
| 114 |
+
- **Polyglot-or-Not**: Multilingual factual completion tasks
|
| 115 |
+
|
| 116 |
+
By identifying experts that consistently activated for law tasks, we created this specialized model that maintains domain expertise while significantly reducing computational requirements from 32 to 16 experts per layer.
|
| 117 |
+
|
| 118 |
+
## Dataset & Analysis Foundation
|
| 119 |
+
|
| 120 |
+
This model is based on analysis from the **GPT-OSS-20B MoE Expert Activations dataset** available at:
|
| 121 |
+
🔗 **https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations**
|
| 122 |
+
|
| 123 |
+
The dataset contains router activation patterns from OpenAI's GPT-OSS-20B model across diverse evaluation benchmarks, enabling the creation of these domain-optimized models through systematic expert pruning.
|
| 124 |
+
|
| 125 |
+
### Pruning Methodology
|
| 126 |
+
Our approach involves:
|
| 127 |
+
1. **Activation Analysis**: Comprehensive evaluation of expert usage patterns across domain-specific tasks
|
| 128 |
+
2. **Expert Ranking**: Identification of the most frequently activated experts for target domains
|
| 129 |
+
3. **Systematic Pruning**: Reduction from 32 to 16 experts while preserving router functionality
|
| 130 |
+
4. **Quality Validation**: Testing to ensure maintained performance on target tasks
|
| 131 |
+
|
| 132 |
+
*This is a direct pruning approach - no additional training was performed. The model inherits all capabilities from the original GPT-OSS-20B with focused expert selection.*
|
| 133 |
+
|
| 134 |
+
## Usage
|
| 135 |
+
|
| 136 |
+
### CPU Inference
|
| 137 |
+
|
| 138 |
+
```python
|
| 139 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 140 |
+
import torch
|
| 141 |
+
|
| 142 |
+
# Load the specialized model on CPU
|
| 143 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 144 |
+
"AmanPriyanshu/gpt-oss-11.4b-specialized-law-pruned-moe-only-16-experts",
|
| 145 |
+
torch_dtype=torch.bfloat16,
|
| 146 |
+
device_map="cpu",
|
| 147 |
+
trust_remote_code=True
|
| 148 |
+
)
|
| 149 |
+
tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-11.4b-specialized-law-pruned-moe-only-16-experts")
|
| 150 |
+
|
| 151 |
+
# Generate with the model
|
| 152 |
+
messages = [
|
| 153 |
+
{"role": "user", "content": "What is the difference between civil and criminal law?"}
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
inputs = tokenizer.apply_chat_template(
|
| 157 |
+
messages,
|
| 158 |
+
add_generation_prompt=True,
|
| 159 |
+
return_tensors="pt",
|
| 160 |
+
return_dict=True,
|
| 161 |
+
reasoning_effort="medium"
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Ensure inputs are on the same device as model
|
| 165 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 166 |
+
|
| 167 |
+
outputs = model.generate(
|
| 168 |
+
**inputs,
|
| 169 |
+
max_new_tokens=512,
|
| 170 |
+
do_sample=True,
|
| 171 |
+
temperature=0.1,
|
| 172 |
+
top_p=0.9,
|
| 173 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 174 |
+
eos_token_id=tokenizer.eos_token_id
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Decode only the generated part
|
| 178 |
+
input_length = inputs['input_ids'].shape[1]
|
| 179 |
+
response_tokens = outputs[0][input_length:]
|
| 180 |
+
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
|
| 181 |
+
print(response)
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
### Apple Silicon (MPS) Inference
|
| 185 |
+
|
| 186 |
+
```python
|
| 187 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 188 |
+
import torch
|
| 189 |
+
|
| 190 |
+
# Check MPS availability and load model
|
| 191 |
+
device = "mps" if torch.backends.mps.is_available() else "cpu"
|
| 192 |
+
|
| 193 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 194 |
+
"AmanPriyanshu/gpt-oss-11.4b-specialized-law-pruned-moe-only-16-experts",
|
| 195 |
+
torch_dtype=torch.float16, # Better MPS compatibility
|
| 196 |
+
device_map=device,
|
| 197 |
+
trust_remote_code=True,
|
| 198 |
+
low_cpu_mem_usage=True
|
| 199 |
+
)
|
| 200 |
+
tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-11.4b-specialized-law-pruned-moe-only-16-experts")
|
| 201 |
+
|
| 202 |
+
# Generate with the model
|
| 203 |
+
messages = [
|
| 204 |
+
{"role": "user", "content": "What is the difference between civil and criminal law?"}
|
| 205 |
+
]
|
| 206 |
+
|
| 207 |
+
inputs = tokenizer.apply_chat_template(
|
| 208 |
+
messages,
|
| 209 |
+
add_generation_prompt=True,
|
| 210 |
+
return_tensors="pt",
|
| 211 |
+
return_dict=True,
|
| 212 |
+
reasoning_effort="medium"
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# Move inputs to model device
|
| 216 |
+
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
| 217 |
+
|
| 218 |
+
# Use torch.no_grad for MPS stability
|
| 219 |
+
with torch.no_grad():
|
| 220 |
+
outputs = model.generate(
|
| 221 |
+
**inputs,
|
| 222 |
+
max_new_tokens=512,
|
| 223 |
+
do_sample=True,
|
| 224 |
+
temperature=0.1,
|
| 225 |
+
top_p=0.9,
|
| 226 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 227 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 228 |
+
use_cache=True
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Decode only the generated part
|
| 232 |
+
input_length = inputs['input_ids'].shape[1]
|
| 233 |
+
response_tokens = outputs[0][input_length:]
|
| 234 |
+
response = tokenizer.decode(response_tokens, skip_special_tokens=True)
|
| 235 |
+
print(response)
|
| 236 |
+
```
|
| 237 |
+
|
| 238 |
+
### GPU Inference
|
| 239 |
+
|
| 240 |
+
For CUDA GPU inference, the models work with minimal modifications from the CPU example above. Simply change:
|
| 241 |
+
```python
|
| 242 |
+
device_map="auto" # Will automatically use GPU if available
|
| 243 |
+
torch_dtype=torch.bfloat16 # or torch.float16
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
## Model Examples
|
| 247 |
+
|
| 248 |
+
The following examples demonstrate the model's performance on law tasks:
|
| 249 |
+
|
| 250 |
+
### Example 1
|
| 251 |
+
**Question:** What is the difference between civil and criminal law?
|
| 252 |
+
|
| 253 |
+
**Response:**
|
| 254 |
+
```
|
| 255 |
+
<|channel|>analysis<|message|>Need explain difference.<|end|><|start|>assistant<|channel|>final<|message|>**Civil law** and **criminal law** are the two main branches of the legal system that deal with very different kinds of disputes and wrongs. While they share some procedural rules and some common legal concepts, they differ in purpose, parties, burden of proof, remedies, and consequences. Below is a side‑by‑side comparison to help you see the key distinctions.
|
| 256 |
+
|
| 257 |
+
| Feature | **Civil Law** | **Criminal Law** |
|
| 258 |
+
|---|---|---|
|
| 259 |
+
| **Purpose / Goal** | Resolve disputes between private parties (individuals, businesses, organizations). Protect rights, enforce contracts, compensate damages. | Protect society and the state. Punise wrongdoing that harms the public or violates the law. |
|
| 260 |
+
| **Parties** | Plaintiff (the person or entity who claims a wrong) vs. Defendant (the person or entity accused of the wrong). | State (prosecution) vs. Defendant (the accused). The state is the “victory” party. |
|
| 261 |
+
| **Nature of Wrong** | Civil wrongs (torts, breach of contract, property disputes, family matters, etc.) | Criminal wrongs (off crimes such as theft, assault, murder, fraud, etc.) |
|
| 262 |
+
| **Burur of Proof** | **Pre‑balance of the evidence** (a “pre‑balance” or “pre‑probile” standard). The plaintiff must show that it is **more likely than unlikely** that the defendant is liable. | **Beyond a reasonable doubt** – the highest standard. The prosecution must convince the judge or jury that the defendant’s guilt is almost certain. |
|
| 263 |
+
| **Remedies / Outcomes** | **Comp damages** (mononey compensation), **inj damages** (court orders to do or stop something), **specific performance** (e.g., deliver a contract). No criminal punishment. | **Punitive sanctions** – imprisonment, fines, probation, community service, restitution, or death penalty (in some jurisdictions). The state may also order restitution to the victim. |
|
| 264 |
+
| **Procedure** | Usually **civil litigation** in a civil court. Parties file pleadings, discovery, trial, and appeal. The process is often **adversarial** but can be **inquisitive** in some jurisdictions. | **Criminal proceeding** – starts with an arrest or indictment, followed by arra‑, pre‑trial motions, trial, sentencing, and appeal.
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
---
|
| 268 |
+
|
| 269 |
+
### Example 2
|
| 270 |
+
**Question:** Explain the concept of due process in legal systems.
|
| 271 |
+
|
| 272 |
+
**Response:**
|
| 273 |
+
```
|
| 274 |
+
<|channel|>analysis<|message|>Need explain due process.<|end|><|start|>assistant<|channel|>final<|message|>**Due process**—often called *due‑process* or *procedal due‑process*—is a fundamental principle in many legal systems that guarantees fair treatment of individuals by the state. It is a safeguard against arbitrary or unjust actions by public authorities, ensuring that everyone has the right to a fair, impartial, and transparent legal procedure before any legal decision is made that affects their rights, property, or liberty.
|
| 275 |
+
|
| 276 |
+
Below is a comprehensive overview of the concept, its origins, components, and how it operates in practice.
|
| 277 |
+
|
| 278 |
+
---
|
| 279 |
+
|
| 280 |
+
## 1. What is Due Process?
|
| 281 |
+
|
| 282 |
+
- **Definition**: A set of procedural rules that the government must follow before deprending a person of a protected interest (e.g., life, liberty, property, or other civil rights).
|
| 283 |
+
- **Purpose**: Protects individuals from arbitrary, cap‑free, or biased actions by the state; ensures fairness, transparency, and accountability.
|
| 284 |
+
|
| 285 |
+
### Key Elements
|
| 286 |
+
|
| 287 |
+
| Element | Meaning | Typical Example |
|
| 288 |
+
|---------|---------|----------------|
|
| 289 |
+
| **Notice** | The person must be informed of the action or claim against them. | A summons to court, a notice of a tax audit. |
|
| 290 |
+
| **Opportunity to Respond** | The person must be given a chance to present their case, evidence, and arguments. | A hearing before a judge or administrative panel. |
|
| 291 |
+
| **Neutral Decision Maker** | The decision must be made by an impartial official or body. | A judge, a tribunal, or an independent regulator. |
|
| 292 |
+
| **Reasoned Decision** | The decision must be based on evidence and legal reasoning, not arbitrary discretion. | A written judgment explaining the basis for the ruling. |
|
| 293 |
+
| **Right to Appeal** | The person can challenge the decision in a higher court or body. | Appeal to a higher court, or a review by a higher administrative agency. |
|
| 294 |
+
|
| 295 |
+
---
|
| 296 |
+
|
| 297 |
+
## 2. Historical Roots
|
| 298 |
+
|
| 299 |
+
| Tradition | Origin | Influence |
|
| 300 |
+
|-----------|--------|-----------|
|
| 301 |
+
| **Common Law** | English courts developed procedural fairness in the 17th–18th centuries. | The “rule of law” and “natural justice” principles. |
|
| 302 |
+
| **Civil Law** | Roman law’s *procedus* and *procedus ad formum* influenced European civil codes. | Codified procedural rights in civil codes (e.g., French Civil Code). |
|
| 303 |
+
| **Constitutions** | U.S. Constitution’s 5th and 6th Amendments
|
| 304 |
+
```
|
| 305 |
+
|
| 306 |
+
---
|
| 307 |
+
|
| 308 |
+
### Example 3
|
| 309 |
+
**Question:** What are the basic rights protected by the First Amendment?
|
| 310 |
+
|
| 311 |
+
**Response:**
|
| 312 |
+
```
|
| 313 |
+
<|channel|>analysis<|message|>Need to answer: freedom of religion, speech, press, assembly, petition.<|end|><|start|>assistant<|channel|>final<|message|>The First Amendment to the U.S. Constitution protects several core civil liberties. In short, it guarantees:
|
| 314 |
+
|
| 315 |
+
| Right | What it means |
|
| 316 |
+
|---|---|
|
| 317 |
+
| **Freedom of religion** | The government may not establish a religion or prohibit the practice of any religion. |
|
| 318 |
+
| **Freedom of speech** | Individuals may express opinions, ideas, and viewpoints without government censorship. |
|
| 319 |
+
| **Freedom of the press** | The press (newspapers, books, radio, etc.) can publish and distribute information freely. |
|
| 320 |
+
| **Freedom of assembly** | People may gather peacefully for protest, demonstration, or other purposes. |
|
| 321 |
+
| **Freedom to petition** | Citizens can petition the government for redress of grievances. |
|
| 322 |
+
|
| 323 |
+
These five protections together form the foundation of the U.S. democratic system and are the rights most frequently invoked in First‑Amendment cases.<|return|>
|
| 324 |
+
```
|
| 325 |
+
|
| 326 |
+
---
|
| 327 |
+
|
| 328 |
+
## Citation
|
| 329 |
+
|
| 330 |
+
If you use this model in your research, please cite:
|
| 331 |
+
|
| 332 |
+
```bibtex
|
| 333 |
+
@misc{priyanshu2025gptoss,
|
| 334 |
+
title={{GPT-OSS MoE Expert Fingerprinting: Analyzing Expert Activation Patterns in Mixture of Experts Models}},
|
| 335 |
+
author={Priyanshu, Aman and Vijay, Supriti},
|
| 336 |
+
year={2025},
|
| 337 |
+
howpublished={\url{https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/}},
|
| 338 |
+
note={Interactive analysis tool for expert activation patterns in MoE architectures}
|
| 339 |
+
}
|
| 340 |
+
```
|
| 341 |
+
|
| 342 |
+
## References & Resources
|
| 343 |
+
|
| 344 |
+
- **Original Model**: [OpenAI GPT-OSS Model Card](https://openai.com/index/introducing-gpt-oss/)
|
| 345 |
+
- **Model Hub**: [GPT-OSS-20B on Hugging Face](https://huggingface.co/openai/gpt-oss-20b)
|
| 346 |
+
- **Expert Analysis Dataset**: [GPT-OSS-20B MoE Expert Activations](https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations)
|
| 347 |
+
- **Project Page**: [GPT-OSS MoE Expert Fingerprinting](https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/)
|
| 348 |
+
- **GitHub Repository**: [OpenAI GPT-OSS](https://github.com/openai/gpt-oss)
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{#-
|
| 2 |
+
In addition to the normal inputs of `messages` and `tools`, this template also accepts the
|
| 3 |
+
following kwargs:
|
| 4 |
+
- "builtin_tools": A list, can contain "browser" and/or "python".
|
| 5 |
+
- "model_identity": A string that optionally describes the model identity.
|
| 6 |
+
- "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
|
| 7 |
+
#}
|
| 8 |
+
|
| 9 |
+
{#- Tool Definition Rendering ============================================== #}
|
| 10 |
+
{%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
|
| 11 |
+
{%- if param_spec.type == "array" -%}
|
| 12 |
+
{%- if param_spec['items'] -%}
|
| 13 |
+
{%- if param_spec['items']['type'] == "string" -%}
|
| 14 |
+
{{- "string[]" }}
|
| 15 |
+
{%- elif param_spec['items']['type'] == "number" -%}
|
| 16 |
+
{{- "number[]" }}
|
| 17 |
+
{%- elif param_spec['items']['type'] == "integer" -%}
|
| 18 |
+
{{- "number[]" }}
|
| 19 |
+
{%- elif param_spec['items']['type'] == "boolean" -%}
|
| 20 |
+
{{- "boolean[]" }}
|
| 21 |
+
{%- else -%}
|
| 22 |
+
{%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
|
| 23 |
+
{%- if inner_type == "object | object" or inner_type|length > 50 -%}
|
| 24 |
+
{{- "any[]" }}
|
| 25 |
+
{%- else -%}
|
| 26 |
+
{{- inner_type + "[]" }}
|
| 27 |
+
{%- endif -%}
|
| 28 |
+
{%- endif -%}
|
| 29 |
+
{%- if param_spec.nullable -%}
|
| 30 |
+
{{- " | null" }}
|
| 31 |
+
{%- endif -%}
|
| 32 |
+
{%- else -%}
|
| 33 |
+
{{- "any[]" }}
|
| 34 |
+
{%- if param_spec.nullable -%}
|
| 35 |
+
{{- " | null" }}
|
| 36 |
+
{%- endif -%}
|
| 37 |
+
{%- endif -%}
|
| 38 |
+
{%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
|
| 39 |
+
{#- Handle array of types like ["object", "object"] from Union[dict, list] #}
|
| 40 |
+
{%- if param_spec.type | length > 1 -%}
|
| 41 |
+
{{- param_spec.type | join(" | ") }}
|
| 42 |
+
{%- else -%}
|
| 43 |
+
{{- param_spec.type[0] }}
|
| 44 |
+
{%- endif -%}
|
| 45 |
+
{%- elif param_spec.oneOf -%}
|
| 46 |
+
{#- Handle oneOf schemas - check for complex unions and fallback to any #}
|
| 47 |
+
{%- set has_object_variants = false -%}
|
| 48 |
+
{%- for variant in param_spec.oneOf -%}
|
| 49 |
+
{%- if variant.type == "object" -%}
|
| 50 |
+
{%- set has_object_variants = true -%}
|
| 51 |
+
{%- endif -%}
|
| 52 |
+
{%- endfor -%}
|
| 53 |
+
{%- if has_object_variants and param_spec.oneOf|length > 1 -%}
|
| 54 |
+
{{- "any" }}
|
| 55 |
+
{%- else -%}
|
| 56 |
+
{%- for variant in param_spec.oneOf -%}
|
| 57 |
+
{{- render_typescript_type(variant, required_params) -}}
|
| 58 |
+
{%- if variant.description %}
|
| 59 |
+
{{- "// " + variant.description }}
|
| 60 |
+
{%- endif -%}
|
| 61 |
+
{%- if variant.default is defined %}
|
| 62 |
+
{{ "// default: " + variant.default|tojson }}
|
| 63 |
+
{%- endif -%}
|
| 64 |
+
{%- if not loop.last %}
|
| 65 |
+
{{- " | " }}
|
| 66 |
+
{% endif -%}
|
| 67 |
+
{%- endfor -%}
|
| 68 |
+
{%- endif -%}
|
| 69 |
+
{%- elif param_spec.type == "string" -%}
|
| 70 |
+
{%- if param_spec.enum -%}
|
| 71 |
+
{{- '"' + param_spec.enum|join('" | "') + '"' -}}
|
| 72 |
+
{%- else -%}
|
| 73 |
+
{{- "string" }}
|
| 74 |
+
{%- if param_spec.nullable %}
|
| 75 |
+
{{- " | null" }}
|
| 76 |
+
{%- endif -%}
|
| 77 |
+
{%- endif -%}
|
| 78 |
+
{%- elif param_spec.type == "number" -%}
|
| 79 |
+
{{- "number" }}
|
| 80 |
+
{%- elif param_spec.type == "integer" -%}
|
| 81 |
+
{{- "number" }}
|
| 82 |
+
{%- elif param_spec.type == "boolean" -%}
|
| 83 |
+
{{- "boolean" }}
|
| 84 |
+
|
| 85 |
+
{%- elif param_spec.type == "object" -%}
|
| 86 |
+
{%- if param_spec.properties -%}
|
| 87 |
+
{{- "{\n" }}
|
| 88 |
+
{%- for prop_name, prop_spec in param_spec.properties.items() -%}
|
| 89 |
+
{{- prop_name -}}
|
| 90 |
+
{%- if prop_name not in (param_spec.required or []) -%}
|
| 91 |
+
{{- "?" }}
|
| 92 |
+
{%- endif -%}
|
| 93 |
+
{{- ": " }}
|
| 94 |
+
{{ render_typescript_type(prop_spec, param_spec.required or []) }}
|
| 95 |
+
{%- if not loop.last -%}
|
| 96 |
+
{{-", " }}
|
| 97 |
+
{%- endif -%}
|
| 98 |
+
{%- endfor -%}
|
| 99 |
+
{{- "}" }}
|
| 100 |
+
{%- else -%}
|
| 101 |
+
{{- "object" }}
|
| 102 |
+
{%- endif -%}
|
| 103 |
+
{%- else -%}
|
| 104 |
+
{{- "any" }}
|
| 105 |
+
{%- endif -%}
|
| 106 |
+
{%- endmacro -%}
|
| 107 |
+
|
| 108 |
+
{%- macro render_tool_namespace(namespace_name, tools) -%}
|
| 109 |
+
{{- "## " + namespace_name + "\n\n" }}
|
| 110 |
+
{{- "namespace " + namespace_name + " {\n\n" }}
|
| 111 |
+
{%- for tool in tools %}
|
| 112 |
+
{%- set tool = tool.function %}
|
| 113 |
+
{{- "// " + tool.description + "\n" }}
|
| 114 |
+
{{- "type "+ tool.name + " = " }}
|
| 115 |
+
{%- if tool.parameters and tool.parameters.properties %}
|
| 116 |
+
{{- "(_: {\n" }}
|
| 117 |
+
{%- for param_name, param_spec in tool.parameters.properties.items() %}
|
| 118 |
+
{%- if param_spec.description %}
|
| 119 |
+
{{- "// " + param_spec.description + "\n" }}
|
| 120 |
+
{%- endif %}
|
| 121 |
+
{{- param_name }}
|
| 122 |
+
{%- if param_name not in (tool.parameters.required or []) -%}
|
| 123 |
+
{{- "?" }}
|
| 124 |
+
{%- endif -%}
|
| 125 |
+
{{- ": " }}
|
| 126 |
+
{{- render_typescript_type(param_spec, tool.parameters.required or []) }}
|
| 127 |
+
{%- if param_spec.default is defined -%}
|
| 128 |
+
{%- if param_spec.enum %}
|
| 129 |
+
{{- ", // default: " + param_spec.default }}
|
| 130 |
+
{%- elif param_spec.oneOf %}
|
| 131 |
+
{{- "// default: " + param_spec.default }}
|
| 132 |
+
{%- else %}
|
| 133 |
+
{{- ", // default: " + param_spec.default|tojson }}
|
| 134 |
+
{%- endif -%}
|
| 135 |
+
{%- endif -%}
|
| 136 |
+
{%- if not loop.last %}
|
| 137 |
+
{{- ",\n" }}
|
| 138 |
+
{%- else %}
|
| 139 |
+
{{- ",\n" }}
|
| 140 |
+
{%- endif -%}
|
| 141 |
+
{%- endfor %}
|
| 142 |
+
{{- "}) => any;\n\n" }}
|
| 143 |
+
{%- else -%}
|
| 144 |
+
{{- "() => any;\n\n" }}
|
| 145 |
+
{%- endif -%}
|
| 146 |
+
{%- endfor %}
|
| 147 |
+
{{- "} // namespace " + namespace_name }}
|
| 148 |
+
{%- endmacro -%}
|
| 149 |
+
|
| 150 |
+
{%- macro render_builtin_tools(browser_tool, python_tool) -%}
|
| 151 |
+
{%- if browser_tool %}
|
| 152 |
+
{{- "## browser\n\n" }}
|
| 153 |
+
{{- "// Tool for browsing.\n" }}
|
| 154 |
+
{{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
|
| 155 |
+
{{- "// Cite information from the tool using the following format:\n" }}
|
| 156 |
+
{{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
|
| 157 |
+
{{- "// Do not quote more than 10 words directly from the tool output.\n" }}
|
| 158 |
+
{{- "// sources=web (default: web)\n" }}
|
| 159 |
+
{{- "namespace browser {\n\n" }}
|
| 160 |
+
{{- "// Searches for information related to `query` and displays `topn` results.\n" }}
|
| 161 |
+
{{- "type search = (_: {\n" }}
|
| 162 |
+
{{- "query: string,\n" }}
|
| 163 |
+
{{- "topn?: number, // default: 10\n" }}
|
| 164 |
+
{{- "source?: string,\n" }}
|
| 165 |
+
{{- "}) => any;\n\n" }}
|
| 166 |
+
{{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
|
| 167 |
+
{{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
|
| 168 |
+
{{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
|
| 169 |
+
{{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
|
| 170 |
+
{{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
|
| 171 |
+
{{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
|
| 172 |
+
{{- "type open = (_: {\n" }}
|
| 173 |
+
{{- "id?: number | string, // default: -1\n" }}
|
| 174 |
+
{{- "cursor?: number, // default: -1\n" }}
|
| 175 |
+
{{- "loc?: number, // default: -1\n" }}
|
| 176 |
+
{{- "num_lines?: number, // default: -1\n" }}
|
| 177 |
+
{{- "view_source?: boolean, // default: false\n" }}
|
| 178 |
+
{{- "source?: string,\n" }}
|
| 179 |
+
{{- "}) => any;\n\n" }}
|
| 180 |
+
{{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
|
| 181 |
+
{{- "type find = (_: {\n" }}
|
| 182 |
+
{{- "pattern: string,\n" }}
|
| 183 |
+
{{- "cursor?: number, // default: -1\n" }}
|
| 184 |
+
{{- "}) => any;\n\n" }}
|
| 185 |
+
{{- "} // namespace browser\n\n" }}
|
| 186 |
+
{%- endif -%}
|
| 187 |
+
|
| 188 |
+
{%- if python_tool %}
|
| 189 |
+
{{- "## python\n\n" }}
|
| 190 |
+
{{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
|
| 191 |
+
{{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
|
| 192 |
+
{%- endif -%}
|
| 193 |
+
{%- endmacro -%}
|
| 194 |
+
|
| 195 |
+
{#- System Message Construction ============================================ #}
|
| 196 |
+
{%- macro build_system_message() -%}
|
| 197 |
+
{%- if model_identity is not defined %}
|
| 198 |
+
{%- set model_identity = "You are ChatGPT, a large language model trained by OpenAI." %}
|
| 199 |
+
{%- endif %}
|
| 200 |
+
{{- model_identity + "\n" }}
|
| 201 |
+
{{- "Knowledge cutoff: 2024-06\n" }}
|
| 202 |
+
{{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
|
| 203 |
+
{%- if reasoning_effort is not defined %}
|
| 204 |
+
{%- set reasoning_effort = "medium" %}
|
| 205 |
+
{%- endif %}
|
| 206 |
+
{{- "Reasoning: " + reasoning_effort + "\n\n" }}
|
| 207 |
+
{%- if builtin_tools %}
|
| 208 |
+
{{- "# Tools\n\n" }}
|
| 209 |
+
{%- set available_builtin_tools = namespace(browser=false, python=false) %}
|
| 210 |
+
{%- for tool in builtin_tools %}
|
| 211 |
+
{%- if tool == "browser" %}
|
| 212 |
+
{%- set available_builtin_tools.browser = true %}
|
| 213 |
+
{%- elif tool == "python" %}
|
| 214 |
+
{%- set available_builtin_tools.python = true %}
|
| 215 |
+
{%- endif %}
|
| 216 |
+
{%- endfor %}
|
| 217 |
+
{{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
|
| 218 |
+
{%- endif -%}
|
| 219 |
+
{{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
|
| 220 |
+
{%- if tools -%}
|
| 221 |
+
{{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
|
| 222 |
+
{%- endif -%}
|
| 223 |
+
{%- endmacro -%}
|
| 224 |
+
|
| 225 |
+
{#- Main Template Logic ================================================= #}
|
| 226 |
+
{#- Set defaults #}
|
| 227 |
+
|
| 228 |
+
{#- Render system message #}
|
| 229 |
+
{{- "<|start|>system<|message|>" }}
|
| 230 |
+
{{- build_system_message() }}
|
| 231 |
+
{{- "<|end|>" }}
|
| 232 |
+
|
| 233 |
+
{#- Extract developer message #}
|
| 234 |
+
{%- if messages[0].role == "developer" or messages[0].role == "system" %}
|
| 235 |
+
{%- set developer_message = messages[0].content %}
|
| 236 |
+
{%- set loop_messages = messages[1:] %}
|
| 237 |
+
{%- else %}
|
| 238 |
+
{%- set developer_message = "" %}
|
| 239 |
+
{%- set loop_messages = messages %}
|
| 240 |
+
{%- endif %}
|
| 241 |
+
|
| 242 |
+
{#- Render developer message #}
|
| 243 |
+
{%- if developer_message or tools %}
|
| 244 |
+
{{- "<|start|>developer<|message|>" }}
|
| 245 |
+
{%- if developer_message %}
|
| 246 |
+
{{- "# Instructions\n\n" }}
|
| 247 |
+
{{- developer_message }}
|
| 248 |
+
{{- "\n\n" }}
|
| 249 |
+
{%- endif %}
|
| 250 |
+
{%- if tools -%}
|
| 251 |
+
{{- "# Tools\n\n" }}
|
| 252 |
+
{{- render_tool_namespace("functions", tools) }}
|
| 253 |
+
{%- endif -%}
|
| 254 |
+
{{- "<|end|>" }}
|
| 255 |
+
{%- endif %}
|
| 256 |
+
|
| 257 |
+
{#- Render messages #}
|
| 258 |
+
{%- set last_tool_call = namespace(name=none) %}
|
| 259 |
+
{%- for message in loop_messages -%}
|
| 260 |
+
{#- At this point only assistant/user/tool messages should remain #}
|
| 261 |
+
{%- if message.role == 'assistant' -%}
|
| 262 |
+
{#- Checks to ensure the messages are being passed in the format we expect #}
|
| 263 |
+
{%- if "content" in message %}
|
| 264 |
+
{%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
|
| 265 |
+
{{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
|
| 266 |
+
{%- endif %}
|
| 267 |
+
{%- endif %}
|
| 268 |
+
{%- if "thinking" in message %}
|
| 269 |
+
{%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
|
| 270 |
+
{{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
|
| 271 |
+
{%- endif %}
|
| 272 |
+
{%- endif %}
|
| 273 |
+
{%- if "tool_calls" in message %}
|
| 274 |
+
{#- We need very careful handling here - we want to drop the tool call analysis message if the model #}
|
| 275 |
+
{#- has output a later <|final|> message, but otherwise we want to retain it. This is the only case #}
|
| 276 |
+
{#- when we render CoT/analysis messages in inference. #}
|
| 277 |
+
{%- set future_final_message = namespace(found=false) %}
|
| 278 |
+
{%- for future_message in loop_messages[loop.index:] %}
|
| 279 |
+
{%- if future_message.role == 'assistant' and "tool_calls" not in future_message %}
|
| 280 |
+
{%- set future_final_message.found = true %}
|
| 281 |
+
{%- endif %}
|
| 282 |
+
{%- endfor %}
|
| 283 |
+
{#- We assume max 1 tool call per message, and so we infer the tool call name #}
|
| 284 |
+
{#- in "tool" messages from the most recent assistant tool call name #}
|
| 285 |
+
{%- set tool_call = message.tool_calls[0] %}
|
| 286 |
+
{%- if tool_call.function %}
|
| 287 |
+
{%- set tool_call = tool_call.function %}
|
| 288 |
+
{%- endif %}
|
| 289 |
+
{%- if message.content and message.thinking %}
|
| 290 |
+
{{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
|
| 291 |
+
{%- elif message.content and not future_final_message.found %}
|
| 292 |
+
{{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
|
| 293 |
+
{%- elif message.thinking and not future_final_message.found %}
|
| 294 |
+
{{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
|
| 295 |
+
{%- endif %}
|
| 296 |
+
{{- "<|start|>assistant to=" }}
|
| 297 |
+
{{- "functions." + tool_call.name + "<|channel|>commentary " }}
|
| 298 |
+
{{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
|
| 299 |
+
{{- tool_call.arguments|tojson }}
|
| 300 |
+
{{- "<|call|>" }}
|
| 301 |
+
{%- set last_tool_call.name = tool_call.name %}
|
| 302 |
+
{%- elif loop.last and not add_generation_prompt %}
|
| 303 |
+
{#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
|
| 304 |
+
{#- This is a situation that should only occur in training, never in inference. #}
|
| 305 |
+
{%- if "thinking" in message %}
|
| 306 |
+
{{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
|
| 307 |
+
{%- endif %}
|
| 308 |
+
{#- <|return|> indicates the end of generation, but <|end|> does not #}
|
| 309 |
+
{#- <|return|> should never be an input to the model, but we include it as the final token #}
|
| 310 |
+
{#- when training, so the model learns to emit it. #}
|
| 311 |
+
{{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
|
| 312 |
+
{%- else %}
|
| 313 |
+
{#- CoT is dropped during all previous turns, so we never render it for inference #}
|
| 314 |
+
{{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
|
| 315 |
+
{%- set last_tool_call.name = none %}
|
| 316 |
+
{%- endif %}
|
| 317 |
+
{%- elif message.role == 'tool' -%}
|
| 318 |
+
{%- if last_tool_call.name is none %}
|
| 319 |
+
{{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
|
| 320 |
+
{%- endif %}
|
| 321 |
+
{{- "<|start|>functions." + last_tool_call.name }}
|
| 322 |
+
{{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
|
| 323 |
+
{%- elif message.role == 'user' -%}
|
| 324 |
+
{{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
|
| 325 |
+
{%- endif -%}
|
| 326 |
+
{%- endfor -%}
|
| 327 |
+
|
| 328 |
+
{#- Generation prompt #}
|
| 329 |
+
{%- if add_generation_prompt -%}
|
| 330 |
+
<|start|>assistant
|
| 331 |
+
{%- endif -%}
|
citation.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"title": "GPT-OSS MoE Expert Fingerprinting: Analyzing Expert Activation Patterns in Mixture of Experts Models",
|
| 3 |
+
"authors": [
|
| 4 |
+
"Aman Priyanshu",
|
| 5 |
+
"Supriti Vijay"
|
| 6 |
+
],
|
| 7 |
+
"year": 2025,
|
| 8 |
+
"url": "https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/"
|
| 9 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"vocab_size": 201088,
|
| 3 |
+
"hidden_size": 2880,
|
| 4 |
+
"intermediate_size": 2880,
|
| 5 |
+
"num_hidden_layers": 24,
|
| 6 |
+
"num_attention_heads": 64,
|
| 7 |
+
"num_local_experts": 16,
|
| 8 |
+
"sliding_window": 128,
|
| 9 |
+
"num_experts_per_tok": 4,
|
| 10 |
+
"num_key_value_heads": 8,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"rms_norm_eps": 1e-05,
|
| 14 |
+
"rope_theta": 150000,
|
| 15 |
+
"rope_scaling": {
|
| 16 |
+
"beta_fast": 32.0,
|
| 17 |
+
"beta_slow": 1.0,
|
| 18 |
+
"factor": 32.0,
|
| 19 |
+
"original_max_position_embeddings": 4096,
|
| 20 |
+
"rope_type": "yarn",
|
| 21 |
+
"truncate": false
|
| 22 |
+
},
|
| 23 |
+
"attention_dropout": 0.0,
|
| 24 |
+
"head_dim": 64,
|
| 25 |
+
"layer_types": [
|
| 26 |
+
"sliding_attention",
|
| 27 |
+
"full_attention",
|
| 28 |
+
"sliding_attention",
|
| 29 |
+
"full_attention",
|
| 30 |
+
"sliding_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"sliding_attention",
|
| 33 |
+
"full_attention",
|
| 34 |
+
"sliding_attention",
|
| 35 |
+
"full_attention",
|
| 36 |
+
"sliding_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"sliding_attention",
|
| 39 |
+
"full_attention",
|
| 40 |
+
"sliding_attention",
|
| 41 |
+
"full_attention",
|
| 42 |
+
"sliding_attention",
|
| 43 |
+
"full_attention",
|
| 44 |
+
"sliding_attention",
|
| 45 |
+
"full_attention",
|
| 46 |
+
"sliding_attention",
|
| 47 |
+
"full_attention",
|
| 48 |
+
"sliding_attention",
|
| 49 |
+
"full_attention"
|
| 50 |
+
],
|
| 51 |
+
"attention_bias": true,
|
| 52 |
+
"max_position_embeddings": 131072,
|
| 53 |
+
"router_aux_loss_coef": 0.9,
|
| 54 |
+
"output_router_logits": false,
|
| 55 |
+
"use_cache": true,
|
| 56 |
+
"return_dict": true,
|
| 57 |
+
"output_hidden_states": false,
|
| 58 |
+
"torchscript": false,
|
| 59 |
+
"torch_dtype": null,
|
| 60 |
+
"pruned_heads": {},
|
| 61 |
+
"tie_word_embeddings": false,
|
| 62 |
+
"chunk_size_feed_forward": 0,
|
| 63 |
+
"is_encoder_decoder": false,
|
| 64 |
+
"is_decoder": false,
|
| 65 |
+
"cross_attention_hidden_size": null,
|
| 66 |
+
"add_cross_attention": false,
|
| 67 |
+
"tie_encoder_decoder": false,
|
| 68 |
+
"architectures": [
|
| 69 |
+
"GptOssForCausalLM"
|
| 70 |
+
],
|
| 71 |
+
"finetuning_task": null,
|
| 72 |
+
"id2label": {
|
| 73 |
+
"0": "LABEL_0",
|
| 74 |
+
"1": "LABEL_1"
|
| 75 |
+
},
|
| 76 |
+
"label2id": {
|
| 77 |
+
"LABEL_0": 0,
|
| 78 |
+
"LABEL_1": 1
|
| 79 |
+
},
|
| 80 |
+
"task_specific_params": null,
|
| 81 |
+
"problem_type": null,
|
| 82 |
+
"tokenizer_class": null,
|
| 83 |
+
"prefix": null,
|
| 84 |
+
"bos_token_id": null,
|
| 85 |
+
"pad_token_id": 199999,
|
| 86 |
+
"eos_token_id": 200002,
|
| 87 |
+
"sep_token_id": null,
|
| 88 |
+
"decoder_start_token_id": null,
|
| 89 |
+
"max_length": 20,
|
| 90 |
+
"min_length": 0,
|
| 91 |
+
"do_sample": false,
|
| 92 |
+
"early_stopping": false,
|
| 93 |
+
"num_beams": 1,
|
| 94 |
+
"num_beam_groups": 1,
|
| 95 |
+
"diversity_penalty": 0.0,
|
| 96 |
+
"temperature": 1.0,
|
| 97 |
+
"top_k": 50,
|
| 98 |
+
"top_p": 1.0,
|
| 99 |
+
"typical_p": 1.0,
|
| 100 |
+
"repetition_penalty": 1.0,
|
| 101 |
+
"length_penalty": 1.0,
|
| 102 |
+
"no_repeat_ngram_size": 0,
|
| 103 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 104 |
+
"bad_words_ids": null,
|
| 105 |
+
"num_return_sequences": 1,
|
| 106 |
+
"output_scores": false,
|
| 107 |
+
"return_dict_in_generate": false,
|
| 108 |
+
"forced_bos_token_id": null,
|
| 109 |
+
"forced_eos_token_id": null,
|
| 110 |
+
"remove_invalid_values": false,
|
| 111 |
+
"exponential_decay_length_penalty": null,
|
| 112 |
+
"suppress_tokens": null,
|
| 113 |
+
"begin_suppress_tokens": null,
|
| 114 |
+
"_name_or_path": "openai/gpt-oss-20b",
|
| 115 |
+
"transformers_version": "4.55.0",
|
| 116 |
+
"experts_per_token": 4,
|
| 117 |
+
"initial_context_length": 4096,
|
| 118 |
+
"model_type": "gpt_oss",
|
| 119 |
+
"swiglu_limit": 7.0,
|
| 120 |
+
"tf_legacy_loss": false,
|
| 121 |
+
"use_bfloat16": false,
|
| 122 |
+
"output_attentions": false
|
| 123 |
+
}
|
expert_mapping.json
ADDED
|
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"0": {
|
| 3 |
+
"11": 0,
|
| 4 |
+
"9": 1,
|
| 5 |
+
"16": 2,
|
| 6 |
+
"3": 3,
|
| 7 |
+
"17": 4,
|
| 8 |
+
"2": 5,
|
| 9 |
+
"22": 6,
|
| 10 |
+
"25": 7,
|
| 11 |
+
"31": 8,
|
| 12 |
+
"13": 9,
|
| 13 |
+
"1": 10,
|
| 14 |
+
"24": 11,
|
| 15 |
+
"28": 12,
|
| 16 |
+
"5": 13,
|
| 17 |
+
"6": 14,
|
| 18 |
+
"7": 15
|
| 19 |
+
},
|
| 20 |
+
"1": {
|
| 21 |
+
"0": 0,
|
| 22 |
+
"28": 1,
|
| 23 |
+
"25": 2,
|
| 24 |
+
"27": 3,
|
| 25 |
+
"12": 4,
|
| 26 |
+
"10": 5,
|
| 27 |
+
"18": 6,
|
| 28 |
+
"16": 7,
|
| 29 |
+
"6": 8,
|
| 30 |
+
"20": 9,
|
| 31 |
+
"1": 10,
|
| 32 |
+
"17": 11,
|
| 33 |
+
"29": 12,
|
| 34 |
+
"13": 13,
|
| 35 |
+
"26": 14,
|
| 36 |
+
"21": 15
|
| 37 |
+
},
|
| 38 |
+
"2": {
|
| 39 |
+
"31": 0,
|
| 40 |
+
"5": 1,
|
| 41 |
+
"21": 2,
|
| 42 |
+
"0": 3,
|
| 43 |
+
"29": 4,
|
| 44 |
+
"10": 5,
|
| 45 |
+
"8": 6,
|
| 46 |
+
"22": 7,
|
| 47 |
+
"3": 8,
|
| 48 |
+
"28": 9,
|
| 49 |
+
"6": 10,
|
| 50 |
+
"20": 11,
|
| 51 |
+
"16": 12,
|
| 52 |
+
"27": 13,
|
| 53 |
+
"24": 14,
|
| 54 |
+
"25": 15
|
| 55 |
+
},
|
| 56 |
+
"3": {
|
| 57 |
+
"31": 0,
|
| 58 |
+
"7": 1,
|
| 59 |
+
"2": 2,
|
| 60 |
+
"0": 3,
|
| 61 |
+
"24": 4,
|
| 62 |
+
"23": 5,
|
| 63 |
+
"12": 6,
|
| 64 |
+
"19": 7,
|
| 65 |
+
"21": 8,
|
| 66 |
+
"22": 9,
|
| 67 |
+
"11": 10,
|
| 68 |
+
"25": 11,
|
| 69 |
+
"1": 12,
|
| 70 |
+
"3": 13,
|
| 71 |
+
"27": 14,
|
| 72 |
+
"16": 15
|
| 73 |
+
},
|
| 74 |
+
"4": {
|
| 75 |
+
"18": 0,
|
| 76 |
+
"6": 1,
|
| 77 |
+
"15": 2,
|
| 78 |
+
"17": 3,
|
| 79 |
+
"30": 4,
|
| 80 |
+
"20": 5,
|
| 81 |
+
"13": 6,
|
| 82 |
+
"14": 7,
|
| 83 |
+
"24": 8,
|
| 84 |
+
"23": 9,
|
| 85 |
+
"12": 10,
|
| 86 |
+
"22": 11,
|
| 87 |
+
"10": 12,
|
| 88 |
+
"7": 13,
|
| 89 |
+
"31": 14,
|
| 90 |
+
"27": 15
|
| 91 |
+
},
|
| 92 |
+
"5": {
|
| 93 |
+
"6": 0,
|
| 94 |
+
"31": 1,
|
| 95 |
+
"0": 2,
|
| 96 |
+
"17": 3,
|
| 97 |
+
"10": 4,
|
| 98 |
+
"14": 5,
|
| 99 |
+
"2": 6,
|
| 100 |
+
"15": 7,
|
| 101 |
+
"24": 8,
|
| 102 |
+
"11": 9,
|
| 103 |
+
"18": 10,
|
| 104 |
+
"30": 11,
|
| 105 |
+
"27": 12,
|
| 106 |
+
"8": 13,
|
| 107 |
+
"4": 14,
|
| 108 |
+
"12": 15
|
| 109 |
+
},
|
| 110 |
+
"6": {
|
| 111 |
+
"16": 0,
|
| 112 |
+
"2": 1,
|
| 113 |
+
"7": 2,
|
| 114 |
+
"9": 3,
|
| 115 |
+
"31": 4,
|
| 116 |
+
"10": 5,
|
| 117 |
+
"5": 6,
|
| 118 |
+
"3": 7,
|
| 119 |
+
"20": 8,
|
| 120 |
+
"4": 9,
|
| 121 |
+
"15": 10,
|
| 122 |
+
"24": 11,
|
| 123 |
+
"11": 12,
|
| 124 |
+
"14": 13,
|
| 125 |
+
"6": 14,
|
| 126 |
+
"21": 15
|
| 127 |
+
},
|
| 128 |
+
"7": {
|
| 129 |
+
"15": 0,
|
| 130 |
+
"5": 1,
|
| 131 |
+
"28": 2,
|
| 132 |
+
"1": 3,
|
| 133 |
+
"17": 4,
|
| 134 |
+
"30": 5,
|
| 135 |
+
"21": 6,
|
| 136 |
+
"13": 7,
|
| 137 |
+
"14": 8,
|
| 138 |
+
"29": 9,
|
| 139 |
+
"10": 10,
|
| 140 |
+
"4": 11,
|
| 141 |
+
"24": 12,
|
| 142 |
+
"19": 13,
|
| 143 |
+
"20": 14,
|
| 144 |
+
"23": 15
|
| 145 |
+
},
|
| 146 |
+
"8": {
|
| 147 |
+
"18": 0,
|
| 148 |
+
"24": 1,
|
| 149 |
+
"20": 2,
|
| 150 |
+
"19": 3,
|
| 151 |
+
"4": 4,
|
| 152 |
+
"31": 5,
|
| 153 |
+
"17": 6,
|
| 154 |
+
"10": 7,
|
| 155 |
+
"0": 8,
|
| 156 |
+
"5": 9,
|
| 157 |
+
"28": 10,
|
| 158 |
+
"23": 11,
|
| 159 |
+
"13": 12,
|
| 160 |
+
"30": 13,
|
| 161 |
+
"26": 14,
|
| 162 |
+
"9": 15
|
| 163 |
+
},
|
| 164 |
+
"9": {
|
| 165 |
+
"8": 0,
|
| 166 |
+
"13": 1,
|
| 167 |
+
"19": 2,
|
| 168 |
+
"5": 3,
|
| 169 |
+
"15": 4,
|
| 170 |
+
"30": 5,
|
| 171 |
+
"22": 6,
|
| 172 |
+
"14": 7,
|
| 173 |
+
"16": 8,
|
| 174 |
+
"26": 9,
|
| 175 |
+
"21": 10,
|
| 176 |
+
"23": 11,
|
| 177 |
+
"4": 12,
|
| 178 |
+
"3": 13,
|
| 179 |
+
"20": 14,
|
| 180 |
+
"0": 15
|
| 181 |
+
},
|
| 182 |
+
"10": {
|
| 183 |
+
"5": 0,
|
| 184 |
+
"10": 1,
|
| 185 |
+
"11": 2,
|
| 186 |
+
"7": 3,
|
| 187 |
+
"8": 4,
|
| 188 |
+
"23": 5,
|
| 189 |
+
"19": 6,
|
| 190 |
+
"26": 7,
|
| 191 |
+
"21": 8,
|
| 192 |
+
"30": 9,
|
| 193 |
+
"18": 10,
|
| 194 |
+
"24": 11,
|
| 195 |
+
"25": 12,
|
| 196 |
+
"15": 13,
|
| 197 |
+
"28": 14,
|
| 198 |
+
"2": 15
|
| 199 |
+
},
|
| 200 |
+
"11": {
|
| 201 |
+
"11": 0,
|
| 202 |
+
"30": 1,
|
| 203 |
+
"20": 2,
|
| 204 |
+
"9": 3,
|
| 205 |
+
"27": 4,
|
| 206 |
+
"21": 5,
|
| 207 |
+
"7": 6,
|
| 208 |
+
"25": 7,
|
| 209 |
+
"17": 8,
|
| 210 |
+
"4": 9,
|
| 211 |
+
"24": 10,
|
| 212 |
+
"15": 11,
|
| 213 |
+
"13": 12,
|
| 214 |
+
"23": 13,
|
| 215 |
+
"18": 14,
|
| 216 |
+
"5": 15
|
| 217 |
+
},
|
| 218 |
+
"12": {
|
| 219 |
+
"3": 0,
|
| 220 |
+
"23": 1,
|
| 221 |
+
"24": 2,
|
| 222 |
+
"14": 3,
|
| 223 |
+
"15": 4,
|
| 224 |
+
"21": 5,
|
| 225 |
+
"1": 6,
|
| 226 |
+
"28": 7,
|
| 227 |
+
"25": 8,
|
| 228 |
+
"26": 9,
|
| 229 |
+
"6": 10,
|
| 230 |
+
"8": 11,
|
| 231 |
+
"12": 12,
|
| 232 |
+
"30": 13,
|
| 233 |
+
"17": 14,
|
| 234 |
+
"7": 15
|
| 235 |
+
},
|
| 236 |
+
"13": {
|
| 237 |
+
"11": 0,
|
| 238 |
+
"21": 1,
|
| 239 |
+
"16": 2,
|
| 240 |
+
"9": 3,
|
| 241 |
+
"0": 4,
|
| 242 |
+
"1": 5,
|
| 243 |
+
"19": 6,
|
| 244 |
+
"24": 7,
|
| 245 |
+
"3": 8,
|
| 246 |
+
"7": 9,
|
| 247 |
+
"30": 10,
|
| 248 |
+
"15": 11,
|
| 249 |
+
"4": 12,
|
| 250 |
+
"10": 13,
|
| 251 |
+
"5": 14,
|
| 252 |
+
"20": 15
|
| 253 |
+
},
|
| 254 |
+
"14": {
|
| 255 |
+
"21": 0,
|
| 256 |
+
"9": 1,
|
| 257 |
+
"6": 2,
|
| 258 |
+
"0": 3,
|
| 259 |
+
"4": 4,
|
| 260 |
+
"18": 5,
|
| 261 |
+
"11": 6,
|
| 262 |
+
"24": 7,
|
| 263 |
+
"26": 8,
|
| 264 |
+
"27": 9,
|
| 265 |
+
"1": 10,
|
| 266 |
+
"31": 11,
|
| 267 |
+
"3": 12,
|
| 268 |
+
"17": 13,
|
| 269 |
+
"29": 14,
|
| 270 |
+
"15": 15
|
| 271 |
+
},
|
| 272 |
+
"15": {
|
| 273 |
+
"18": 0,
|
| 274 |
+
"13": 1,
|
| 275 |
+
"2": 2,
|
| 276 |
+
"8": 3,
|
| 277 |
+
"31": 4,
|
| 278 |
+
"9": 5,
|
| 279 |
+
"26": 6,
|
| 280 |
+
"3": 7,
|
| 281 |
+
"29": 8,
|
| 282 |
+
"4": 9,
|
| 283 |
+
"10": 10,
|
| 284 |
+
"22": 11,
|
| 285 |
+
"28": 12,
|
| 286 |
+
"6": 13,
|
| 287 |
+
"19": 14,
|
| 288 |
+
"25": 15
|
| 289 |
+
},
|
| 290 |
+
"16": {
|
| 291 |
+
"10": 0,
|
| 292 |
+
"31": 1,
|
| 293 |
+
"5": 2,
|
| 294 |
+
"30": 3,
|
| 295 |
+
"11": 4,
|
| 296 |
+
"15": 5,
|
| 297 |
+
"0": 6,
|
| 298 |
+
"24": 7,
|
| 299 |
+
"20": 8,
|
| 300 |
+
"21": 9,
|
| 301 |
+
"18": 10,
|
| 302 |
+
"17": 11,
|
| 303 |
+
"2": 12,
|
| 304 |
+
"12": 13,
|
| 305 |
+
"4": 14,
|
| 306 |
+
"27": 15
|
| 307 |
+
},
|
| 308 |
+
"17": {
|
| 309 |
+
"17": 0,
|
| 310 |
+
"14": 1,
|
| 311 |
+
"30": 2,
|
| 312 |
+
"28": 3,
|
| 313 |
+
"5": 4,
|
| 314 |
+
"7": 5,
|
| 315 |
+
"4": 6,
|
| 316 |
+
"13": 7,
|
| 317 |
+
"25": 8,
|
| 318 |
+
"11": 9,
|
| 319 |
+
"8": 10,
|
| 320 |
+
"19": 11,
|
| 321 |
+
"12": 12,
|
| 322 |
+
"2": 13,
|
| 323 |
+
"24": 14,
|
| 324 |
+
"26": 15
|
| 325 |
+
},
|
| 326 |
+
"18": {
|
| 327 |
+
"1": 0,
|
| 328 |
+
"9": 1,
|
| 329 |
+
"18": 2,
|
| 330 |
+
"14": 3,
|
| 331 |
+
"24": 4,
|
| 332 |
+
"2": 5,
|
| 333 |
+
"20": 6,
|
| 334 |
+
"15": 7,
|
| 335 |
+
"27": 8,
|
| 336 |
+
"23": 9,
|
| 337 |
+
"6": 10,
|
| 338 |
+
"19": 11,
|
| 339 |
+
"7": 12,
|
| 340 |
+
"12": 13,
|
| 341 |
+
"16": 14,
|
| 342 |
+
"13": 15
|
| 343 |
+
},
|
| 344 |
+
"19": {
|
| 345 |
+
"16": 0,
|
| 346 |
+
"3": 1,
|
| 347 |
+
"9": 2,
|
| 348 |
+
"19": 3,
|
| 349 |
+
"6": 4,
|
| 350 |
+
"29": 5,
|
| 351 |
+
"2": 6,
|
| 352 |
+
"31": 7,
|
| 353 |
+
"7": 8,
|
| 354 |
+
"12": 9,
|
| 355 |
+
"0": 10,
|
| 356 |
+
"20": 11,
|
| 357 |
+
"17": 12,
|
| 358 |
+
"25": 13,
|
| 359 |
+
"10": 14,
|
| 360 |
+
"13": 15
|
| 361 |
+
},
|
| 362 |
+
"20": {
|
| 363 |
+
"21": 0,
|
| 364 |
+
"22": 1,
|
| 365 |
+
"4": 2,
|
| 366 |
+
"16": 3,
|
| 367 |
+
"13": 4,
|
| 368 |
+
"30": 5,
|
| 369 |
+
"0": 6,
|
| 370 |
+
"24": 7,
|
| 371 |
+
"25": 8,
|
| 372 |
+
"31": 9,
|
| 373 |
+
"11": 10,
|
| 374 |
+
"12": 11,
|
| 375 |
+
"6": 12,
|
| 376 |
+
"20": 13,
|
| 377 |
+
"7": 14,
|
| 378 |
+
"1": 15
|
| 379 |
+
},
|
| 380 |
+
"21": {
|
| 381 |
+
"29": 0,
|
| 382 |
+
"3": 1,
|
| 383 |
+
"9": 2,
|
| 384 |
+
"27": 3,
|
| 385 |
+
"21": 4,
|
| 386 |
+
"1": 5,
|
| 387 |
+
"6": 6,
|
| 388 |
+
"2": 7,
|
| 389 |
+
"18": 8,
|
| 390 |
+
"20": 9,
|
| 391 |
+
"31": 10,
|
| 392 |
+
"30": 11,
|
| 393 |
+
"10": 12,
|
| 394 |
+
"14": 13,
|
| 395 |
+
"13": 14,
|
| 396 |
+
"23": 15
|
| 397 |
+
},
|
| 398 |
+
"22": {
|
| 399 |
+
"25": 0,
|
| 400 |
+
"8": 1,
|
| 401 |
+
"16": 2,
|
| 402 |
+
"18": 3,
|
| 403 |
+
"14": 4,
|
| 404 |
+
"4": 5,
|
| 405 |
+
"22": 6,
|
| 406 |
+
"15": 7,
|
| 407 |
+
"0": 8,
|
| 408 |
+
"7": 9,
|
| 409 |
+
"20": 10,
|
| 410 |
+
"19": 11,
|
| 411 |
+
"13": 12,
|
| 412 |
+
"26": 13,
|
| 413 |
+
"27": 14,
|
| 414 |
+
"23": 15
|
| 415 |
+
},
|
| 416 |
+
"23": {
|
| 417 |
+
"18": 0,
|
| 418 |
+
"31": 1,
|
| 419 |
+
"10": 2,
|
| 420 |
+
"0": 3,
|
| 421 |
+
"16": 4,
|
| 422 |
+
"22": 5,
|
| 423 |
+
"13": 6,
|
| 424 |
+
"28": 7,
|
| 425 |
+
"17": 8,
|
| 426 |
+
"3": 9,
|
| 427 |
+
"8": 10,
|
| 428 |
+
"19": 11,
|
| 429 |
+
"24": 12,
|
| 430 |
+
"14": 13,
|
| 431 |
+
"27": 14,
|
| 432 |
+
"25": 15
|
| 433 |
+
}
|
| 434 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 199998,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
200002,
|
| 6 |
+
199999
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 199999,
|
| 9 |
+
"transformers_version": "4.55.0"
|
| 10 |
+
}
|
model-00001-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f67f6c63400e174575416a9e198f88fd9d2469a911433f0853c88613f7028e56
|
| 3 |
+
size 1742486880
|
model-00002-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f82502ed3f2e2c7917bcaff4b64f44d66c8d58b1a15081edbeee8c6eebdd895c
|
| 3 |
+
size 1994516920
|
model-00003-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:23cdad59ce7cb936a73c21987d160a239a55487a4e4af414e6e88fcac4188a20
|
| 3 |
+
size 1723180968
|
model-00004-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f0153afcd01466c24f40554f9fc74a1d00564967c1ee71c2895d91b373b34d7
|
| 3 |
+
size 1699489624
|
model-00005-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bcf4ed49f698b5440616b46add393637b6d19a06345fe950264204d3de2cf59d
|
| 3 |
+
size 1699489624
|
model-00006-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca834d53a0d4642eb68c187e33cd939b2509bf2f449d59206dc983bbe249744e
|
| 3 |
+
size 1699489608
|
model-00007-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07e2d043c7cdff0b456d2a59a4195e9ffa6160fa24ee7c3dceec41d06d8baec6
|
| 3 |
+
size 1699489656
|
model-00008-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:19bcbabb4f4c6c9c0f44d33a44a825b2b846dfd9246c7a25892722f14d54e762
|
| 3 |
+
size 1699489656
|
model-00009-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c0985c4d113c06d72673ea3eaf4e6ec0ba2653b21c09de44849d6f493513554
|
| 3 |
+
size 1699489656
|
model-00010-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9e1a26f19f7c91b076c31ab274ed9c9991491fbdd19fe82e1627193870d7bfa
|
| 3 |
+
size 1699489656
|
model-00011-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2fc386b8882bb672de5bc4eb92b5ab2d6be237e7e876f7e40aa69a5474203417
|
| 3 |
+
size 1699489656
|
model-00012-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3481fc080dd44d26ff1f91a291dd2763db120e3fad6190b09b98282ffee19c6
|
| 3 |
+
size 1699489656
|
model-00013-of-00013.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea2ee9940c11ac60e98117c007ee0fe678ff0ebf0fce28a8f2bcb8d9d81a6744
|
| 3 |
+
size 1954823976
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 11355184320,
|
| 4 |
+
"total_size": 22710368640
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00013-of-00013.safetensors",
|
| 8 |
+
"model.embed_tokens.weight": "model-00001-of-00013.safetensors",
|
| 9 |
+
"model.layers.0.input_layernorm.weight": "model-00002-of-00013.safetensors",
|
| 10 |
+
"model.layers.0.mlp.experts.down_proj": "model-00002-of-00013.safetensors",
|
| 11 |
+
"model.layers.0.mlp.experts.down_proj_bias": "model-00002-of-00013.safetensors",
|
| 12 |
+
"model.layers.0.mlp.experts.gate_up_proj": "model-00001-of-00013.safetensors",
|
| 13 |
+
"model.layers.0.mlp.experts.gate_up_proj_bias": "model-00001-of-00013.safetensors",
|
| 14 |
+
"model.layers.0.mlp.router.bias": "model-00001-of-00013.safetensors",
|
| 15 |
+
"model.layers.0.mlp.router.weight": "model-00001-of-00013.safetensors",
|
| 16 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00002-of-00013.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00013.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00013.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.o_proj.bias": "model-00001-of-00013.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00013.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00013.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00013.safetensors",
|
| 23 |
+
"model.layers.0.self_attn.sinks": "model-00001-of-00013.safetensors",
|
| 24 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00013.safetensors",
|
| 25 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00013.safetensors",
|
| 26 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00013.safetensors",
|
| 27 |
+
"model.layers.1.mlp.experts.down_proj": "model-00002-of-00013.safetensors",
|
| 28 |
+
"model.layers.1.mlp.experts.down_proj_bias": "model-00002-of-00013.safetensors",
|
| 29 |
+
"model.layers.1.mlp.experts.gate_up_proj": "model-00002-of-00013.safetensors",
|
| 30 |
+
"model.layers.1.mlp.experts.gate_up_proj_bias": "model-00002-of-00013.safetensors",
|
| 31 |
+
"model.layers.1.mlp.router.bias": "model-00002-of-00013.safetensors",
|
| 32 |
+
"model.layers.1.mlp.router.weight": "model-00002-of-00013.safetensors",
|
| 33 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00013.safetensors",
|
| 34 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00002-of-00013.safetensors",
|
| 35 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00002-of-00013.safetensors",
|
| 36 |
+
"model.layers.1.self_attn.o_proj.bias": "model-00002-of-00013.safetensors",
|
| 37 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00002-of-00013.safetensors",
|
| 38 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00002-of-00013.safetensors",
|
| 39 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00002-of-00013.safetensors",
|
| 40 |
+
"model.layers.1.self_attn.sinks": "model-00002-of-00013.safetensors",
|
| 41 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00002-of-00013.safetensors",
|
| 42 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00002-of-00013.safetensors",
|
| 43 |
+
"model.layers.10.input_layernorm.weight": "model-00006-of-00013.safetensors",
|
| 44 |
+
"model.layers.10.mlp.experts.down_proj": "model-00006-of-00013.safetensors",
|
| 45 |
+
"model.layers.10.mlp.experts.down_proj_bias": "model-00006-of-00013.safetensors",
|
| 46 |
+
"model.layers.10.mlp.experts.gate_up_proj": "model-00006-of-00013.safetensors",
|
| 47 |
+
"model.layers.10.mlp.experts.gate_up_proj_bias": "model-00006-of-00013.safetensors",
|
| 48 |
+
"model.layers.10.mlp.router.bias": "model-00006-of-00013.safetensors",
|
| 49 |
+
"model.layers.10.mlp.router.weight": "model-00006-of-00013.safetensors",
|
| 50 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00006-of-00013.safetensors",
|
| 51 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00006-of-00013.safetensors",
|
| 52 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00006-of-00013.safetensors",
|
| 53 |
+
"model.layers.10.self_attn.o_proj.bias": "model-00006-of-00013.safetensors",
|
| 54 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00006-of-00013.safetensors",
|
| 55 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00006-of-00013.safetensors",
|
| 56 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00006-of-00013.safetensors",
|
| 57 |
+
"model.layers.10.self_attn.sinks": "model-00006-of-00013.safetensors",
|
| 58 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00006-of-00013.safetensors",
|
| 59 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00006-of-00013.safetensors",
|
| 60 |
+
"model.layers.11.input_layernorm.weight": "model-00007-of-00013.safetensors",
|
| 61 |
+
"model.layers.11.mlp.experts.down_proj": "model-00007-of-00013.safetensors",
|
| 62 |
+
"model.layers.11.mlp.experts.down_proj_bias": "model-00007-of-00013.safetensors",
|
| 63 |
+
"model.layers.11.mlp.experts.gate_up_proj": "model-00007-of-00013.safetensors",
|
| 64 |
+
"model.layers.11.mlp.experts.gate_up_proj_bias": "model-00007-of-00013.safetensors",
|
| 65 |
+
"model.layers.11.mlp.router.bias": "model-00006-of-00013.safetensors",
|
| 66 |
+
"model.layers.11.mlp.router.weight": "model-00006-of-00013.safetensors",
|
| 67 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00007-of-00013.safetensors",
|
| 68 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00006-of-00013.safetensors",
|
| 69 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00006-of-00013.safetensors",
|
| 70 |
+
"model.layers.11.self_attn.o_proj.bias": "model-00006-of-00013.safetensors",
|
| 71 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00006-of-00013.safetensors",
|
| 72 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00006-of-00013.safetensors",
|
| 73 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00006-of-00013.safetensors",
|
| 74 |
+
"model.layers.11.self_attn.sinks": "model-00006-of-00013.safetensors",
|
| 75 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00006-of-00013.safetensors",
|
| 76 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00006-of-00013.safetensors",
|
| 77 |
+
"model.layers.12.input_layernorm.weight": "model-00007-of-00013.safetensors",
|
| 78 |
+
"model.layers.12.mlp.experts.down_proj": "model-00007-of-00013.safetensors",
|
| 79 |
+
"model.layers.12.mlp.experts.down_proj_bias": "model-00007-of-00013.safetensors",
|
| 80 |
+
"model.layers.12.mlp.experts.gate_up_proj": "model-00007-of-00013.safetensors",
|
| 81 |
+
"model.layers.12.mlp.experts.gate_up_proj_bias": "model-00007-of-00013.safetensors",
|
| 82 |
+
"model.layers.12.mlp.router.bias": "model-00007-of-00013.safetensors",
|
| 83 |
+
"model.layers.12.mlp.router.weight": "model-00007-of-00013.safetensors",
|
| 84 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00007-of-00013.safetensors",
|
| 85 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00007-of-00013.safetensors",
|
| 86 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00007-of-00013.safetensors",
|
| 87 |
+
"model.layers.12.self_attn.o_proj.bias": "model-00007-of-00013.safetensors",
|
| 88 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00007-of-00013.safetensors",
|
| 89 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00007-of-00013.safetensors",
|
| 90 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00007-of-00013.safetensors",
|
| 91 |
+
"model.layers.12.self_attn.sinks": "model-00007-of-00013.safetensors",
|
| 92 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00007-of-00013.safetensors",
|
| 93 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00007-of-00013.safetensors",
|
| 94 |
+
"model.layers.13.input_layernorm.weight": "model-00008-of-00013.safetensors",
|
| 95 |
+
"model.layers.13.mlp.experts.down_proj": "model-00008-of-00013.safetensors",
|
| 96 |
+
"model.layers.13.mlp.experts.down_proj_bias": "model-00008-of-00013.safetensors",
|
| 97 |
+
"model.layers.13.mlp.experts.gate_up_proj": "model-00008-of-00013.safetensors",
|
| 98 |
+
"model.layers.13.mlp.experts.gate_up_proj_bias": "model-00008-of-00013.safetensors",
|
| 99 |
+
"model.layers.13.mlp.router.bias": "model-00007-of-00013.safetensors",
|
| 100 |
+
"model.layers.13.mlp.router.weight": "model-00007-of-00013.safetensors",
|
| 101 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00008-of-00013.safetensors",
|
| 102 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00007-of-00013.safetensors",
|
| 103 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00007-of-00013.safetensors",
|
| 104 |
+
"model.layers.13.self_attn.o_proj.bias": "model-00007-of-00013.safetensors",
|
| 105 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00007-of-00013.safetensors",
|
| 106 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00007-of-00013.safetensors",
|
| 107 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00007-of-00013.safetensors",
|
| 108 |
+
"model.layers.13.self_attn.sinks": "model-00007-of-00013.safetensors",
|
| 109 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00007-of-00013.safetensors",
|
| 110 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00007-of-00013.safetensors",
|
| 111 |
+
"model.layers.14.input_layernorm.weight": "model-00008-of-00013.safetensors",
|
| 112 |
+
"model.layers.14.mlp.experts.down_proj": "model-00008-of-00013.safetensors",
|
| 113 |
+
"model.layers.14.mlp.experts.down_proj_bias": "model-00008-of-00013.safetensors",
|
| 114 |
+
"model.layers.14.mlp.experts.gate_up_proj": "model-00008-of-00013.safetensors",
|
| 115 |
+
"model.layers.14.mlp.experts.gate_up_proj_bias": "model-00008-of-00013.safetensors",
|
| 116 |
+
"model.layers.14.mlp.router.bias": "model-00008-of-00013.safetensors",
|
| 117 |
+
"model.layers.14.mlp.router.weight": "model-00008-of-00013.safetensors",
|
| 118 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00008-of-00013.safetensors",
|
| 119 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00008-of-00013.safetensors",
|
| 120 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00008-of-00013.safetensors",
|
| 121 |
+
"model.layers.14.self_attn.o_proj.bias": "model-00008-of-00013.safetensors",
|
| 122 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00008-of-00013.safetensors",
|
| 123 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00008-of-00013.safetensors",
|
| 124 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00008-of-00013.safetensors",
|
| 125 |
+
"model.layers.14.self_attn.sinks": "model-00008-of-00013.safetensors",
|
| 126 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00008-of-00013.safetensors",
|
| 127 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00008-of-00013.safetensors",
|
| 128 |
+
"model.layers.15.input_layernorm.weight": "model-00009-of-00013.safetensors",
|
| 129 |
+
"model.layers.15.mlp.experts.down_proj": "model-00009-of-00013.safetensors",
|
| 130 |
+
"model.layers.15.mlp.experts.down_proj_bias": "model-00009-of-00013.safetensors",
|
| 131 |
+
"model.layers.15.mlp.experts.gate_up_proj": "model-00009-of-00013.safetensors",
|
| 132 |
+
"model.layers.15.mlp.experts.gate_up_proj_bias": "model-00009-of-00013.safetensors",
|
| 133 |
+
"model.layers.15.mlp.router.bias": "model-00008-of-00013.safetensors",
|
| 134 |
+
"model.layers.15.mlp.router.weight": "model-00008-of-00013.safetensors",
|
| 135 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00009-of-00013.safetensors",
|
| 136 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00008-of-00013.safetensors",
|
| 137 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00008-of-00013.safetensors",
|
| 138 |
+
"model.layers.15.self_attn.o_proj.bias": "model-00008-of-00013.safetensors",
|
| 139 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00008-of-00013.safetensors",
|
| 140 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00008-of-00013.safetensors",
|
| 141 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00008-of-00013.safetensors",
|
| 142 |
+
"model.layers.15.self_attn.sinks": "model-00008-of-00013.safetensors",
|
| 143 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00008-of-00013.safetensors",
|
| 144 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00008-of-00013.safetensors",
|
| 145 |
+
"model.layers.16.input_layernorm.weight": "model-00009-of-00013.safetensors",
|
| 146 |
+
"model.layers.16.mlp.experts.down_proj": "model-00009-of-00013.safetensors",
|
| 147 |
+
"model.layers.16.mlp.experts.down_proj_bias": "model-00009-of-00013.safetensors",
|
| 148 |
+
"model.layers.16.mlp.experts.gate_up_proj": "model-00009-of-00013.safetensors",
|
| 149 |
+
"model.layers.16.mlp.experts.gate_up_proj_bias": "model-00009-of-00013.safetensors",
|
| 150 |
+
"model.layers.16.mlp.router.bias": "model-00009-of-00013.safetensors",
|
| 151 |
+
"model.layers.16.mlp.router.weight": "model-00009-of-00013.safetensors",
|
| 152 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00009-of-00013.safetensors",
|
| 153 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00009-of-00013.safetensors",
|
| 154 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00009-of-00013.safetensors",
|
| 155 |
+
"model.layers.16.self_attn.o_proj.bias": "model-00009-of-00013.safetensors",
|
| 156 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00009-of-00013.safetensors",
|
| 157 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00009-of-00013.safetensors",
|
| 158 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00009-of-00013.safetensors",
|
| 159 |
+
"model.layers.16.self_attn.sinks": "model-00009-of-00013.safetensors",
|
| 160 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00009-of-00013.safetensors",
|
| 161 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00009-of-00013.safetensors",
|
| 162 |
+
"model.layers.17.input_layernorm.weight": "model-00010-of-00013.safetensors",
|
| 163 |
+
"model.layers.17.mlp.experts.down_proj": "model-00010-of-00013.safetensors",
|
| 164 |
+
"model.layers.17.mlp.experts.down_proj_bias": "model-00010-of-00013.safetensors",
|
| 165 |
+
"model.layers.17.mlp.experts.gate_up_proj": "model-00010-of-00013.safetensors",
|
| 166 |
+
"model.layers.17.mlp.experts.gate_up_proj_bias": "model-00010-of-00013.safetensors",
|
| 167 |
+
"model.layers.17.mlp.router.bias": "model-00009-of-00013.safetensors",
|
| 168 |
+
"model.layers.17.mlp.router.weight": "model-00009-of-00013.safetensors",
|
| 169 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00010-of-00013.safetensors",
|
| 170 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00009-of-00013.safetensors",
|
| 171 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00009-of-00013.safetensors",
|
| 172 |
+
"model.layers.17.self_attn.o_proj.bias": "model-00009-of-00013.safetensors",
|
| 173 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00009-of-00013.safetensors",
|
| 174 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00009-of-00013.safetensors",
|
| 175 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00009-of-00013.safetensors",
|
| 176 |
+
"model.layers.17.self_attn.sinks": "model-00009-of-00013.safetensors",
|
| 177 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00009-of-00013.safetensors",
|
| 178 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00009-of-00013.safetensors",
|
| 179 |
+
"model.layers.18.input_layernorm.weight": "model-00010-of-00013.safetensors",
|
| 180 |
+
"model.layers.18.mlp.experts.down_proj": "model-00010-of-00013.safetensors",
|
| 181 |
+
"model.layers.18.mlp.experts.down_proj_bias": "model-00010-of-00013.safetensors",
|
| 182 |
+
"model.layers.18.mlp.experts.gate_up_proj": "model-00010-of-00013.safetensors",
|
| 183 |
+
"model.layers.18.mlp.experts.gate_up_proj_bias": "model-00010-of-00013.safetensors",
|
| 184 |
+
"model.layers.18.mlp.router.bias": "model-00010-of-00013.safetensors",
|
| 185 |
+
"model.layers.18.mlp.router.weight": "model-00010-of-00013.safetensors",
|
| 186 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00010-of-00013.safetensors",
|
| 187 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00010-of-00013.safetensors",
|
| 188 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00010-of-00013.safetensors",
|
| 189 |
+
"model.layers.18.self_attn.o_proj.bias": "model-00010-of-00013.safetensors",
|
| 190 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00010-of-00013.safetensors",
|
| 191 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00010-of-00013.safetensors",
|
| 192 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00010-of-00013.safetensors",
|
| 193 |
+
"model.layers.18.self_attn.sinks": "model-00010-of-00013.safetensors",
|
| 194 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00010-of-00013.safetensors",
|
| 195 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00010-of-00013.safetensors",
|
| 196 |
+
"model.layers.19.input_layernorm.weight": "model-00011-of-00013.safetensors",
|
| 197 |
+
"model.layers.19.mlp.experts.down_proj": "model-00011-of-00013.safetensors",
|
| 198 |
+
"model.layers.19.mlp.experts.down_proj_bias": "model-00011-of-00013.safetensors",
|
| 199 |
+
"model.layers.19.mlp.experts.gate_up_proj": "model-00011-of-00013.safetensors",
|
| 200 |
+
"model.layers.19.mlp.experts.gate_up_proj_bias": "model-00011-of-00013.safetensors",
|
| 201 |
+
"model.layers.19.mlp.router.bias": "model-00010-of-00013.safetensors",
|
| 202 |
+
"model.layers.19.mlp.router.weight": "model-00010-of-00013.safetensors",
|
| 203 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00011-of-00013.safetensors",
|
| 204 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00010-of-00013.safetensors",
|
| 205 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00010-of-00013.safetensors",
|
| 206 |
+
"model.layers.19.self_attn.o_proj.bias": "model-00010-of-00013.safetensors",
|
| 207 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00010-of-00013.safetensors",
|
| 208 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00010-of-00013.safetensors",
|
| 209 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00010-of-00013.safetensors",
|
| 210 |
+
"model.layers.19.self_attn.sinks": "model-00010-of-00013.safetensors",
|
| 211 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00010-of-00013.safetensors",
|
| 212 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00010-of-00013.safetensors",
|
| 213 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00013.safetensors",
|
| 214 |
+
"model.layers.2.mlp.experts.down_proj": "model-00002-of-00013.safetensors",
|
| 215 |
+
"model.layers.2.mlp.experts.down_proj_bias": "model-00002-of-00013.safetensors",
|
| 216 |
+
"model.layers.2.mlp.experts.gate_up_proj": "model-00002-of-00013.safetensors",
|
| 217 |
+
"model.layers.2.mlp.experts.gate_up_proj_bias": "model-00002-of-00013.safetensors",
|
| 218 |
+
"model.layers.2.mlp.router.bias": "model-00002-of-00013.safetensors",
|
| 219 |
+
"model.layers.2.mlp.router.weight": "model-00002-of-00013.safetensors",
|
| 220 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00013.safetensors",
|
| 221 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00002-of-00013.safetensors",
|
| 222 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00013.safetensors",
|
| 223 |
+
"model.layers.2.self_attn.o_proj.bias": "model-00002-of-00013.safetensors",
|
| 224 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00013.safetensors",
|
| 225 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00002-of-00013.safetensors",
|
| 226 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00013.safetensors",
|
| 227 |
+
"model.layers.2.self_attn.sinks": "model-00002-of-00013.safetensors",
|
| 228 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00002-of-00013.safetensors",
|
| 229 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00013.safetensors",
|
| 230 |
+
"model.layers.20.input_layernorm.weight": "model-00011-of-00013.safetensors",
|
| 231 |
+
"model.layers.20.mlp.experts.down_proj": "model-00011-of-00013.safetensors",
|
| 232 |
+
"model.layers.20.mlp.experts.down_proj_bias": "model-00011-of-00013.safetensors",
|
| 233 |
+
"model.layers.20.mlp.experts.gate_up_proj": "model-00011-of-00013.safetensors",
|
| 234 |
+
"model.layers.20.mlp.experts.gate_up_proj_bias": "model-00011-of-00013.safetensors",
|
| 235 |
+
"model.layers.20.mlp.router.bias": "model-00011-of-00013.safetensors",
|
| 236 |
+
"model.layers.20.mlp.router.weight": "model-00011-of-00013.safetensors",
|
| 237 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00011-of-00013.safetensors",
|
| 238 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00011-of-00013.safetensors",
|
| 239 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00011-of-00013.safetensors",
|
| 240 |
+
"model.layers.20.self_attn.o_proj.bias": "model-00011-of-00013.safetensors",
|
| 241 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00011-of-00013.safetensors",
|
| 242 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00011-of-00013.safetensors",
|
| 243 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00011-of-00013.safetensors",
|
| 244 |
+
"model.layers.20.self_attn.sinks": "model-00011-of-00013.safetensors",
|
| 245 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00011-of-00013.safetensors",
|
| 246 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00011-of-00013.safetensors",
|
| 247 |
+
"model.layers.21.input_layernorm.weight": "model-00012-of-00013.safetensors",
|
| 248 |
+
"model.layers.21.mlp.experts.down_proj": "model-00012-of-00013.safetensors",
|
| 249 |
+
"model.layers.21.mlp.experts.down_proj_bias": "model-00012-of-00013.safetensors",
|
| 250 |
+
"model.layers.21.mlp.experts.gate_up_proj": "model-00012-of-00013.safetensors",
|
| 251 |
+
"model.layers.21.mlp.experts.gate_up_proj_bias": "model-00012-of-00013.safetensors",
|
| 252 |
+
"model.layers.21.mlp.router.bias": "model-00011-of-00013.safetensors",
|
| 253 |
+
"model.layers.21.mlp.router.weight": "model-00011-of-00013.safetensors",
|
| 254 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00012-of-00013.safetensors",
|
| 255 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00011-of-00013.safetensors",
|
| 256 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00011-of-00013.safetensors",
|
| 257 |
+
"model.layers.21.self_attn.o_proj.bias": "model-00011-of-00013.safetensors",
|
| 258 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00011-of-00013.safetensors",
|
| 259 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00011-of-00013.safetensors",
|
| 260 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00011-of-00013.safetensors",
|
| 261 |
+
"model.layers.21.self_attn.sinks": "model-00011-of-00013.safetensors",
|
| 262 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00011-of-00013.safetensors",
|
| 263 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00011-of-00013.safetensors",
|
| 264 |
+
"model.layers.22.input_layernorm.weight": "model-00012-of-00013.safetensors",
|
| 265 |
+
"model.layers.22.mlp.experts.down_proj": "model-00012-of-00013.safetensors",
|
| 266 |
+
"model.layers.22.mlp.experts.down_proj_bias": "model-00012-of-00013.safetensors",
|
| 267 |
+
"model.layers.22.mlp.experts.gate_up_proj": "model-00012-of-00013.safetensors",
|
| 268 |
+
"model.layers.22.mlp.experts.gate_up_proj_bias": "model-00012-of-00013.safetensors",
|
| 269 |
+
"model.layers.22.mlp.router.bias": "model-00012-of-00013.safetensors",
|
| 270 |
+
"model.layers.22.mlp.router.weight": "model-00012-of-00013.safetensors",
|
| 271 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00012-of-00013.safetensors",
|
| 272 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00012-of-00013.safetensors",
|
| 273 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00012-of-00013.safetensors",
|
| 274 |
+
"model.layers.22.self_attn.o_proj.bias": "model-00012-of-00013.safetensors",
|
| 275 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00012-of-00013.safetensors",
|
| 276 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00012-of-00013.safetensors",
|
| 277 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00012-of-00013.safetensors",
|
| 278 |
+
"model.layers.22.self_attn.sinks": "model-00012-of-00013.safetensors",
|
| 279 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00012-of-00013.safetensors",
|
| 280 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00012-of-00013.safetensors",
|
| 281 |
+
"model.layers.23.input_layernorm.weight": "model-00013-of-00013.safetensors",
|
| 282 |
+
"model.layers.23.mlp.experts.down_proj": "model-00013-of-00013.safetensors",
|
| 283 |
+
"model.layers.23.mlp.experts.down_proj_bias": "model-00013-of-00013.safetensors",
|
| 284 |
+
"model.layers.23.mlp.experts.gate_up_proj": "model-00013-of-00013.safetensors",
|
| 285 |
+
"model.layers.23.mlp.experts.gate_up_proj_bias": "model-00013-of-00013.safetensors",
|
| 286 |
+
"model.layers.23.mlp.router.bias": "model-00012-of-00013.safetensors",
|
| 287 |
+
"model.layers.23.mlp.router.weight": "model-00012-of-00013.safetensors",
|
| 288 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00013-of-00013.safetensors",
|
| 289 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00012-of-00013.safetensors",
|
| 290 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00012-of-00013.safetensors",
|
| 291 |
+
"model.layers.23.self_attn.o_proj.bias": "model-00012-of-00013.safetensors",
|
| 292 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00012-of-00013.safetensors",
|
| 293 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00012-of-00013.safetensors",
|
| 294 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00012-of-00013.safetensors",
|
| 295 |
+
"model.layers.23.self_attn.sinks": "model-00012-of-00013.safetensors",
|
| 296 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00012-of-00013.safetensors",
|
| 297 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00012-of-00013.safetensors",
|
| 298 |
+
"model.layers.3.input_layernorm.weight": "model-00003-of-00013.safetensors",
|
| 299 |
+
"model.layers.3.mlp.experts.down_proj": "model-00003-of-00013.safetensors",
|
| 300 |
+
"model.layers.3.mlp.experts.down_proj_bias": "model-00003-of-00013.safetensors",
|
| 301 |
+
"model.layers.3.mlp.experts.gate_up_proj": "model-00003-of-00013.safetensors",
|
| 302 |
+
"model.layers.3.mlp.experts.gate_up_proj_bias": "model-00003-of-00013.safetensors",
|
| 303 |
+
"model.layers.3.mlp.router.bias": "model-00003-of-00013.safetensors",
|
| 304 |
+
"model.layers.3.mlp.router.weight": "model-00003-of-00013.safetensors",
|
| 305 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00003-of-00013.safetensors",
|
| 306 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00013.safetensors",
|
| 307 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00013.safetensors",
|
| 308 |
+
"model.layers.3.self_attn.o_proj.bias": "model-00003-of-00013.safetensors",
|
| 309 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00003-of-00013.safetensors",
|
| 310 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00013.safetensors",
|
| 311 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00013.safetensors",
|
| 312 |
+
"model.layers.3.self_attn.sinks": "model-00002-of-00013.safetensors",
|
| 313 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00013.safetensors",
|
| 314 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00013.safetensors",
|
| 315 |
+
"model.layers.4.input_layernorm.weight": "model-00003-of-00013.safetensors",
|
| 316 |
+
"model.layers.4.mlp.experts.down_proj": "model-00003-of-00013.safetensors",
|
| 317 |
+
"model.layers.4.mlp.experts.down_proj_bias": "model-00003-of-00013.safetensors",
|
| 318 |
+
"model.layers.4.mlp.experts.gate_up_proj": "model-00003-of-00013.safetensors",
|
| 319 |
+
"model.layers.4.mlp.experts.gate_up_proj_bias": "model-00003-of-00013.safetensors",
|
| 320 |
+
"model.layers.4.mlp.router.bias": "model-00003-of-00013.safetensors",
|
| 321 |
+
"model.layers.4.mlp.router.weight": "model-00003-of-00013.safetensors",
|
| 322 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00003-of-00013.safetensors",
|
| 323 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00003-of-00013.safetensors",
|
| 324 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00003-of-00013.safetensors",
|
| 325 |
+
"model.layers.4.self_attn.o_proj.bias": "model-00003-of-00013.safetensors",
|
| 326 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00003-of-00013.safetensors",
|
| 327 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00003-of-00013.safetensors",
|
| 328 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00003-of-00013.safetensors",
|
| 329 |
+
"model.layers.4.self_attn.sinks": "model-00003-of-00013.safetensors",
|
| 330 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00003-of-00013.safetensors",
|
| 331 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00003-of-00013.safetensors",
|
| 332 |
+
"model.layers.5.input_layernorm.weight": "model-00004-of-00013.safetensors",
|
| 333 |
+
"model.layers.5.mlp.experts.down_proj": "model-00004-of-00013.safetensors",
|
| 334 |
+
"model.layers.5.mlp.experts.down_proj_bias": "model-00004-of-00013.safetensors",
|
| 335 |
+
"model.layers.5.mlp.experts.gate_up_proj": "model-00004-of-00013.safetensors",
|
| 336 |
+
"model.layers.5.mlp.experts.gate_up_proj_bias": "model-00004-of-00013.safetensors",
|
| 337 |
+
"model.layers.5.mlp.router.bias": "model-00003-of-00013.safetensors",
|
| 338 |
+
"model.layers.5.mlp.router.weight": "model-00003-of-00013.safetensors",
|
| 339 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00004-of-00013.safetensors",
|
| 340 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00003-of-00013.safetensors",
|
| 341 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00003-of-00013.safetensors",
|
| 342 |
+
"model.layers.5.self_attn.o_proj.bias": "model-00003-of-00013.safetensors",
|
| 343 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00003-of-00013.safetensors",
|
| 344 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00003-of-00013.safetensors",
|
| 345 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00003-of-00013.safetensors",
|
| 346 |
+
"model.layers.5.self_attn.sinks": "model-00003-of-00013.safetensors",
|
| 347 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00003-of-00013.safetensors",
|
| 348 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00003-of-00013.safetensors",
|
| 349 |
+
"model.layers.6.input_layernorm.weight": "model-00004-of-00013.safetensors",
|
| 350 |
+
"model.layers.6.mlp.experts.down_proj": "model-00004-of-00013.safetensors",
|
| 351 |
+
"model.layers.6.mlp.experts.down_proj_bias": "model-00004-of-00013.safetensors",
|
| 352 |
+
"model.layers.6.mlp.experts.gate_up_proj": "model-00004-of-00013.safetensors",
|
| 353 |
+
"model.layers.6.mlp.experts.gate_up_proj_bias": "model-00004-of-00013.safetensors",
|
| 354 |
+
"model.layers.6.mlp.router.bias": "model-00004-of-00013.safetensors",
|
| 355 |
+
"model.layers.6.mlp.router.weight": "model-00004-of-00013.safetensors",
|
| 356 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00004-of-00013.safetensors",
|
| 357 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00004-of-00013.safetensors",
|
| 358 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00004-of-00013.safetensors",
|
| 359 |
+
"model.layers.6.self_attn.o_proj.bias": "model-00004-of-00013.safetensors",
|
| 360 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00004-of-00013.safetensors",
|
| 361 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00004-of-00013.safetensors",
|
| 362 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00004-of-00013.safetensors",
|
| 363 |
+
"model.layers.6.self_attn.sinks": "model-00004-of-00013.safetensors",
|
| 364 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00004-of-00013.safetensors",
|
| 365 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00004-of-00013.safetensors",
|
| 366 |
+
"model.layers.7.input_layernorm.weight": "model-00005-of-00013.safetensors",
|
| 367 |
+
"model.layers.7.mlp.experts.down_proj": "model-00005-of-00013.safetensors",
|
| 368 |
+
"model.layers.7.mlp.experts.down_proj_bias": "model-00005-of-00013.safetensors",
|
| 369 |
+
"model.layers.7.mlp.experts.gate_up_proj": "model-00005-of-00013.safetensors",
|
| 370 |
+
"model.layers.7.mlp.experts.gate_up_proj_bias": "model-00005-of-00013.safetensors",
|
| 371 |
+
"model.layers.7.mlp.router.bias": "model-00004-of-00013.safetensors",
|
| 372 |
+
"model.layers.7.mlp.router.weight": "model-00004-of-00013.safetensors",
|
| 373 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00005-of-00013.safetensors",
|
| 374 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00004-of-00013.safetensors",
|
| 375 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00004-of-00013.safetensors",
|
| 376 |
+
"model.layers.7.self_attn.o_proj.bias": "model-00004-of-00013.safetensors",
|
| 377 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00004-of-00013.safetensors",
|
| 378 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00004-of-00013.safetensors",
|
| 379 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00004-of-00013.safetensors",
|
| 380 |
+
"model.layers.7.self_attn.sinks": "model-00004-of-00013.safetensors",
|
| 381 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00004-of-00013.safetensors",
|
| 382 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00004-of-00013.safetensors",
|
| 383 |
+
"model.layers.8.input_layernorm.weight": "model-00005-of-00013.safetensors",
|
| 384 |
+
"model.layers.8.mlp.experts.down_proj": "model-00005-of-00013.safetensors",
|
| 385 |
+
"model.layers.8.mlp.experts.down_proj_bias": "model-00005-of-00013.safetensors",
|
| 386 |
+
"model.layers.8.mlp.experts.gate_up_proj": "model-00005-of-00013.safetensors",
|
| 387 |
+
"model.layers.8.mlp.experts.gate_up_proj_bias": "model-00005-of-00013.safetensors",
|
| 388 |
+
"model.layers.8.mlp.router.bias": "model-00005-of-00013.safetensors",
|
| 389 |
+
"model.layers.8.mlp.router.weight": "model-00005-of-00013.safetensors",
|
| 390 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00005-of-00013.safetensors",
|
| 391 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00005-of-00013.safetensors",
|
| 392 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00005-of-00013.safetensors",
|
| 393 |
+
"model.layers.8.self_attn.o_proj.bias": "model-00005-of-00013.safetensors",
|
| 394 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00005-of-00013.safetensors",
|
| 395 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00005-of-00013.safetensors",
|
| 396 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00005-of-00013.safetensors",
|
| 397 |
+
"model.layers.8.self_attn.sinks": "model-00005-of-00013.safetensors",
|
| 398 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00005-of-00013.safetensors",
|
| 399 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00005-of-00013.safetensors",
|
| 400 |
+
"model.layers.9.input_layernorm.weight": "model-00006-of-00013.safetensors",
|
| 401 |
+
"model.layers.9.mlp.experts.down_proj": "model-00006-of-00013.safetensors",
|
| 402 |
+
"model.layers.9.mlp.experts.down_proj_bias": "model-00006-of-00013.safetensors",
|
| 403 |
+
"model.layers.9.mlp.experts.gate_up_proj": "model-00006-of-00013.safetensors",
|
| 404 |
+
"model.layers.9.mlp.experts.gate_up_proj_bias": "model-00006-of-00013.safetensors",
|
| 405 |
+
"model.layers.9.mlp.router.bias": "model-00005-of-00013.safetensors",
|
| 406 |
+
"model.layers.9.mlp.router.weight": "model-00005-of-00013.safetensors",
|
| 407 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00006-of-00013.safetensors",
|
| 408 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00005-of-00013.safetensors",
|
| 409 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00005-of-00013.safetensors",
|
| 410 |
+
"model.layers.9.self_attn.o_proj.bias": "model-00005-of-00013.safetensors",
|
| 411 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00005-of-00013.safetensors",
|
| 412 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00005-of-00013.safetensors",
|
| 413 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00005-of-00013.safetensors",
|
| 414 |
+
"model.layers.9.self_attn.sinks": "model-00005-of-00013.safetensors",
|
| 415 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00005-of-00013.safetensors",
|
| 416 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00005-of-00013.safetensors",
|
| 417 |
+
"model.norm.weight": "model-00013-of-00013.safetensors"
|
| 418 |
+
}
|
| 419 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|startoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|return|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
|
| 3 |
+
size 27868174
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"199998": {
|
| 4 |
+
"content": "<|startoftext|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"199999": {
|
| 12 |
+
"content": "<|endoftext|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"200000": {
|
| 20 |
+
"content": "<|reserved_200000|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"200001": {
|
| 28 |
+
"content": "<|reserved_200001|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"200002": {
|
| 36 |
+
"content": "<|return|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"200003": {
|
| 44 |
+
"content": "<|constrain|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"200004": {
|
| 52 |
+
"content": "<|reserved_200004|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"200005": {
|
| 60 |
+
"content": "<|channel|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"200006": {
|
| 68 |
+
"content": "<|start|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"200007": {
|
| 76 |
+
"content": "<|end|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"200008": {
|
| 84 |
+
"content": "<|message|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"200009": {
|
| 92 |
+
"content": "<|reserved_200009|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"200010": {
|
| 100 |
+
"content": "<|reserved_200010|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"200011": {
|
| 108 |
+
"content": "<|reserved_200011|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"200012": {
|
| 116 |
+
"content": "<|call|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"200013": {
|
| 124 |
+
"content": "<|reserved_200013|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"200014": {
|
| 132 |
+
"content": "<|reserved_200014|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"200015": {
|
| 140 |
+
"content": "<|reserved_200015|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"200016": {
|
| 148 |
+
"content": "<|reserved_200016|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"200017": {
|
| 156 |
+
"content": "<|reserved_200017|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"200018": {
|
| 164 |
+
"content": "<|endofprompt|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
}
|
| 171 |
+
},
|
| 172 |
+
"bos_token": "<|startoftext|>",
|
| 173 |
+
"clean_up_tokenization_spaces": false,
|
| 174 |
+
"eos_token": "<|return|>",
|
| 175 |
+
"extra_special_tokens": {},
|
| 176 |
+
"model_input_names": [
|
| 177 |
+
"input_ids",
|
| 178 |
+
"attention_mask"
|
| 179 |
+
],
|
| 180 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 181 |
+
"pad_token": "<|endoftext|>",
|
| 182 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 183 |
+
}
|