ArtusDev commited on
Commit
4fdc4a0
·
verified ·
1 Parent(s): 722b69f

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/gemma-3-270m
3
+ license: gemma
4
+ tags:
5
+ - gemma3
6
+ - gemma
7
+ - google
8
+ pipeline_tag: text-generation
9
+ library_name: transformers
10
+ extra_gated_heading: Access Gemma on Hugging Face
11
+ extra_gated_prompt: >-
12
+ To access Gemma on Hugging Face, you’re required to review and agree to
13
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
14
+ Face and click below. Requests are processed immediately.
15
+ extra_gated_button_content: Acknowledge license
16
+ ---
17
+
18
+ # Gemma 3 model card
19
+
20
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core)
21
+
22
+ **Resources and Technical Documentation**:
23
+
24
+ * [Gemma 3 Technical Report][g3-tech-report]
25
+ * [Responsible Generative AI Toolkit][rai-toolkit]
26
+ * [Gemma on Kaggle][kaggle-gemma]
27
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma3]
28
+
29
+ **Terms of Use**: [Terms][terms]
30
+
31
+ **Authors**: Google DeepMind
32
+
33
+ ## Model Information
34
+
35
+ Summary description and brief definition of inputs and outputs.
36
+
37
+ ### Description
38
+
39
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
40
+ built from the same research and technology used to create the Gemini models.
41
+ Gemma 3 models are multimodal, handling text and image input and generating text
42
+ output, with open weights for both pre-trained variants and instruction-tuned
43
+ variants. Gemma 3 has a large, 128K context window, multilingual support in over
44
+ 140 languages, and is available in more sizes than previous versions. Gemma 3
45
+ models are well-suited for a variety of text generation and image understanding
46
+ tasks, including question answering, summarization, and reasoning. Their
47
+ relatively small size makes it possible to deploy them in environments with
48
+ limited resources such as laptops, desktops or your own cloud infrastructure,
49
+ democratizing access to state of the art AI models and helping foster innovation
50
+ for everyone.
51
+
52
+ ### Inputs and outputs
53
+
54
+ - **Input:**
55
+ - Text string, such as a question, a prompt, or a document to be summarized
56
+ - Images, normalized to 896 x 896 resolution and encoded to 256 tokens
57
+ each, for the 4B, 12B, and 27B sizes.
58
+ - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and
59
+ 32K tokens for the 1B and 270M sizes.
60
+
61
+ - **Output:**
62
+ - Generated text in response to the input, such as an answer to a
63
+ question, analysis of image content, or a summary of a document
64
+ - Total output context up to 128K tokens for the 4B, 12B, and 27B sizes,
65
+ and 32K tokens for the 1B and 270M sizes per request, subtracting the
66
+ request input tokens
67
+
68
+ ### Citation
69
+
70
+ ```none
71
+ @article{gemma_2025,
72
+ title={Gemma 3},
73
+ url={https://arxiv.org/abs/2503.19786},
74
+ publisher={Google DeepMind},
75
+ author={Gemma Team},
76
+ year={2025}
77
+ }
78
+ ```
79
+
80
+ ## Model Data
81
+
82
+ Data used for model training and how the data was processed.
83
+
84
+ ### Training Dataset
85
+
86
+ These models were trained on a dataset of text data that includes a wide variety
87
+ of sources. The 27B model was trained with 14 trillion tokens, the 12B model was
88
+ trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens,
89
+ the 1B with 2 trillion tokens, and the 270M with 6 trillion tokens. The
90
+ knowledge cutoff date for the training data was August 2024. Here are the key
91
+ components:
92
+
93
+ - Web Documents: A diverse collection of web text ensures the model is
94
+ exposed to a broad range of linguistic styles, topics, and vocabulary. The
95
+ training dataset includes content in over 140 languages.
96
+ - Code: Exposing the model to code helps it to learn the syntax and
97
+ patterns of programming languages, which improves its ability to generate
98
+ code and understand code-related questions.
99
+ - Mathematics: Training on mathematical text helps the model learn logical
100
+ reasoning, symbolic representation, and to address mathematical queries.
101
+ - Images: A wide range of images enables the model to perform image
102
+ analysis and visual data extraction tasks.
103
+
104
+ The combination of these diverse data sources is crucial for training a powerful
105
+ multimodal model that can handle a wide variety of different tasks and data
106
+ formats.
107
+
108
+ ### Data Preprocessing
109
+
110
+ Here are the key data cleaning and filtering methods applied to the training
111
+ data:
112
+
113
+ - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering
114
+ was applied at multiple stages in the data preparation process to ensure
115
+ the exclusion of harmful and illegal content.
116
+ - Sensitive Data Filtering: As part of making Gemma pre-trained models
117
+ safe and reliable, automated techniques were used to filter out certain
118
+ personal information and other sensitive data from training sets.
119
+ - Additional methods: Filtering based on content quality and safety in
120
+ line with [our policies][safety-policies].
121
+
122
+ ## Implementation Information
123
+
124
+ Details about the model internals.
125
+
126
+ ### Hardware
127
+
128
+ Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p,
129
+ TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant
130
+ computational power. TPUs, designed specifically for matrix operations common in
131
+ machine learning, offer several advantages in this domain:
132
+
133
+ - Performance: TPUs are specifically designed to handle the massive
134
+ computations involved in training VLMs. They can speed up training
135
+ considerably compared to CPUs.
136
+ - Memory: TPUs often come with large amounts of high-bandwidth memory,
137
+ allowing for the handling of large models and batch sizes during training.
138
+ This can lead to better model quality.
139
+ - Scalability: TPU Pods (large clusters of TPUs) provide a scalable
140
+ solution for handling the growing complexity of large foundation models.
141
+ You can distribute training across multiple TPU devices for faster and more
142
+ efficient processing.
143
+ - Cost-effectiveness: In many scenarios, TPUs can provide a more
144
+ cost-effective solution for training large models compared to CPU-based
145
+ infrastructure, especially when considering the time and resources saved
146
+ due to faster training.
147
+ - These advantages are aligned with
148
+ [Google's commitments to operate sustainably][sustainability].
149
+
150
+ ### Software
151
+
152
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
153
+
154
+ JAX allows researchers to take advantage of the latest generation of hardware,
155
+ including TPUs, for faster and more efficient training of large models. ML
156
+ Pathways is Google's latest effort to build artificially intelligent systems
157
+ capable of generalizing across multiple tasks. This is specially suitable for
158
+ foundation models, including large language models like these ones.
159
+
160
+ Together, JAX and ML Pathways are used as described in the
161
+ [paper about the Gemini family of models][gemini-2-paper]; *"the 'single
162
+ controller' programming model of Jax and Pathways allows a single Python
163
+ process to orchestrate the entire training run, dramatically simplifying the
164
+ development workflow."*
165
+
166
+ ## Evaluation
167
+
168
+ Model evaluation metrics and results.
169
+
170
+ ### Benchmark Results
171
+
172
+ These models were evaluated against a large collection of different datasets and
173
+ metrics to cover different aspects of text generation. Evaluation results marked
174
+ with **IT** are for instruction-tuned models. Evaluation results marked with
175
+ **PT** are for pre-trained models.
176
+
177
+ #### Gemma 3 270M
178
+
179
+ | **Benchmark** | **n-shot** | **Gemma 3 PT 270M** |
180
+ | :------------------------ | :-----------: | ------------------: |
181
+ | [HellaSwag][hellaswag] | 10-shot | 40.9 |
182
+ | [BoolQ][boolq] | 0-shot | 61.4 |
183
+ | [PIQA][piqa] | 0-shot | 67.7 |
184
+ | [TriviaQA][triviaqa] | 5-shot | 15.4 |
185
+ | [ARC-c][arc] | 25-shot | 29.0 |
186
+ | [ARC-e][arc] | 0-shot | 57.7 |
187
+ | [WinoGrande][winogrande] | 5-shot | 52.0 |
188
+
189
+ [hellaswag]: https://arxiv.org/abs/1905.07830
190
+ [boolq]: https://arxiv.org/abs/1905.10044
191
+ [piqa]: https://arxiv.org/abs/1911.11641
192
+ [triviaqa]: https://arxiv.org/abs/1705.03551
193
+ [arc]: https://arxiv.org/abs/1911.01547
194
+ [winogrande]: https://arxiv.org/abs/1907.10641
195
+
196
+ | **Benchmark** | **n-shot** | **Gemma 3 IT 270m** |
197
+ | :------------------------ | :-----------: | ------------------: |
198
+ | [HellaSwag][hellaswag] | 0-shot | 37.7 |
199
+ | [PIQA][piqa] | 0-shot | 66.2 |
200
+ | [ARC-c][arc] | 0-shot | 28.2 |
201
+ | [WinoGrande][winogrande] | 0-shot | 52.3 |
202
+ | [BIG-Bench Hard][bbh] | few-shot | 26.7 |
203
+ | [IF Eval][ifeval] | 0-shot | 51.2 |
204
+
205
+ [hellaswag]: https://arxiv.org/abs/1905.07830
206
+ [piqa]: https://arxiv.org/abs/1911.11641
207
+ [arc]: https://arxiv.org/abs/1911.01547
208
+ [winogrande]: https://arxiv.org/abs/1907.10641
209
+ [bbh]: https://paperswithcode.com/dataset/bbh
210
+ [bbh]: https://paperswithcode.com/dataset/bbh
211
+ [ifeval]: https://arxiv.org/abs/2311.07911
212
+
213
+ #### Gemma 3 1B, 4B, 12B & 27B
214
+
215
+ ##### Reasoning and factuality
216
+
217
+ | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B |
218
+ |--------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:|
219
+ | [GPQA][gpqa] Diamond | 0-shot | 19.2 | 30.8 | 40.9 | 42.4 |
220
+ | [SimpleQA][simpleqa] | 0-shot | 2.2 | 4.0 | 6.3 | 10.0 |
221
+ | [FACTS Grounding][facts-grdg] | - | 36.4 | 70.1 | 75.8 | 74.9 |
222
+ | [BIG-Bench Hard][bbh] | 0-shot | 39.1 | 72.2 | 85.7 | 87.6 |
223
+ | [BIG-Bench Extra Hard][bbeh] | 0-shot | 7.2 | 11.0 | 16.3 | 19.3 |
224
+ | [IFEval][ifeval] | 0-shot | 80.2 | 90.2 | 88.9 | 90.4 |
225
+
226
+ | Benchmark | n-shot | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
227
+ | ------------------------------ |----------|:--------------:|:-------------:|:--------------:|:--------------:|
228
+ | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 |
229
+ | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 |
230
+ | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 |
231
+ | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 |
232
+ | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 |
233
+ | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 |
234
+ | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 |
235
+ | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 |
236
+ | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 |
237
+ | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 |
238
+ | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 |
239
+
240
+ [gpqa]: https://arxiv.org/abs/2311.12022
241
+ [simpleqa]: https://arxiv.org/abs/2411.04368
242
+ [facts-grdg]: https://goo.gle/FACTS_paper
243
+ [bbeh]: https://github.com/google-deepmind/bbeh
244
+ [ifeval]: https://arxiv.org/abs/2311.07911
245
+ [hellaswag]: https://arxiv.org/abs/1905.07830
246
+ [boolq]: https://arxiv.org/abs/1905.10044
247
+ [piqa]: https://arxiv.org/abs/1911.11641
248
+ [socialiqa]: https://arxiv.org/abs/1904.09728
249
+ [triviaqa]: https://arxiv.org/abs/1705.03551
250
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
251
+ [arc]: https://arxiv.org/abs/1911.01547
252
+ [winogrande]: https://arxiv.org/abs/1907.10641
253
+ [bbh]: https://paperswithcode.com/dataset/bbh
254
+ [drop]: https://arxiv.org/abs/1903.00161
255
+
256
+ ##### STEM and code
257
+
258
+ | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B |
259
+ |----------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:|
260
+ | [MMLU][mmlu] (Pro) | 0-shot | 14.7 | 43.6 | 60.6 | 67.5 |
261
+ | [LiveCodeBench][lcb] | 0-shot | 1.9 | 12.6 | 24.6 | 29.7 |
262
+ | [Bird-SQL][bird-sql] (dev) | - | 6.4 | 36.3 | 47.9 | 54.4 |
263
+ | [Math][math] | 0-shot | 48.0 | 75.6 | 83.8 | 89.0 |
264
+ | HiddenMath | 0-shot | 15.8 | 43.0 | 54.5 | 60.3 |
265
+ | [MBPP][mbpp] | 3-shot | 35.2 | 63.2 | 73.0 | 74.4 |
266
+ | [HumanEval][humaneval] | 0-shot | 41.5 | 71.3 | 85.4 | 87.8 |
267
+ | [Natural2Code][nat2code] | 0-shot | 56.0 | 70.3 | 80.7 | 84.5 |
268
+ | [GSM8K][gsm8k] | 0-shot | 62.8 | 89.2 | 94.4 | 95.9 |
269
+
270
+ | Benchmark | n-shot | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
271
+ | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:|
272
+ | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 |
273
+ | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 |
274
+ | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 |
275
+ | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 |
276
+ | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 |
277
+ | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 |
278
+ | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 |
279
+ | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 |
280
+
281
+ [mmlu]: https://arxiv.org/abs/2009.03300
282
+ [agieval]: https://arxiv.org/abs/2304.06364
283
+ [math]: https://arxiv.org/abs/2103.03874
284
+ [gsm8k]: https://arxiv.org/abs/2110.14168
285
+ [gpqa]: https://arxiv.org/abs/2311.12022
286
+ [mbpp]: https://arxiv.org/abs/2108.07732
287
+ [humaneval]: https://arxiv.org/abs/2107.03374
288
+ [lcb]: https://arxiv.org/abs/2403.07974
289
+ [bird-sql]: https://arxiv.org/abs/2305.03111
290
+ [nat2code]: https://arxiv.org/abs/2405.04520
291
+
292
+ #### Multilingual
293
+
294
+ | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B |
295
+ |--------------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:|
296
+ | [Global-MMLU-Lite][global-mmlu-lite] | 0-shot | 34.2 | 54.5 | 69.5 | 75.1 |
297
+ | [ECLeKTic][eclektic] | 0-shot | 1.4 | 4.6 | 10.3 | 16.7 |
298
+ | [WMT24++][wmt24pp] | 0-shot | 35.9 | 46.8 | 51.6 | 53.4 |
299
+
300
+ | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
301
+ | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:|
302
+ | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 |
303
+ | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 |
304
+ | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 |
305
+ | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 |
306
+ | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 |
307
+ | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 |
308
+ | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 |
309
+
310
+ [mgsm]: https://arxiv.org/abs/2210.03057
311
+ [flores]: https://arxiv.org/abs/2106.03193
312
+ [xquad]: https://arxiv.org/abs/1910.11856v3
313
+ [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite
314
+ [wmt24pp]: https://arxiv.org/abs/2502.12404v1
315
+ [eclektic]: https://arxiv.org/abs/2502.21228
316
+ [indicgenbench]: https://arxiv.org/abs/2404.16816
317
+
318
+ ##### Multimodal
319
+
320
+ | Benchmark | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B |
321
+ |-----------------------------------|:-------------:|:--------------:|:--------------:|
322
+ | [MMMU][mmmu] (val) | 48.8 | 59.6 | 64.9 |
323
+ | [DocVQA][docvqa] | 75.8 | 87.1 | 86.6 |
324
+ | [InfoVQA][info-vqa] | 50.0 | 64.9 | 70.6 |
325
+ | [TextVQA][textvqa] | 57.8 | 67.7 | 65.1 |
326
+ | [AI2D][ai2d] | 74.8 | 84.2 | 84.5 |
327
+ | [ChartQA][chartqa] | 68.8 | 75.7 | 78.0 |
328
+ | [VQAv2][vqav2] (val) | 62.4 | 71.6 | 71.0 |
329
+ | [MathVista][mathvista] (testmini) | 50.0 | 62.9 | 67.6 |
330
+
331
+ | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
332
+ | ------------------------------ |:-------------:|:--------------:|:--------------:|
333
+ | [COCOcap][coco-cap] | 102 | 111 | 116 |
334
+ | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 |
335
+ | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 |
336
+ | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 |
337
+ | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 |
338
+ | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 |
339
+ | [ReMI][remi] | 27.3 | 38.5 | 44.8 |
340
+ | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 |
341
+ | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 |
342
+ | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 |
343
+ | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 |
344
+ | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 |
345
+ | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 |
346
+ | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 |
347
+ | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 |
348
+
349
+ [coco-cap]: https://cocodataset.org/#home
350
+ [docvqa]: https://www.docvqa.org/
351
+ [info-vqa]: https://arxiv.org/abs/2104.12756
352
+ [mmmu]: https://arxiv.org/abs/2311.16502
353
+ [textvqa]: https://textvqa.org/
354
+ [realworldqa]: https://paperswithcode.com/dataset/realworldqa
355
+ [remi]: https://arxiv.org/html/2406.09175v1
356
+ [ai2d]: https://allenai.org/data/diagrams
357
+ [chartqa]: https://arxiv.org/abs/2203.10244
358
+ [vqav2]: https://visualqa.org/index.html
359
+ [blinkvqa]: https://arxiv.org/abs/2404.12390
360
+ [okvqa]: https://okvqa.allenai.org/
361
+ [tallyqa]: https://arxiv.org/abs/1810.12440
362
+ [ss-vqa]: https://arxiv.org/abs/1908.02660
363
+ [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/
364
+ [mathvista]: https://arxiv.org/abs/2310.02255
365
+
366
+ ## Ethics and Safety
367
+
368
+ Ethics and safety evaluation approach and results.
369
+
370
+ ### Evaluation Approach
371
+
372
+ Our evaluation methods include structured evaluations and internal red-teaming
373
+ testing of relevant content policies. Red-teaming was conducted by a number of
374
+ different teams, each with different goals and human evaluation metrics. These
375
+ models were evaluated against a number of different categories relevant to
376
+ ethics and safety, including:
377
+
378
+ - **Child Safety**: Evaluation of text-to-text and image to text prompts
379
+ covering child safety policies, including child sexual abuse and
380
+ exploitation.
381
+ - **Content Safety:** Evaluation of text-to-text and image to text prompts
382
+ covering safety policies including, harassment, violence and gore, and hate
383
+ speech.
384
+ - **Representational Harms**: Evaluation of text-to-text and image to text
385
+ prompts covering safety policies including bias, stereotyping, and harmful
386
+ associations or inaccuracies.
387
+
388
+ In addition to development level evaluations, we conduct "assurance
389
+ evaluations" which are our 'arms-length' internal evaluations for responsibility
390
+ governance decision making. They are conducted separately from the model
391
+ development team, to inform decision making about release. High level findings
392
+ are fed back to the model team, but prompt sets are held-out to prevent
393
+ overfitting and preserve the results' ability to inform decision making.
394
+ Assurance evaluation results are reported to our Responsibility & Safety Council
395
+ as part of release review.
396
+
397
+ ### Evaluation Results
398
+
399
+ For all areas of safety testing, we saw major improvements in the categories of
400
+ child safety, content safety, and representational harms relative to previous
401
+ Gemma models. All testing was conducted without safety filters to evaluate the
402
+ model capabilities and behaviors. For both text-to-text and image-to-text, and
403
+ across all model sizes, the model produced minimal policy violations, and showed
404
+ significant improvements over previous Gemma models' performance with respect
405
+ to ungrounded inferences. A limitation of our evaluations was they included only
406
+ English language prompts.
407
+
408
+ ## Usage and Limitations
409
+
410
+ These models have certain limitations that users should be aware of.
411
+
412
+ ### Intended Usage
413
+
414
+ Open vision-language models (VLMs) models have a wide range of applications
415
+ across various industries and domains. The following list of potential uses is
416
+ not comprehensive. The purpose of this list is to provide contextual information
417
+ about the possible use-cases that the model creators considered as part of model
418
+ training and development.
419
+
420
+ - Content Creation and Communication
421
+ - Text Generation: These models can be used to generate creative text
422
+ formats such as poems, scripts, code, marketing copy, and email drafts.
423
+ - Chatbots and Conversational AI: Power conversational interfaces
424
+ for customer service, virtual assistants, or interactive applications.
425
+ - Text Summarization: Generate concise summaries of a text corpus,
426
+ research papers, or reports.
427
+ - Image Data Extraction: These models can be used to extract,
428
+ interpret, and summarize visual data for text communications.
429
+ - Research and Education
430
+ - Natural Language Processing (NLP) and VLM Research: These
431
+ models can serve as a foundation for researchers to experiment with VLM
432
+ and NLP techniques, develop algorithms, and contribute to the
433
+ advancement of the field.
434
+ - Language Learning Tools: Support interactive language learning
435
+ experiences, aiding in grammar correction or providing writing practice.
436
+ - Knowledge Exploration: Assist researchers in exploring large
437
+ bodies of text by generating summaries or answering questions about
438
+ specific topics.
439
+
440
+ ### Limitations
441
+
442
+ - Training Data
443
+ - The quality and diversity of the training data significantly
444
+ influence the model's capabilities. Biases or gaps in the training data
445
+ can lead to limitations in the model's responses.
446
+ - The scope of the training dataset determines the subject areas
447
+ the model can handle effectively.
448
+ - Context and Task Complexity
449
+ - Models are better at tasks that can be framed with clear
450
+ prompts and instructions. Open-ended or highly complex tasks might be
451
+ challenging.
452
+ - A model's performance can be influenced by the amount of context
453
+ provided (longer context generally leads to better outputs, up to a
454
+ certain point).
455
+ - Language Ambiguity and Nuance
456
+ - Natural language is inherently complex. Models might struggle
457
+ to grasp subtle nuances, sarcasm, or figurative language.
458
+ - Factual Accuracy
459
+ - Models generate responses based on information they learned
460
+ from their training datasets, but they are not knowledge bases. They
461
+ may generate incorrect or outdated factual statements.
462
+ - Common Sense
463
+ - Models rely on statistical patterns in language. They might
464
+ lack the ability to apply common sense reasoning in certain situations.
465
+
466
+ ### Ethical Considerations and Risks
467
+
468
+ The development of vision-language models (VLMs) raises several ethical
469
+ concerns. In creating an open model, we have carefully considered the following:
470
+
471
+ - Bias and Fairness
472
+ - VLMs trained on large-scale, real-world text and image data can
473
+ reflect socio-cultural biases embedded in the training material. These
474
+ models underwent careful scrutiny, input data pre-processing described
475
+ and posterior evaluations reported in this card.
476
+ - Misinformation and Misuse
477
+ - VLMs can be misused to generate text that is false, misleading,
478
+ or harmful.
479
+ - Guidelines are provided for responsible use with the model, see the
480
+ [Responsible Generative AI Toolkit][rai-toolkit].
481
+ - Transparency and Accountability:
482
+ - This model card summarizes details on the models' architecture,
483
+ capabilities, limitations, and evaluation processes.
484
+ - A responsibly developed open model offers the opportunity to
485
+ share innovation by making VLM technology accessible to developers and
486
+ researchers across the AI ecosystem.
487
+
488
+ Risks identified and mitigations:
489
+
490
+ - **Perpetuation of biases**: It's encouraged to perform continuous
491
+ monitoring (using evaluation metrics, human review) and the exploration of
492
+ de-biasing techniques during model training, fine-tuning, and other use
493
+ cases.
494
+ - **Generation of harmful content**: Mechanisms and guidelines for content
495
+ safety are essential. Developers are encouraged to exercise caution and
496
+ implement appropriate content safety safeguards based on their specific
497
+ product policies and application use cases.
498
+ - **Misuse for malicious purposes**: Technical limitations and developer
499
+ and end-user education can help mitigate against malicious applications of
500
+ VLMs. Educational resources and reporting mechanisms for users to flag
501
+ misuse are provided. Prohibited uses of Gemma models are outlined in the
502
+ [Gemma Prohibited Use Policy][prohibited-use].
503
+ - **Privacy violations**: Models were trained on data filtered for removal
504
+ of certain personal information and other sensitive data. Developers are
505
+ encouraged to adhere to privacy regulations with privacy-preserving
506
+ techniques.
507
+
508
+ ### Benefits
509
+
510
+ At the time of release, this family of models provides high-performance open
511
+ vision-language model implementations designed from the ground up for
512
+ responsible AI development compared to similarly sized models.
513
+
514
+ Using the benchmark evaluation metrics described in this document, these models
515
+ have shown to provide superior performance to other, comparably-sized open model
516
+ alternatives.
517
+
518
+ [g3-tech-report]: https://arxiv.org/abs/2503.19786
519
+ [rai-toolkit]: https://ai.google.dev/responsible
520
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3
521
+ [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3
522
+ [terms]: https://ai.google.dev/gemma/terms
523
+ [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf
524
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
525
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
526
+ [sustainability]: https://sustainability.google/operating-sustainably/
527
+ [jax]: https://github.com/jax-ml/jax
528
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
529
+ [sustainability]: https://sustainability.google/operating-sustainably/
530
+ [gemini-2-paper]: https://arxiv.org/abs/2312.11805
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{'<start_of_turn>model
46
+ '}}
47
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_sliding_window_pattern": 6,
3
+ "architectures": [
4
+ "Gemma3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "attn_logit_softcapping": null,
9
+ "bos_token_id": 2,
10
+ "eos_token_id": 1,
11
+ "final_logit_softcapping": null,
12
+ "head_dim": 256,
13
+ "hidden_activation": "gelu_pytorch_tanh",
14
+ "hidden_size": 640,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 2048,
17
+ "layer_types": [
18
+ "sliding_attention",
19
+ "sliding_attention",
20
+ "sliding_attention",
21
+ "sliding_attention",
22
+ "sliding_attention",
23
+ "full_attention",
24
+ "sliding_attention",
25
+ "sliding_attention",
26
+ "sliding_attention",
27
+ "sliding_attention",
28
+ "sliding_attention",
29
+ "full_attention",
30
+ "sliding_attention",
31
+ "sliding_attention",
32
+ "sliding_attention",
33
+ "sliding_attention",
34
+ "sliding_attention",
35
+ "full_attention"
36
+ ],
37
+ "max_position_embeddings": 32768,
38
+ "model_type": "gemma3_text",
39
+ "num_attention_heads": 4,
40
+ "num_hidden_layers": 18,
41
+ "num_key_value_heads": 1,
42
+ "pad_token_id": 0,
43
+ "query_pre_attn_scalar": 256,
44
+ "rms_norm_eps": 1e-06,
45
+ "rope_local_base_freq": 10000.0,
46
+ "rope_scaling": null,
47
+ "rope_theta": 1000000.0,
48
+ "sliding_window": 512,
49
+ "torch_dtype": "bfloat16",
50
+ "transformers_version": "4.55.0.dev0",
51
+ "use_bidirectional_attention": false,
52
+ "use_cache": true,
53
+ "vocab_size": 262144,
54
+ "quantization_config": {
55
+ "quant_method": "exl3",
56
+ "version": "0.0.5",
57
+ "bits": 6.0,
58
+ "head_bits": 8,
59
+ "calibration": {
60
+ "rows": 100,
61
+ "cols": 2048
62
+ },
63
+ "out_scales": "auto"
64
+ }
65
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cache_implementation": "hybrid",
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 1,
6
+ 106
7
+ ],
8
+ "top_k": 64,
9
+ "top_p": 0.95,
10
+ "transformers_version": "4.55.0.dev0"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0b236b3c194508cd449a5194b0e2ef92c5821c1484a9a1ed7de9bdd030b7817
3
+ size 579684264
quantization_config.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d4046bf0505a327dd5a0abbb427ecd4fc82f99c2ceaa170bc61ecde12809b0c
3
+ size 33384570
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff