--- library_name: transformers license: mit base_model: jhu-clsp/mmBERT-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: router-mmBERT-base-6e-5-batch64 results: [] --- # router-mmBERT-base-6e-5-batch64 This model is a fine-tuned version of [jhu-clsp/mmBERT-base](https://huggingface.co/jhu-clsp/mmBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6451 - Accuracy: 0.6251 - Precision: 0.6246 - Recall: 0.6251 - F1: 0.6229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.379 | 0.0929 | 100 | 0.7915 | 0.5262 | 0.6719 | 0.5262 | 0.3662 | | 1.3923 | 0.1859 | 200 | 0.6671 | 0.6013 | 0.6284 | 0.6013 | 0.5650 | | 1.3808 | 0.2788 | 300 | 0.6831 | 0.5710 | 0.6836 | 0.5710 | 0.4720 | | 1.358 | 0.3717 | 400 | 0.6631 | 0.5903 | 0.5927 | 0.5903 | 0.5904 | | 1.308 | 0.4647 | 500 | 0.6580 | 0.6024 | 0.6031 | 0.6024 | 0.5955 | | 1.3378 | 0.5576 | 600 | 0.6953 | 0.5295 | 0.5883 | 0.5295 | 0.4701 | | 1.3219 | 0.6506 | 700 | 0.6657 | 0.5765 | 0.5888 | 0.5765 | 0.5710 | | 1.3212 | 0.7435 | 800 | 0.6580 | 0.5958 | 0.5953 | 0.5958 | 0.5954 | | 1.2893 | 0.8364 | 900 | 0.6612 | 0.5919 | 0.6025 | 0.5919 | 0.5883 | | 1.2436 | 0.9294 | 1000 | 0.6543 | 0.6151 | 0.6225 | 0.6151 | 0.6011 | | 1.3296 | 1.0223 | 1100 | 0.6509 | 0.6157 | 0.6311 | 0.6157 | 0.5941 | | 1.2985 | 1.1152 | 1200 | 0.6564 | 0.6151 | 0.6157 | 0.6151 | 0.6101 | | 1.1993 | 1.2082 | 1300 | 0.6562 | 0.6013 | 0.6085 | 0.6013 | 0.5997 | | 1.2665 | 1.3011 | 1400 | 0.6832 | 0.5699 | 0.5980 | 0.5699 | 0.5520 | | 1.2523 | 1.3941 | 1500 | 0.6548 | 0.6068 | 0.6062 | 0.6068 | 0.6062 | | 1.1899 | 1.4870 | 1600 | 0.6545 | 0.6173 | 0.6166 | 0.6173 | 0.6162 | | 1.2433 | 1.5799 | 1700 | 0.6487 | 0.6240 | 0.6264 | 0.6240 | 0.6169 | | 1.2378 | 1.6729 | 1800 | 0.6507 | 0.6201 | 0.6196 | 0.6201 | 0.6197 | | 1.2489 | 1.7658 | 1900 | 0.6441 | 0.6322 | 0.6340 | 0.6322 | 0.6268 | | 1.2625 | 1.8587 | 2000 | 0.6448 | 0.6273 | 0.6271 | 0.6273 | 0.6245 | | 1.3145 | 1.9517 | 2100 | 0.6451 | 0.6251 | 0.6246 | 0.6251 | 0.6229 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu128 - Datasets 4.2.0 - Tokenizers 0.22.1