Upload folder using huggingface_hub
Browse files- best_model.h5 +3 -0
- class_names.txt +45 -0
- prediction.py +26 -0
- train_resisc45.py +117 -0
best_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1758608733d41d3eb3874611d7638d2cdaca9068380b851b4b984e56787bb072
|
| 3 |
+
size 17620960
|
class_names.txt
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
airplane
|
| 2 |
+
airport
|
| 3 |
+
baseball_diamond
|
| 4 |
+
basketball_court
|
| 5 |
+
beach
|
| 6 |
+
bridge
|
| 7 |
+
chaparral
|
| 8 |
+
church
|
| 9 |
+
circular_farmland
|
| 10 |
+
cloud
|
| 11 |
+
commercial_area
|
| 12 |
+
dense_residential
|
| 13 |
+
desert
|
| 14 |
+
forest
|
| 15 |
+
freeway
|
| 16 |
+
golf_course
|
| 17 |
+
ground_track_field
|
| 18 |
+
harbor
|
| 19 |
+
industrial_area
|
| 20 |
+
intersection
|
| 21 |
+
island
|
| 22 |
+
lake
|
| 23 |
+
meadow
|
| 24 |
+
medium_residential
|
| 25 |
+
mobile_home_park
|
| 26 |
+
mountain
|
| 27 |
+
overpass
|
| 28 |
+
palace
|
| 29 |
+
parking_lot
|
| 30 |
+
railway
|
| 31 |
+
railway_station
|
| 32 |
+
rectangular_farmland
|
| 33 |
+
river
|
| 34 |
+
roundabout
|
| 35 |
+
runway
|
| 36 |
+
sea_ice
|
| 37 |
+
ship
|
| 38 |
+
snowberg
|
| 39 |
+
sparse_residential
|
| 40 |
+
stadium
|
| 41 |
+
storage_tank
|
| 42 |
+
tennis_court
|
| 43 |
+
terrace
|
| 44 |
+
thermal_power_station
|
| 45 |
+
wetland
|
prediction.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Code for checking 1 sample image
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tensorflow.keras.preprocessing import image
|
| 5 |
+
from tensorflow.keras.models import load_model
|
| 6 |
+
|
| 7 |
+
# Set correct image size based on training
|
| 8 |
+
IMG_SIZE = (128, 128)
|
| 9 |
+
|
| 10 |
+
# Load your model
|
| 11 |
+
model = load_model("best_model.h5")
|
| 12 |
+
|
| 13 |
+
# Get class names from folders
|
| 14 |
+
DATA_DIR = r"C:\Users\arsul\Desktop\RESISC45\NWPU-RESISC45"
|
| 15 |
+
CLASS_NAMES = sorted(os.listdir(DATA_DIR))
|
| 16 |
+
|
| 17 |
+
# Load and preprocess the image
|
| 18 |
+
img_path = r"C:\Users\arsul\Desktop\RESISC45\ball-courts.jpg"
|
| 19 |
+
img = image.load_img(img_path, target_size=IMG_SIZE)
|
| 20 |
+
img_array = image.img_to_array(img)
|
| 21 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
| 22 |
+
|
| 23 |
+
# Make prediction
|
| 24 |
+
preds = model.predict(img_array)
|
| 25 |
+
predicted_class = CLASS_NAMES[np.argmax(preds)]
|
| 26 |
+
print(f"Predicted class: {predicted_class}")
|
train_resisc45.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from tensorflow.keras.applications import EfficientNetB0
|
| 3 |
+
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout
|
| 4 |
+
from tensorflow.keras.models import Model
|
| 5 |
+
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Paths
|
| 10 |
+
DATASET_DIR = r"C:\Path\To\NWPU-RESISC45" # Path to your Dataset
|
| 11 |
+
IMG_SIZE = (128, 128)
|
| 12 |
+
BATCH_SIZE = 16
|
| 13 |
+
NUM_CLASSES = 45
|
| 14 |
+
EPOCHS = 50
|
| 15 |
+
SEED = 42
|
| 16 |
+
|
| 17 |
+
# Sanity check: verify class folders
|
| 18 |
+
class_names = sorted(os.listdir(DATASET_DIR))
|
| 19 |
+
print(f"Detected {len(class_names)} classes:", class_names)
|
| 20 |
+
|
| 21 |
+
# Augmentation for training set
|
| 22 |
+
data_augmentation = tf.keras.Sequential([
|
| 23 |
+
tf.keras.layers.RandomFlip("horizontal_and_vertical"),
|
| 24 |
+
tf.keras.layers.RandomRotation(0.2),
|
| 25 |
+
tf.keras.layers.RandomZoom(0.1),
|
| 26 |
+
])
|
| 27 |
+
|
| 28 |
+
# Load Datasets
|
| 29 |
+
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 30 |
+
DATASET_DIR,
|
| 31 |
+
validation_split=0.2,
|
| 32 |
+
subset="training",
|
| 33 |
+
seed=SEED,
|
| 34 |
+
image_size=IMG_SIZE,
|
| 35 |
+
batch_size=BATCH_SIZE,
|
| 36 |
+
label_mode='categorical'
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 40 |
+
DATASET_DIR,
|
| 41 |
+
validation_split=0.2,
|
| 42 |
+
subset="validation",
|
| 43 |
+
seed=SEED,
|
| 44 |
+
image_size=IMG_SIZE,
|
| 45 |
+
batch_size=BATCH_SIZE,
|
| 46 |
+
label_mode='categorical'
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Apply augmentation only to training
|
| 50 |
+
train_ds = train_ds.map(lambda x, y: (data_augmentation(x, training=True), y))
|
| 51 |
+
|
| 52 |
+
# Prefetch
|
| 53 |
+
AUTOTUNE = tf.data.AUTOTUNE
|
| 54 |
+
train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
|
| 55 |
+
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
|
| 56 |
+
|
| 57 |
+
# Build Model
|
| 58 |
+
base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(*IMG_SIZE, 3))
|
| 59 |
+
base_model.trainable = False # Freeze base model initially
|
| 60 |
+
|
| 61 |
+
x = base_model.output
|
| 62 |
+
x = GlobalAveragePooling2D()(x)
|
| 63 |
+
x = Dropout(0.3)(x)
|
| 64 |
+
output = Dense(NUM_CLASSES, activation='softmax')(x)
|
| 65 |
+
|
| 66 |
+
model = Model(inputs=base_model.input, outputs=output)
|
| 67 |
+
|
| 68 |
+
model.compile(optimizer='adam',
|
| 69 |
+
loss='categorical_crossentropy',
|
| 70 |
+
metrics=['accuracy'])
|
| 71 |
+
|
| 72 |
+
model.summary()
|
| 73 |
+
|
| 74 |
+
# Callbacks
|
| 75 |
+
callbacks = [
|
| 76 |
+
ModelCheckpoint("best_model.h5", save_best_only=True, monitor="val_accuracy", mode="max"),
|
| 77 |
+
EarlyStopping(patience=10, restore_best_weights=True),
|
| 78 |
+
ReduceLROnPlateau(factor=0.2, patience=5, min_lr=1e-6)
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
# Train
|
| 82 |
+
history = model.fit(
|
| 83 |
+
train_ds,
|
| 84 |
+
validation_data=val_ds,
|
| 85 |
+
epochs=EPOCHS,
|
| 86 |
+
callbacks=callbacks
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Optional: Fine-tune after warmup (unfreeze base model)
|
| 90 |
+
base_model.trainable = True
|
| 91 |
+
model.compile(optimizer=tf.keras.optimizers.Adam(1e-5), # Lower LR for fine-tuning
|
| 92 |
+
loss='categorical_crossentropy',
|
| 93 |
+
metrics=['accuracy'])
|
| 94 |
+
|
| 95 |
+
history_finetune = model.fit(
|
| 96 |
+
train_ds,
|
| 97 |
+
validation_data=val_ds,
|
| 98 |
+
epochs=10,
|
| 99 |
+
callbacks=callbacks
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Plotting
|
| 103 |
+
plt.plot(history.history["accuracy"] + history_finetune.history["accuracy"], label="train acc")
|
| 104 |
+
plt.plot(history.history["val_accuracy"] + history_finetune.history["val_accuracy"], label="val acc")
|
| 105 |
+
plt.xlabel("Epochs")
|
| 106 |
+
plt.ylabel("Accuracy")
|
| 107 |
+
plt.legend()
|
| 108 |
+
plt.title("Training vs Validation Accuracy")
|
| 109 |
+
plt.grid()
|
| 110 |
+
plt.savefig("training_accuracy.png")
|
| 111 |
+
plt.show()
|
| 112 |
+
|
| 113 |
+
# Save class names
|
| 114 |
+
with open("class_names.txt", "w") as f:
|
| 115 |
+
for name in class_names:
|
| 116 |
+
f.write(name + "\n")
|
| 117 |
+
|