---
license: llama3.1
library_name: transformers
base_model:
- meta-llama/Llama-3.1-70B
pipeline_tag: text-generation
---
   
# Cogito v2 preview - 70B
[Blog Post](https://www.deepcogito.com/research/cogito-v2-preview)
The Cogito v2 LLMs are instruction tuned generative models. All models are released under an open license for commercial use.
- Cogito v2 models are hybrid reasoning models. Each model can answer directly (standard LLM), or self-reflect before answering (like reasoning models).
- The LLMs are trained using **Iterated Distillation and Amplification (IDA)** - an scalable and efficient alignment strategy for superintelligence using iterative self-improvement.
- The models have been optimized for coding, STEM, instruction following and general helpfulness, and have significantly higher multilingual, coding and tool calling capabilities than size equivalent counterparts.
  - In both standard and reasoning modes, Cogito v2-preview models outperform their size equivalent counterparts on common industry benchmarks. 
- This model is trained in over 30 languages and supports a context length of 128k.
# Evaluations
Here is the model performance on some standard industry benchmarks:
   
For detailed evaluations, please refer to the [Blog Post](https://www.deepcogito.com/research/cogito-v2-preview). 
# Usage
Here is a snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "deepcogito/cogito-v2-preview-llama-70B"
pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Give me a short introduction to LLMs."},
]
outputs = pipeline(
    messages,
    max_new_tokens=512,
)
print(outputs[0]["generated_text"][-1])
```
## Implementing extended thinking
- By default, the model will answer in the standard mode. 
- To enable thinking, you can do any one of the two methods:
  - Set `enable_thinking=True` while applying the chat template.
  - Add a specific system prompt, along with prefilling the response with "\\n". 
**NOTE: Unlike Cogito v1 models, we initiate the response with "\\n" at the beginning of every output when reasoning is enabled. This is because hybrid models can be brittle at times (<0.1% of the cases), and adding a "\\n" ensures that the model does indeed respect thinking.**
### Method 1 - Set enable_thinking=True in the tokenizer
If you are using Huggingface tokenizers, then you can simply use add the argument `enable_thinking=True` to the tokenization (this option is added to the chat template).
Here is an example - 
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "deepcogito/cogito-v2-preview-llama-70B"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to LLMs."
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
### Method 2 - Add a specific system prompt, along with prefilling the response with "\\n". 
To enable thinking using this method, you need to do two parts - 
Step 1 - Simply use this in the system prompt `system_instruction = 'Enable deep thinking subroutine.'`
If you already have a system_instruction, then use `system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction`.
Step 2 - Prefil the response with the tokens `"\n"`.
Here is an example - 
```python
import transformers
import torch
model_name = "deepcogito/cogito-v2-preview-llama-70B"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Step 1 - Add deep thinking instruction.
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
messages = [
    {"role": "system", "content": DEEP_THINKING_INSTRUCTION},
    {"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
# Step 2 - Prefill response with "\n".
text += "\n"
# Now, continue as usual.
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
Similarly, if you have a system prompt, you can append the `DEEP_THINKING_INSTRUCTION` to the beginning in this way - 
```python
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
system_prompt = "Reply to each prompt with only the actual code - no explanations."
prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
messages = [
    {"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
    {"role": "user", "content": prompt}
]
```
# Tool Calling
Cogito models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
Here is a snippet -
```python
# First, define a tool
def get_current_temperature(location: str) -> float:
    """
    Get the current temperature at a location.
    
    Args:
        location: The location to get the temperature for, in the format "City, Country"
    Returns:
        The current temperature at the specified location in the specified units, as a float.
    """
    return 22.  # A real function should probably actually get the temperature!
# Next, create a chat and apply the chat template
messages = [
  {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
]
model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
print(output_text)
```
This will result in the output - 
```
{"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
<|eot_id|>
```
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
```python
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
```
and then call the tool and append the result, with the `tool` role, like so:
```python
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
```
After that, you can `generate()` again to let the model use the tool result in the chat:
```python
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
```
This should result in the string -
```
'The current temperature in Paris is 22.0 degrees.<|eot_id|>'
```
## License
This repository and the model weights are licensed under the [Llama 3.3 Community License Agreement](https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE) (Llama models' default license agreement).
## Contact
If you would like to reach out to our team, send an email to [contact@deepcogito.com](contact@deepcogito.com).