Delete xttsv2_gpt2
Browse files- xttsv2_gpt2/config.json +0 -44
- xttsv2_gpt2/gpt2_model.safetensors +0 -3
- xttsv2_gpt2/gpt_config.py +0 -143
- xttsv2_gpt2/special_tokens_map.json +0 -6
- xttsv2_gpt2/tokenizer.json +0 -0
- xttsv2_gpt2/tokenizer.py +0 -887
- xttsv2_gpt2/tokenizer_config.json +0 -192
- xttsv2_gpt2/xtts2_gpt_modeling.py +0 -505
xttsv2_gpt2/config.json
DELETED
|
@@ -1,44 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"activation_function": "gelu",
|
| 3 |
-
"architectures": [
|
| 4 |
-
"XttsGPT"
|
| 5 |
-
],
|
| 6 |
-
"attn_pdrop": 0.1,
|
| 7 |
-
"audio_config": {
|
| 8 |
-
"mel_channels": 80,
|
| 9 |
-
"output_sample_rate": 24000,
|
| 10 |
-
"sample_rate": 22050
|
| 11 |
-
},
|
| 12 |
-
"auto_map": {
|
| 13 |
-
"AutoConfig": "AstraMindAI/xtts2-gpt--gpt_config.XTTSGPTConfig",
|
| 14 |
-
"AutoModelForCausalLM": "AstraMindAI/xtts2-gpt--xtts2_gpt_modeling.XttsGPT",
|
| 15 |
-
"AutoTokenizer": "AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast"
|
| 16 |
-
},
|
| 17 |
-
"decoder_input_dim": 1024,
|
| 18 |
-
"enable_redaction": false,
|
| 19 |
-
"gpt_batch_size": 1,
|
| 20 |
-
"gpt_max_audio_tokens": 605,
|
| 21 |
-
"hidden_size": 1024,
|
| 22 |
-
"initializer_range": 0.02,
|
| 23 |
-
"kv_cache": true,
|
| 24 |
-
"layer_norm_epsilon": 1e-05,
|
| 25 |
-
"max_audio_tokens": 605,
|
| 26 |
-
"max_prompt_tokens": 70,
|
| 27 |
-
"max_text_tokens": 402,
|
| 28 |
-
"model_type": "xtts_gpt",
|
| 29 |
-
"n_inner": 4096,
|
| 30 |
-
"num_attention_heads": 16,
|
| 31 |
-
"num_audio_tokens": 1026,
|
| 32 |
-
"num_hidden_layers": 30,
|
| 33 |
-
"number_text_tokens": 6681,
|
| 34 |
-
"reorder_and_upcast_attn": false,
|
| 35 |
-
"scale_attn_by_inverse_layer_idx": false,
|
| 36 |
-
"start_audio_token": 1024,
|
| 37 |
-
"start_text_token": null,
|
| 38 |
-
"stop_audio_token": 1025,
|
| 39 |
-
"stop_text_token": null,
|
| 40 |
-
"transformers_version": "4.46.0",
|
| 41 |
-
"use_masking_gt_prompt_approach": true,
|
| 42 |
-
"use_perceiver_resampler": true,
|
| 43 |
-
"vocab_size": 6681
|
| 44 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xttsv2_gpt2/gpt2_model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:104d92b2297c243b64d1417bd5cfda015faca0a670e9bc90088eed0e844f8e35
|
| 3 |
-
size 1522497936
|
|
|
|
|
|
|
|
|
|
|
|
xttsv2_gpt2/gpt_config.py
DELETED
|
@@ -1,143 +0,0 @@
|
|
| 1 |
-
from dataclasses import asdict, dataclass
|
| 2 |
-
from typing import Dict, Optional, List
|
| 3 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
-
from transformers.utils import logging
|
| 5 |
-
|
| 6 |
-
logger = logging.get_logger(__name__)
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
@dataclass
|
| 10 |
-
class GPTAudioConfig:
|
| 11 |
-
"""Configuration for GPT audio processing parameters"""
|
| 12 |
-
mel_channels: int = 80
|
| 13 |
-
sample_rate: int = 22050
|
| 14 |
-
output_sample_rate: int = 24000
|
| 15 |
-
|
| 16 |
-
@dataclass
|
| 17 |
-
class XTTSAudioConfig:
|
| 18 |
-
"""Configuration for audio processing parameters"""
|
| 19 |
-
sample_rate: int = 22050
|
| 20 |
-
output_sample_rate: int = 24000
|
| 21 |
-
mel_channels: int = 80
|
| 22 |
-
hop_length: int = 256
|
| 23 |
-
win_length: int = 1024
|
| 24 |
-
n_fft: int = 1024
|
| 25 |
-
fmin: int = 0
|
| 26 |
-
fmax: int = 8000
|
| 27 |
-
power: float = 1.0
|
| 28 |
-
mel_norms_file: Optional[str] = None
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class XTTSGPTConfig(PretrainedConfig):
|
| 32 |
-
"""Configuration class for the GPT component of XTTS."""
|
| 33 |
-
model_type = "xtts_gpt"
|
| 34 |
-
|
| 35 |
-
def __init__(
|
| 36 |
-
self,
|
| 37 |
-
# Model architecture
|
| 38 |
-
hidden_size: int = 1024, # gpt_n_model_channels in original
|
| 39 |
-
n_inner: int = 4096,
|
| 40 |
-
num_hidden_layers: int = 30, # gpt_layers in original
|
| 41 |
-
num_attention_heads: int = 16, # gpt_n_heads in original
|
| 42 |
-
|
| 43 |
-
# Tokenizer settings
|
| 44 |
-
vocab_size: int = 6681, # gpt_number_text_tokens in original
|
| 45 |
-
number_text_tokens: int = 6681, # Explicit text token vocabulary size
|
| 46 |
-
start_text_token: Optional[int] = None,
|
| 47 |
-
stop_text_token: Optional[int] = None,
|
| 48 |
-
|
| 49 |
-
# Audio token settings
|
| 50 |
-
num_audio_tokens: int = 1026, # gpt_num_audio_tokens in original
|
| 51 |
-
start_audio_token: int = 1024, # gpt_start_audio_token in original
|
| 52 |
-
stop_audio_token: int = 1025, # gpt_stop_audio_token in original
|
| 53 |
-
|
| 54 |
-
# Sequence length settings
|
| 55 |
-
max_audio_tokens: int = 605, # gpt_max_audio_tokens in original
|
| 56 |
-
max_text_tokens: int = 402, # gpt_max_text_tokens in original
|
| 57 |
-
max_prompt_tokens: int = 70, # gpt_max_prompt_tokens in original
|
| 58 |
-
gpt_max_audio_tokens: int = 605, # Used for generation
|
| 59 |
-
|
| 60 |
-
# Model behavior settings
|
| 61 |
-
use_masking_gt_prompt_approach: bool = True, # gpt_use_masking_gt_prompt_approach in original
|
| 62 |
-
use_perceiver_resampler: bool = True, # gpt_use_perceiver_resampler in original
|
| 63 |
-
kv_cache: bool = True,
|
| 64 |
-
enable_redaction: bool = False,
|
| 65 |
-
|
| 66 |
-
# GPT batch settings
|
| 67 |
-
gpt_batch_size: int = 1,
|
| 68 |
-
|
| 69 |
-
# Audio processing
|
| 70 |
-
audio_config: Optional[Dict] = None,
|
| 71 |
-
|
| 72 |
-
# Architecture specifics
|
| 73 |
-
layer_norm_epsilon: float = 1e-5,
|
| 74 |
-
initializer_range: float = 0.02,
|
| 75 |
-
add_cross_attention: bool = False,
|
| 76 |
-
scale_attn_by_inverse_layer_idx: bool = False,
|
| 77 |
-
reorder_and_upcast_attn: bool = False,
|
| 78 |
-
|
| 79 |
-
# Size settings for the decoder
|
| 80 |
-
decoder_input_dim: int = 1024,
|
| 81 |
-
architectures=["XttsGPT"],
|
| 82 |
-
auto_map={
|
| 83 |
-
"AutoConfig": "AstraMindAI/xtts2-gpt--gpt_config.XTTSGPTConfig",
|
| 84 |
-
"AutoModelForCausalLM": "AstraMindAI/xtts2-gpt--xtts2_gpt_modeling.XttsGPT",
|
| 85 |
-
},
|
| 86 |
-
activation_function: str = "gelu",
|
| 87 |
-
attn_pdrop: float = 0.1,
|
| 88 |
-
**kwargs
|
| 89 |
-
):
|
| 90 |
-
super().__init__(**kwargs)
|
| 91 |
-
self.architectures = architectures
|
| 92 |
-
self.auto_map = auto_map
|
| 93 |
-
self.audio_config = GPTAudioConfig(
|
| 94 |
-
**audio_config if audio_config is not None else {}
|
| 95 |
-
)
|
| 96 |
-
self.activation_function = activation_function
|
| 97 |
-
self.attn_pdrop = attn_pdrop
|
| 98 |
-
self.hidden_size = hidden_size
|
| 99 |
-
self.n_inner = n_inner
|
| 100 |
-
self.num_hidden_layers = num_hidden_layers
|
| 101 |
-
self.num_attention_heads = num_attention_heads
|
| 102 |
-
|
| 103 |
-
self.vocab_size = vocab_size
|
| 104 |
-
self.number_text_tokens = number_text_tokens
|
| 105 |
-
self.start_text_token = start_text_token
|
| 106 |
-
self.stop_text_token = stop_text_token
|
| 107 |
-
|
| 108 |
-
self.num_audio_tokens = num_audio_tokens
|
| 109 |
-
self.start_audio_token = start_audio_token
|
| 110 |
-
self.stop_audio_token = stop_audio_token
|
| 111 |
-
|
| 112 |
-
self.max_audio_tokens = max_audio_tokens
|
| 113 |
-
self.max_text_tokens = max_text_tokens
|
| 114 |
-
self.max_prompt_tokens = max_prompt_tokens
|
| 115 |
-
self.gpt_max_audio_tokens = gpt_max_audio_tokens
|
| 116 |
-
|
| 117 |
-
self.use_masking_gt_prompt_approach = use_masking_gt_prompt_approach
|
| 118 |
-
self.use_perceiver_resampler = use_perceiver_resampler
|
| 119 |
-
self.kv_cache = kv_cache
|
| 120 |
-
self.enable_redaction = enable_redaction
|
| 121 |
-
|
| 122 |
-
self.gpt_batch_size = gpt_batch_size
|
| 123 |
-
|
| 124 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
| 125 |
-
self.initializer_range = initializer_range
|
| 126 |
-
self.add_cross_attention = add_cross_attention
|
| 127 |
-
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
| 128 |
-
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
| 129 |
-
|
| 130 |
-
self.decoder_input_dim = decoder_input_dim
|
| 131 |
-
|
| 132 |
-
def to_dict(self) -> Dict:
|
| 133 |
-
"""Convert the config to a dictionary."""
|
| 134 |
-
output = super().to_dict()
|
| 135 |
-
output["audio_config"] = asdict(self.audio_config)
|
| 136 |
-
return output
|
| 137 |
-
|
| 138 |
-
@classmethod
|
| 139 |
-
def from_dict(cls, config_dict: Dict, *args, **kwargs) -> "XTTSGPTConfig":
|
| 140 |
-
"""Create a config from a dictionary."""
|
| 141 |
-
return cls(**config_dict)
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xttsv2_gpt2/special_tokens_map.json
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"bos_token": "[START]",
|
| 3 |
-
"eos_token": "[STOP]",
|
| 4 |
-
"pad_token": "[PAD]",
|
| 5 |
-
"unk_token": "[UNK]"
|
| 6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xttsv2_gpt2/tokenizer.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
xttsv2_gpt2/tokenizer.py
DELETED
|
@@ -1,887 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import re
|
| 3 |
-
import textwrap
|
| 4 |
-
from typing import List, Optional, Union, Dict, Any
|
| 5 |
-
from functools import cached_property
|
| 6 |
-
|
| 7 |
-
import pypinyin
|
| 8 |
-
import torch
|
| 9 |
-
from hangul_romanize import Transliter
|
| 10 |
-
from hangul_romanize.rule import academic
|
| 11 |
-
from num2words import num2words
|
| 12 |
-
from spacy.lang.ar import Arabic
|
| 13 |
-
from spacy.lang.en import English
|
| 14 |
-
from spacy.lang.es import Spanish
|
| 15 |
-
from spacy.lang.ja import Japanese
|
| 16 |
-
from spacy.lang.zh import Chinese
|
| 17 |
-
from transformers import PreTrainedTokenizerFast, BatchEncoding
|
| 18 |
-
from transformers.tokenization_utils_base import TruncationStrategy, PaddingStrategy
|
| 19 |
-
from tokenizers import Tokenizer
|
| 20 |
-
from tokenizers.pre_tokenizers import WhitespaceSplit
|
| 21 |
-
from tokenizers.processors import TemplateProcessing
|
| 22 |
-
|
| 23 |
-
from TTS.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words
|
| 24 |
-
|
| 25 |
-
import cutlet
|
| 26 |
-
|
| 27 |
-
# Funzioni di preprocessing del testo
|
| 28 |
-
|
| 29 |
-
def get_spacy_lang(lang):
|
| 30 |
-
if lang == "zh":
|
| 31 |
-
return Chinese()
|
| 32 |
-
elif lang == "ja":
|
| 33 |
-
return Japanese()
|
| 34 |
-
elif lang == "ar":
|
| 35 |
-
return Arabic()
|
| 36 |
-
elif lang == "es":
|
| 37 |
-
return Spanish()
|
| 38 |
-
else:
|
| 39 |
-
# For most languages, English does the job
|
| 40 |
-
return English()
|
| 41 |
-
|
| 42 |
-
def split_sentence(text, lang, text_split_length=250):
|
| 43 |
-
"""Preprocess the input text and split into sentences based on language."""
|
| 44 |
-
text_splits = []
|
| 45 |
-
if text_split_length is not None and len(text) >= text_split_length:
|
| 46 |
-
text_splits.append("")
|
| 47 |
-
nlp = get_spacy_lang(lang)
|
| 48 |
-
nlp.add_pipe("sentencizer")
|
| 49 |
-
doc = nlp(text)
|
| 50 |
-
for sentence in doc.sents:
|
| 51 |
-
if len(text_splits[-1]) + len(str(sentence)) <= text_split_length:
|
| 52 |
-
text_splits[-1] += " " + str(sentence)
|
| 53 |
-
text_splits[-1] = text_splits[-1].lstrip()
|
| 54 |
-
elif len(str(sentence)) > text_split_length:
|
| 55 |
-
for line in textwrap.wrap(
|
| 56 |
-
str(sentence),
|
| 57 |
-
width=text_split_length,
|
| 58 |
-
drop_whitespace=True,
|
| 59 |
-
break_on_hyphens=False,
|
| 60 |
-
tabsize=1,
|
| 61 |
-
):
|
| 62 |
-
text_splits.append(str(line))
|
| 63 |
-
else:
|
| 64 |
-
text_splits.append(str(sentence))
|
| 65 |
-
|
| 66 |
-
if len(text_splits) > 1 and text_splits[0] == "":
|
| 67 |
-
del text_splits[0]
|
| 68 |
-
else:
|
| 69 |
-
text_splits = [text.lstrip()]
|
| 70 |
-
|
| 71 |
-
return text_splits
|
| 72 |
-
|
| 73 |
-
_whitespace_re = re.compile(r"\s+")
|
| 74 |
-
|
| 75 |
-
# List of (regular expression, replacement) pairs for abbreviations:
|
| 76 |
-
_abbreviations = {
|
| 77 |
-
"en": [
|
| 78 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 79 |
-
for x in [
|
| 80 |
-
("mrs", "misess"),
|
| 81 |
-
("mr", "mister"),
|
| 82 |
-
("dr", "doctor"),
|
| 83 |
-
("st", "saint"),
|
| 84 |
-
("co", "company"),
|
| 85 |
-
("jr", "junior"),
|
| 86 |
-
("maj", "major"),
|
| 87 |
-
("gen", "general"),
|
| 88 |
-
("drs", "doctors"),
|
| 89 |
-
("rev", "reverend"),
|
| 90 |
-
("lt", "lieutenant"),
|
| 91 |
-
("hon", "honorable"),
|
| 92 |
-
("sgt", "sergeant"),
|
| 93 |
-
("capt", "captain"),
|
| 94 |
-
("esq", "esquire"),
|
| 95 |
-
("ltd", "limited"),
|
| 96 |
-
("col", "colonel"),
|
| 97 |
-
("ft", "fort"),
|
| 98 |
-
]
|
| 99 |
-
],
|
| 100 |
-
"es": [
|
| 101 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 102 |
-
for x in [
|
| 103 |
-
("sra", "señora"),
|
| 104 |
-
("sr", "señor"),
|
| 105 |
-
("dr", "doctor"),
|
| 106 |
-
("dra", "doctora"),
|
| 107 |
-
("st", "santo"),
|
| 108 |
-
("co", "compañía"),
|
| 109 |
-
("jr", "junior"),
|
| 110 |
-
("ltd", "limitada"),
|
| 111 |
-
]
|
| 112 |
-
],
|
| 113 |
-
"fr": [
|
| 114 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 115 |
-
for x in [
|
| 116 |
-
("mme", "madame"),
|
| 117 |
-
("mr", "monsieur"),
|
| 118 |
-
("dr", "docteur"),
|
| 119 |
-
("st", "saint"),
|
| 120 |
-
("co", "compagnie"),
|
| 121 |
-
("jr", "junior"),
|
| 122 |
-
("ltd", "limitée"),
|
| 123 |
-
]
|
| 124 |
-
],
|
| 125 |
-
"de": [
|
| 126 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 127 |
-
for x in [
|
| 128 |
-
("fr", "frau"),
|
| 129 |
-
("dr", "doktor"),
|
| 130 |
-
("st", "sankt"),
|
| 131 |
-
("co", "firma"),
|
| 132 |
-
("jr", "junior"),
|
| 133 |
-
]
|
| 134 |
-
],
|
| 135 |
-
"pt": [
|
| 136 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 137 |
-
for x in [
|
| 138 |
-
("sra", "senhora"),
|
| 139 |
-
("sr", "senhor"),
|
| 140 |
-
("dr", "doutor"),
|
| 141 |
-
("dra", "doutora"),
|
| 142 |
-
("st", "santo"),
|
| 143 |
-
("co", "companhia"),
|
| 144 |
-
("jr", "júnior"),
|
| 145 |
-
("ltd", "limitada"),
|
| 146 |
-
]
|
| 147 |
-
],
|
| 148 |
-
"it": [
|
| 149 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 150 |
-
for x in [
|
| 151 |
-
# ("sig.ra", "signora"),
|
| 152 |
-
("sig", "signore"),
|
| 153 |
-
("dr", "dottore"),
|
| 154 |
-
("st", "santo"),
|
| 155 |
-
("co", "compagnia"),
|
| 156 |
-
("jr", "junior"),
|
| 157 |
-
("ltd", "limitata"),
|
| 158 |
-
]
|
| 159 |
-
],
|
| 160 |
-
"pl": [
|
| 161 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 162 |
-
for x in [
|
| 163 |
-
("p", "pani"),
|
| 164 |
-
("m", "pan"),
|
| 165 |
-
("dr", "doktor"),
|
| 166 |
-
("sw", "święty"),
|
| 167 |
-
("jr", "junior"),
|
| 168 |
-
]
|
| 169 |
-
],
|
| 170 |
-
"ar": [
|
| 171 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 172 |
-
for x in [
|
| 173 |
-
# There are not many common abbreviations in Arabic as in English.
|
| 174 |
-
]
|
| 175 |
-
],
|
| 176 |
-
"zh": [
|
| 177 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 178 |
-
for x in [
|
| 179 |
-
# Chinese doesn't typically use abbreviations in the same way as Latin-based scripts.
|
| 180 |
-
]
|
| 181 |
-
],
|
| 182 |
-
"cs": [
|
| 183 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 184 |
-
for x in [
|
| 185 |
-
("dr", "doktor"), # doctor
|
| 186 |
-
("ing", "inženýr"), # engineer
|
| 187 |
-
("p", "pan"), # Could also map to pani for woman but no easy way to do it
|
| 188 |
-
# Other abbreviations would be specialized and not as common.
|
| 189 |
-
]
|
| 190 |
-
],
|
| 191 |
-
"ru": [
|
| 192 |
-
(re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1])
|
| 193 |
-
for x in [
|
| 194 |
-
("г-жа", "госпожа"), # Mrs.
|
| 195 |
-
("г-н", "господин"), # Mr.
|
| 196 |
-
("д-р", "доктор"), # doctor
|
| 197 |
-
# Other abbreviations are less common or specialized.
|
| 198 |
-
]
|
| 199 |
-
],
|
| 200 |
-
"nl": [
|
| 201 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 202 |
-
for x in [
|
| 203 |
-
("dhr", "de heer"), # Mr.
|
| 204 |
-
("mevr", "mevrouw"), # Mrs.
|
| 205 |
-
("dr", "dokter"), # doctor
|
| 206 |
-
("jhr", "jonkheer"), # young lord or nobleman
|
| 207 |
-
# Dutch uses more abbreviations, but these are the most common ones.
|
| 208 |
-
]
|
| 209 |
-
],
|
| 210 |
-
"tr": [
|
| 211 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 212 |
-
for x in [
|
| 213 |
-
("b", "bay"), # Mr.
|
| 214 |
-
("byk", "büyük"), # büyük
|
| 215 |
-
("dr", "doktor"), # doctor
|
| 216 |
-
# Add other Turkish abbreviations here if needed.
|
| 217 |
-
]
|
| 218 |
-
],
|
| 219 |
-
"hu": [
|
| 220 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 221 |
-
for x in [
|
| 222 |
-
("dr", "doktor"), # doctor
|
| 223 |
-
("b", "bácsi"), # Mr.
|
| 224 |
-
("nőv", "nővér"), # nurse
|
| 225 |
-
# Add other Hungarian abbreviations here if needed.
|
| 226 |
-
]
|
| 227 |
-
],
|
| 228 |
-
"ko": [
|
| 229 |
-
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 230 |
-
for x in [
|
| 231 |
-
# Korean doesn't typically use abbreviations in the same way as Latin-based scripts.
|
| 232 |
-
]
|
| 233 |
-
],
|
| 234 |
-
}
|
| 235 |
-
|
| 236 |
-
def expand_abbreviations_multilingual(text, lang="en"):
|
| 237 |
-
if lang in _abbreviations:
|
| 238 |
-
for regex, replacement in _abbreviations[lang]:
|
| 239 |
-
text = re.sub(regex, replacement, text)
|
| 240 |
-
return text
|
| 241 |
-
|
| 242 |
-
_symbols_multilingual = {
|
| 243 |
-
"en": [
|
| 244 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 245 |
-
for x in [
|
| 246 |
-
("&", " and "),
|
| 247 |
-
("@", " at "),
|
| 248 |
-
("%", " percent "),
|
| 249 |
-
("#", " hash "),
|
| 250 |
-
("$", " dollar "),
|
| 251 |
-
("£", " pound "),
|
| 252 |
-
("°", " degree "),
|
| 253 |
-
]
|
| 254 |
-
],
|
| 255 |
-
"es": [
|
| 256 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 257 |
-
for x in [
|
| 258 |
-
("&", " y "),
|
| 259 |
-
("@", " arroba "),
|
| 260 |
-
("%", " por ciento "),
|
| 261 |
-
("#", " numeral "),
|
| 262 |
-
("$", " dolar "),
|
| 263 |
-
("£", " libra "),
|
| 264 |
-
("°", " grados "),
|
| 265 |
-
]
|
| 266 |
-
],
|
| 267 |
-
"fr": [
|
| 268 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 269 |
-
for x in [
|
| 270 |
-
("&", " et "),
|
| 271 |
-
("@", " arobase "),
|
| 272 |
-
("%", " pour cent "),
|
| 273 |
-
("#", " dièse "),
|
| 274 |
-
("$", " dollar "),
|
| 275 |
-
("£", " livre "),
|
| 276 |
-
("°", " degrés "),
|
| 277 |
-
]
|
| 278 |
-
],
|
| 279 |
-
"de": [
|
| 280 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 281 |
-
for x in [
|
| 282 |
-
("&", " und "),
|
| 283 |
-
("@", " at "),
|
| 284 |
-
("%", " prozent "),
|
| 285 |
-
("#", " raute "),
|
| 286 |
-
("$", " dollar "),
|
| 287 |
-
("£", " pfund "),
|
| 288 |
-
("°", " grad "),
|
| 289 |
-
]
|
| 290 |
-
],
|
| 291 |
-
"pt": [
|
| 292 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 293 |
-
for x in [
|
| 294 |
-
("&", " e "),
|
| 295 |
-
("@", " arroba "),
|
| 296 |
-
("%", " por cento "),
|
| 297 |
-
("#", " cardinal "),
|
| 298 |
-
("$", " dólar "),
|
| 299 |
-
("£", " libra "),
|
| 300 |
-
("°", " graus "),
|
| 301 |
-
]
|
| 302 |
-
],
|
| 303 |
-
"it": [
|
| 304 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 305 |
-
for x in [
|
| 306 |
-
("&", " e "),
|
| 307 |
-
("@", " chiocciola "),
|
| 308 |
-
("%", " per cento "),
|
| 309 |
-
("#", " cancelletto "),
|
| 310 |
-
("$", " dollaro "),
|
| 311 |
-
("£", " sterlina "),
|
| 312 |
-
("°", " gradi "),
|
| 313 |
-
]
|
| 314 |
-
],
|
| 315 |
-
"pl": [
|
| 316 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 317 |
-
for x in [
|
| 318 |
-
("&", " i "),
|
| 319 |
-
("@", " małpa "),
|
| 320 |
-
("%", " procent "),
|
| 321 |
-
("#", " krzyżyk "),
|
| 322 |
-
("$", " dolar "),
|
| 323 |
-
("£", " funt "),
|
| 324 |
-
("°", " stopnie "),
|
| 325 |
-
]
|
| 326 |
-
],
|
| 327 |
-
"ar": [
|
| 328 |
-
# Arabic
|
| 329 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 330 |
-
for x in [
|
| 331 |
-
("&", " و "),
|
| 332 |
-
("@", " على "),
|
| 333 |
-
("%", " في المئة "),
|
| 334 |
-
("#", " رقم "),
|
| 335 |
-
("$", " دولار "),
|
| 336 |
-
("£", " جنيه "),
|
| 337 |
-
("°", " درجة "),
|
| 338 |
-
]
|
| 339 |
-
],
|
| 340 |
-
"zh": [
|
| 341 |
-
# Chinese
|
| 342 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 343 |
-
for x in [
|
| 344 |
-
("&", " 和 "),
|
| 345 |
-
("@", " 在 "),
|
| 346 |
-
("%", " 百分之 "),
|
| 347 |
-
("#", " 号 "),
|
| 348 |
-
("$", " 美元 "),
|
| 349 |
-
("£", " 英镑 "),
|
| 350 |
-
("°", " 度 "),
|
| 351 |
-
]
|
| 352 |
-
],
|
| 353 |
-
"cs": [
|
| 354 |
-
# Czech
|
| 355 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 356 |
-
for x in [
|
| 357 |
-
("&", " a "),
|
| 358 |
-
("@", " na "),
|
| 359 |
-
("%", " procento "),
|
| 360 |
-
("#", " křížek "),
|
| 361 |
-
("$", " dolar "),
|
| 362 |
-
("£", " libra "),
|
| 363 |
-
("°", " stupně "),
|
| 364 |
-
]
|
| 365 |
-
],
|
| 366 |
-
"ru": [
|
| 367 |
-
# Russian
|
| 368 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 369 |
-
for x in [
|
| 370 |
-
("&", " и "),
|
| 371 |
-
("@", " собака "),
|
| 372 |
-
("%", " процентов "),
|
| 373 |
-
("#", " номер "),
|
| 374 |
-
("$", " доллар "),
|
| 375 |
-
("£", " фунт "),
|
| 376 |
-
("°", " градус "),
|
| 377 |
-
]
|
| 378 |
-
],
|
| 379 |
-
"nl": [
|
| 380 |
-
# Dutch
|
| 381 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 382 |
-
for x in [
|
| 383 |
-
("&", " en "),
|
| 384 |
-
("@", " bij "),
|
| 385 |
-
("%", " procent "),
|
| 386 |
-
("#", " hekje "),
|
| 387 |
-
("$", " dollar "),
|
| 388 |
-
("£", " pond "),
|
| 389 |
-
("°", " graden "),
|
| 390 |
-
]
|
| 391 |
-
],
|
| 392 |
-
"tr": [
|
| 393 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 394 |
-
for x in [
|
| 395 |
-
("&", " ve "),
|
| 396 |
-
("@", " at "),
|
| 397 |
-
("%", " yüzde "),
|
| 398 |
-
("#", " diyez "),
|
| 399 |
-
("$", " dolar "),
|
| 400 |
-
("£", " sterlin "),
|
| 401 |
-
("°", " derece "),
|
| 402 |
-
]
|
| 403 |
-
],
|
| 404 |
-
"hu": [
|
| 405 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 406 |
-
for x in [
|
| 407 |
-
("&", " és "),
|
| 408 |
-
("@", " kukac "),
|
| 409 |
-
("%", " százalék "),
|
| 410 |
-
("#", " kettőskereszt "),
|
| 411 |
-
("$", " dollár "),
|
| 412 |
-
("£", " font "),
|
| 413 |
-
("°", " fok "),
|
| 414 |
-
]
|
| 415 |
-
],
|
| 416 |
-
"ko": [
|
| 417 |
-
# Korean
|
| 418 |
-
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 419 |
-
for x in [
|
| 420 |
-
("&", " 그리고 "),
|
| 421 |
-
("@", " 에 "),
|
| 422 |
-
("%", " 퍼센트 "),
|
| 423 |
-
("#", " 번호 "),
|
| 424 |
-
("$", " 달러 "),
|
| 425 |
-
("£", " 파운드 "),
|
| 426 |
-
("°", " 도 "),
|
| 427 |
-
]
|
| 428 |
-
],
|
| 429 |
-
}
|
| 430 |
-
|
| 431 |
-
def expand_symbols_multilingual(text, lang="en"):
|
| 432 |
-
if lang in _symbols_multilingual:
|
| 433 |
-
for regex, replacement in _symbols_multilingual[lang]:
|
| 434 |
-
text = re.sub(regex, replacement, text)
|
| 435 |
-
text = text.replace(" ", " ") # Ensure there are no double spaces
|
| 436 |
-
return text.strip()
|
| 437 |
-
|
| 438 |
-
_ordinal_re = {
|
| 439 |
-
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
|
| 440 |
-
"es": re.compile(r"([0-9]+)(º|ª|er|o|a|os|as)"),
|
| 441 |
-
"fr": re.compile(r"([0-9]+)(º|ª|er|re|e|ème)"),
|
| 442 |
-
"de": re.compile(r"([0-9]+)(st|nd|rd|th|º|ª|\.(?=\s|$))"),
|
| 443 |
-
"pt": re.compile(r"([0-9]+)(º|ª|o|a|os|as)"),
|
| 444 |
-
"it": re.compile(r"([0-9]+)(º|°|ª|o|a|i|e)"),
|
| 445 |
-
"pl": re.compile(r"([0-9]+)(º|ª|st|nd|rd|th)"),
|
| 446 |
-
"ar": re.compile(r"([0-9]+)(ون|ين|ث|ر|ى)"),
|
| 447 |
-
"cs": re.compile(r"([0-9]+)\.(?=\s|$)"), # In Czech, a dot is often used after the number to indicate ordinals.
|
| 448 |
-
"ru": re.compile(r"([0-9]+)(-й|-я|-е|-ое|-ье|-го)"),
|
| 449 |
-
"nl": re.compile(r"([0-9]+)(de|ste|e)"),
|
| 450 |
-
"tr": re.compile(r"([0-9]+)(\.|inci|nci|uncu|üncü|\.)"),
|
| 451 |
-
"hu": re.compile(r"([0-9]+)(\.|adik|edik|odik|edik|ödik|ödike|ik)"),
|
| 452 |
-
"ko": re.compile(r"([0-9]+)(번째|번|차|째)"),
|
| 453 |
-
}
|
| 454 |
-
_number_re = re.compile(r"[0-9]+")
|
| 455 |
-
_currency_re = {
|
| 456 |
-
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
|
| 457 |
-
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
|
| 458 |
-
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
|
| 459 |
-
}
|
| 460 |
-
|
| 461 |
-
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
|
| 462 |
-
_dot_number_re = re.compile(r"\b\d{1,3}(\.\d{3})*(\,\d+)?\b")
|
| 463 |
-
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
|
| 464 |
-
|
| 465 |
-
def _remove_commas(m):
|
| 466 |
-
text = m.group(0)
|
| 467 |
-
if "," in text:
|
| 468 |
-
text = text.replace(",", "")
|
| 469 |
-
return text
|
| 470 |
-
|
| 471 |
-
def _remove_dots(m):
|
| 472 |
-
text = m.group(0)
|
| 473 |
-
if "." in text:
|
| 474 |
-
text = text.replace(".", "")
|
| 475 |
-
return text
|
| 476 |
-
|
| 477 |
-
def _expand_decimal_point(m, lang="en"):
|
| 478 |
-
amount = m.group(1).replace(",", ".")
|
| 479 |
-
return num2words(float(amount), lang=lang if lang != "cs" else "cz")
|
| 480 |
-
|
| 481 |
-
def _expand_currency(m, lang="en", currency="USD"):
|
| 482 |
-
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
|
| 483 |
-
full_amount = num2words(amount, to="currency", currency=currency, lang=lang if lang != "cs" else "cz")
|
| 484 |
-
|
| 485 |
-
and_equivalents = {
|
| 486 |
-
"en": ", ",
|
| 487 |
-
"es": " con ",
|
| 488 |
-
"fr": " et ",
|
| 489 |
-
"de": " und ",
|
| 490 |
-
"pt": " e ",
|
| 491 |
-
"it": " e ",
|
| 492 |
-
"pl": ", ",
|
| 493 |
-
"cs": ", ",
|
| 494 |
-
"ru": ", ",
|
| 495 |
-
"nl": ", ",
|
| 496 |
-
"ar": ", ",
|
| 497 |
-
"tr": ", ",
|
| 498 |
-
"hu": ", ",
|
| 499 |
-
"ko": ", ",
|
| 500 |
-
}
|
| 501 |
-
|
| 502 |
-
if amount.is_integer():
|
| 503 |
-
last_and = full_amount.rfind(and_equivalents.get(lang, ", "))
|
| 504 |
-
if last_and != -1:
|
| 505 |
-
full_amount = full_amount[:last_and]
|
| 506 |
-
|
| 507 |
-
return full_amount
|
| 508 |
-
|
| 509 |
-
def _expand_ordinal(m, lang="en"):
|
| 510 |
-
return num2words(int(m.group(1)), ordinal=True, lang=lang if lang != "cs" else "cz")
|
| 511 |
-
|
| 512 |
-
def _expand_number(m, lang="en"):
|
| 513 |
-
return num2words(int(m.group(0)), lang=lang if lang != "cs" else "cz")
|
| 514 |
-
|
| 515 |
-
def expand_numbers_multilingual(text, lang="en"):
|
| 516 |
-
if lang == "zh":
|
| 517 |
-
text = zh_num2words()(text)
|
| 518 |
-
else:
|
| 519 |
-
if lang in ["en", "ru"]:
|
| 520 |
-
text = re.sub(_comma_number_re, _remove_commas, text)
|
| 521 |
-
else:
|
| 522 |
-
text = re.sub(_dot_number_re, _remove_dots, text)
|
| 523 |
-
try:
|
| 524 |
-
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
|
| 525 |
-
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
|
| 526 |
-
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
|
| 527 |
-
except Exception as e:
|
| 528 |
-
pass
|
| 529 |
-
if lang != "tr":
|
| 530 |
-
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
|
| 531 |
-
if lang in _ordinal_re:
|
| 532 |
-
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
|
| 533 |
-
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
|
| 534 |
-
return text
|
| 535 |
-
|
| 536 |
-
def lowercase(text):
|
| 537 |
-
return text.lower()
|
| 538 |
-
|
| 539 |
-
def collapse_whitespace(text):
|
| 540 |
-
return re.sub(_whitespace_re, " ", text)
|
| 541 |
-
|
| 542 |
-
def multilingual_cleaners(text, lang):
|
| 543 |
-
text = text.replace('"', "")
|
| 544 |
-
if lang == "tr":
|
| 545 |
-
text = text.replace("İ", "i")
|
| 546 |
-
text = text.replace("Ö", "ö")
|
| 547 |
-
text = text.replace("Ü", "ü")
|
| 548 |
-
text = lowercase(text)
|
| 549 |
-
text = expand_numbers_multilingual(text, lang)
|
| 550 |
-
text = expand_abbreviations_multilingual(text, lang)
|
| 551 |
-
text = expand_symbols_multilingual(text, lang=lang)
|
| 552 |
-
text = collapse_whitespace(text)
|
| 553 |
-
return text
|
| 554 |
-
|
| 555 |
-
def basic_cleaners(text):
|
| 556 |
-
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
|
| 557 |
-
text = lowercase(text)
|
| 558 |
-
text = collapse_whitespace(text)
|
| 559 |
-
return text
|
| 560 |
-
|
| 561 |
-
def chinese_transliterate(text):
|
| 562 |
-
return "".join(
|
| 563 |
-
[p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)]
|
| 564 |
-
)
|
| 565 |
-
|
| 566 |
-
def japanese_cleaners(text, katsu):
|
| 567 |
-
text = katsu.romaji(text)
|
| 568 |
-
text = lowercase(text)
|
| 569 |
-
return text
|
| 570 |
-
|
| 571 |
-
def korean_transliterate(text, transliter):
|
| 572 |
-
return transliter.translit(text)
|
| 573 |
-
|
| 574 |
-
# Fast Tokenizer Class
|
| 575 |
-
|
| 576 |
-
class XTTSTokenizerFast(PreTrainedTokenizerFast):
|
| 577 |
-
"""
|
| 578 |
-
Fast Tokenizer implementation for XTTS model using HuggingFace's PreTrainedTokenizerFast
|
| 579 |
-
"""
|
| 580 |
-
|
| 581 |
-
def __init__(
|
| 582 |
-
self,
|
| 583 |
-
vocab_file: str = None,
|
| 584 |
-
tokenizer_object: Optional[Tokenizer] = None,
|
| 585 |
-
unk_token: str = "[UNK]",
|
| 586 |
-
pad_token: str = "[PAD]",
|
| 587 |
-
bos_token: str = "[START]",
|
| 588 |
-
eos_token: str = "[STOP]",
|
| 589 |
-
auto_map: dict = {"AutoTokenizer": ["AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast", None]},
|
| 590 |
-
clean_up_tokenization_spaces: bool = True,
|
| 591 |
-
**kwargs
|
| 592 |
-
):
|
| 593 |
-
if tokenizer_object is None and vocab_file is not None:
|
| 594 |
-
tokenizer_object = Tokenizer.from_file(vocab_file)
|
| 595 |
-
|
| 596 |
-
if tokenizer_object is not None:
|
| 597 |
-
# Configure the tokenizer
|
| 598 |
-
tokenizer_object.pre_tokenizer = WhitespaceSplit()
|
| 599 |
-
tokenizer_object.post_processor = TemplateProcessing(
|
| 600 |
-
single=f"{bos_token} $A {eos_token}",
|
| 601 |
-
special_tokens=[
|
| 602 |
-
(bos_token, tokenizer_object.token_to_id(bos_token)),
|
| 603 |
-
(eos_token, tokenizer_object.token_to_id(eos_token)),
|
| 604 |
-
],
|
| 605 |
-
)
|
| 606 |
-
|
| 607 |
-
super().__init__(
|
| 608 |
-
tokenizer_object=tokenizer_object,
|
| 609 |
-
unk_token=unk_token,
|
| 610 |
-
pad_token=pad_token,
|
| 611 |
-
bos_token=bos_token,
|
| 612 |
-
eos_token=eos_token,
|
| 613 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 614 |
-
**kwargs
|
| 615 |
-
)
|
| 616 |
-
|
| 617 |
-
# Character limits per language
|
| 618 |
-
self.char_limits = {
|
| 619 |
-
"en": 250, "de": 253, "fr": 273, "es": 239,
|
| 620 |
-
"it": 213, "pt": 203, "pl": 224, "zh": 82,
|
| 621 |
-
"ar": 166, "cs": 186, "ru": 182, "nl": 251,
|
| 622 |
-
"tr": 226, "ja": 71, "hu": 224, "ko": 95,
|
| 623 |
-
}
|
| 624 |
-
|
| 625 |
-
# Initialize language tools
|
| 626 |
-
self._katsu = None
|
| 627 |
-
self._korean_transliter = Transliter(academic)
|
| 628 |
-
|
| 629 |
-
# Ensure pad_token_id is set
|
| 630 |
-
if self.pad_token_id is None:
|
| 631 |
-
self.pad_token_id = self.tokenizer.token_to_id(self.pad_token)
|
| 632 |
-
|
| 633 |
-
@cached_property
|
| 634 |
-
def katsu(self):
|
| 635 |
-
if self._katsu is None:
|
| 636 |
-
self._katsu = cutlet.Cutlet()
|
| 637 |
-
return self._katsu
|
| 638 |
-
|
| 639 |
-
def preprocess_text(self, text: str, lang: str) -> str:
|
| 640 |
-
"""Apply text preprocessing for language"""
|
| 641 |
-
base_lang = lang.split("-")[0] # remove region
|
| 642 |
-
if base_lang in {"ar", "cs", "de", "en", "es", "fr", "hu", "it",
|
| 643 |
-
"nl", "pl", "pt", "ru", "tr", "zh", "ko"}:
|
| 644 |
-
text = multilingual_cleaners(text, base_lang)
|
| 645 |
-
if base_lang == "zh":
|
| 646 |
-
text = chinese_transliterate(text)
|
| 647 |
-
if base_lang == "ko":
|
| 648 |
-
text = korean_transliterate(text, self._korean_transliter)
|
| 649 |
-
elif base_lang == "ja":
|
| 650 |
-
text = japanese_cleaners(text, self.katsu)
|
| 651 |
-
else:
|
| 652 |
-
text = basic_cleaners(text)
|
| 653 |
-
return text
|
| 654 |
-
|
| 655 |
-
def batch_encode_with_split(self, texts: Union[str, List[str]], lang: Union[str, List[str]],
|
| 656 |
-
**kwargs) -> torch.Tensor:
|
| 657 |
-
"""
|
| 658 |
-
Split texts into smaller chunks based on language character limits and encode them using HuggingFace fast tokenizer.
|
| 659 |
-
"""
|
| 660 |
-
# Convert single inputs to lists
|
| 661 |
-
if isinstance(texts, str):
|
| 662 |
-
texts = [texts]
|
| 663 |
-
if isinstance(lang, str):
|
| 664 |
-
lang = [lang]
|
| 665 |
-
# Ensure lang list matches texts list
|
| 666 |
-
if len(lang) == 1 and len(texts) > 1:
|
| 667 |
-
lang = lang * len(texts)
|
| 668 |
-
|
| 669 |
-
# Check if texts and lang have the same length
|
| 670 |
-
if len(texts) != len(lang):
|
| 671 |
-
raise ValueError(f"Number of texts ({len(texts)}) does not match number of languages ({len(lang)}).")
|
| 672 |
-
|
| 673 |
-
batch_chunks = []
|
| 674 |
-
max_splits = 0
|
| 675 |
-
|
| 676 |
-
# For each text, split into chunks based on character limit
|
| 677 |
-
for text, text_lang in zip(texts, lang):
|
| 678 |
-
# Get language character limit
|
| 679 |
-
base_lang = text_lang.split("-")[0]
|
| 680 |
-
char_limit = self.char_limits.get(base_lang, 250)
|
| 681 |
-
|
| 682 |
-
# Clean and preprocess
|
| 683 |
-
text = self.preprocess_text(text, text_lang)
|
| 684 |
-
|
| 685 |
-
# Split text into sentences/chunks based on language
|
| 686 |
-
chunks = split_sentence(text, base_lang, text_split_length=char_limit)
|
| 687 |
-
|
| 688 |
-
# Format each chunk
|
| 689 |
-
formatted_chunks = []
|
| 690 |
-
for chunk in chunks:
|
| 691 |
-
lang_code = "zh-cn" if base_lang == "zh" else base_lang
|
| 692 |
-
formatted_chunk = f"[{lang_code}]{chunk}"
|
| 693 |
-
formatted_chunk = formatted_chunk.replace(" ", "[SPACE]")
|
| 694 |
-
formatted_chunks.append(formatted_chunk)
|
| 695 |
-
|
| 696 |
-
batch_chunks.append(formatted_chunks)
|
| 697 |
-
max_splits = max(max_splits, len(formatted_chunks))
|
| 698 |
-
|
| 699 |
-
# Flatten all chunks to a single list for batch encoding
|
| 700 |
-
all_chunks = [chunk for chunks in batch_chunks for chunk in chunks]
|
| 701 |
-
|
| 702 |
-
# Ensure the tokenizer is a fast tokenizer
|
| 703 |
-
if not self.is_fast:
|
| 704 |
-
raise ValueError("The tokenizer must be a fast tokenizer.")
|
| 705 |
-
|
| 706 |
-
# Encode all chunks using the fast tokenizer
|
| 707 |
-
encoding: BatchEncoding = self(
|
| 708 |
-
all_chunks,
|
| 709 |
-
add_special_tokens=False,
|
| 710 |
-
padding=True,
|
| 711 |
-
return_tensors='pt',
|
| 712 |
-
**kwargs
|
| 713 |
-
)
|
| 714 |
-
|
| 715 |
-
# The 'input_ids' tensor will have shape [total_chunks, max_sequence_length]
|
| 716 |
-
input_ids = encoding['input_ids'] # Tensor of shape [total_chunks, sequence_length]
|
| 717 |
-
|
| 718 |
-
# Now, we need to organize this tensor back into the desired shape
|
| 719 |
-
# We'll use 'batch_indices' to keep track of which chunks belong to which text
|
| 720 |
-
batch_indices = []
|
| 721 |
-
idx = 0
|
| 722 |
-
for chunks in batch_chunks:
|
| 723 |
-
batch_indices.append((idx, idx + len(chunks)))
|
| 724 |
-
idx += len(chunks)
|
| 725 |
-
|
| 726 |
-
# Determine max sequence length and add space for special tokens
|
| 727 |
-
max_seq_length = input_ids.size(1) + 2 # +2 for BOS and EOS tokens
|
| 728 |
-
|
| 729 |
-
# Prepare the final tensor
|
| 730 |
-
batch_size = len(texts)
|
| 731 |
-
padded_batch = torch.full(
|
| 732 |
-
(batch_size, max_splits, max_seq_length),
|
| 733 |
-
fill_value=self.pad_token_id,
|
| 734 |
-
dtype=torch.long
|
| 735 |
-
)
|
| 736 |
-
|
| 737 |
-
# Populate the final tensor with BOS and EOS tokens
|
| 738 |
-
for i, (start, end) in enumerate(batch_indices):
|
| 739 |
-
chunks_input_ids = input_ids[start:end]
|
| 740 |
-
num_chunks = chunks_input_ids.size(0)
|
| 741 |
-
|
| 742 |
-
for j in range(num_chunks):
|
| 743 |
-
sequence = chunks_input_ids[j]
|
| 744 |
-
# find the length of the sequence
|
| 745 |
-
seq_len = (sequence != self.pad_token_id).sum().item()
|
| 746 |
-
|
| 747 |
-
# insert BOS
|
| 748 |
-
padded_batch[i, j, 0] = self.bos_token_id
|
| 749 |
-
# insert sequence
|
| 750 |
-
padded_batch[i, j, 1:seq_len + 1] = sequence[:seq_len]
|
| 751 |
-
# insert EOS
|
| 752 |
-
padded_batch[i, j, seq_len + 1] = self.eos_token_id
|
| 753 |
-
|
| 754 |
-
return padded_batch
|
| 755 |
-
|
| 756 |
-
def _batch_encode_plus(
|
| 757 |
-
self,
|
| 758 |
-
batch_text_or_text_pairs,
|
| 759 |
-
add_special_tokens: bool = True,
|
| 760 |
-
padding_strategy=PaddingStrategy.DO_NOT_PAD,
|
| 761 |
-
truncation_strategy=TruncationStrategy.DO_NOT_TRUNCATE,
|
| 762 |
-
max_length: Optional[int] = None,
|
| 763 |
-
stride: int = 0,
|
| 764 |
-
is_split_into_words: bool = False,
|
| 765 |
-
pad_to_multiple_of: Optional[int] = None,
|
| 766 |
-
return_tensors: Optional[str] = None,
|
| 767 |
-
return_token_type_ids: Optional[bool] = None,
|
| 768 |
-
return_attention_mask: Optional[bool] = None,
|
| 769 |
-
return_overflowing_tokens: bool = False,
|
| 770 |
-
return_special_tokens_mask: bool = False,
|
| 771 |
-
return_offsets_mapping: bool = False,
|
| 772 |
-
return_length: bool = False,
|
| 773 |
-
verbose: bool = True,
|
| 774 |
-
**kwargs
|
| 775 |
-
) -> Dict[str, Any]:
|
| 776 |
-
"""
|
| 777 |
-
Override batch encoding to handle language-specific preprocessing
|
| 778 |
-
"""
|
| 779 |
-
lang = kwargs.pop("lang", ["en"] * len(batch_text_or_text_pairs))
|
| 780 |
-
if isinstance(lang, str):
|
| 781 |
-
lang = [lang]
|
| 782 |
-
# Ensure lang list matches texts list
|
| 783 |
-
if len(lang) == 1 and len(batch_text_or_text_pairs) > 1:
|
| 784 |
-
lang = lang * len(batch_text_or_text_pairs)
|
| 785 |
-
|
| 786 |
-
# Check if batch_text_or_text_pairs and lang have the same length
|
| 787 |
-
if len(batch_text_or_text_pairs) != len(lang):
|
| 788 |
-
raise ValueError(f"Number of texts ({len(batch_text_or_text_pairs)}) does not match number of languages ({len(lang)}).")
|
| 789 |
-
|
| 790 |
-
# Preprocess each text in the batch with its corresponding language
|
| 791 |
-
processed_texts = []
|
| 792 |
-
for text, text_lang in zip(batch_text_or_text_pairs, lang):
|
| 793 |
-
if isinstance(text, str):
|
| 794 |
-
# Check length and preprocess
|
| 795 |
-
#self.check_input_length(text, text_lang)
|
| 796 |
-
processed_text = self.preprocess_text(text, text_lang)
|
| 797 |
-
|
| 798 |
-
# Format text with language tag and spaces
|
| 799 |
-
base_lang = text_lang.split("-")[0]
|
| 800 |
-
lang_code = "zh-cn" if base_lang == "zh" else base_lang
|
| 801 |
-
processed_text = f"[{lang_code}]{processed_text}"
|
| 802 |
-
processed_text = processed_text.replace(" ", "[SPACE]")
|
| 803 |
-
|
| 804 |
-
processed_texts.append(processed_text)
|
| 805 |
-
else:
|
| 806 |
-
processed_texts.append(text)
|
| 807 |
-
|
| 808 |
-
# Call the parent class's encoding method with processed texts
|
| 809 |
-
return super()._batch_encode_plus(
|
| 810 |
-
processed_texts,
|
| 811 |
-
add_special_tokens=add_special_tokens,
|
| 812 |
-
padding_strategy=padding_strategy,
|
| 813 |
-
truncation_strategy=truncation_strategy,
|
| 814 |
-
max_length=max_length,
|
| 815 |
-
stride=stride,
|
| 816 |
-
is_split_into_words=is_split_into_words,
|
| 817 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
| 818 |
-
return_tensors=return_tensors,
|
| 819 |
-
return_token_type_ids=return_token_type_ids,
|
| 820 |
-
return_attention_mask=return_attention_mask,
|
| 821 |
-
return_overflowing_tokens=return_overflowing_tokens,
|
| 822 |
-
return_special_tokens_mask=return_special_tokens_mask,
|
| 823 |
-
return_offsets_mapping=return_offsets_mapping,
|
| 824 |
-
return_length=return_length,
|
| 825 |
-
verbose=verbose,
|
| 826 |
-
**kwargs
|
| 827 |
-
)
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
def __call__(
|
| 831 |
-
self,
|
| 832 |
-
text: Union[str, List[str]],
|
| 833 |
-
lang: Union[str, List[str]] = "en",
|
| 834 |
-
add_special_tokens: bool = True,
|
| 835 |
-
padding: Union[bool, str, PaddingStrategy] = False,
|
| 836 |
-
truncation: Union[bool, str, TruncationStrategy] = False,
|
| 837 |
-
max_length: Optional[int] = None,
|
| 838 |
-
stride: int = 0,
|
| 839 |
-
return_tensors: Optional[str] = None,
|
| 840 |
-
return_token_type_ids: Optional[bool] = None,
|
| 841 |
-
return_attention_mask: Optional[bool] = True,
|
| 842 |
-
**kwargs
|
| 843 |
-
):
|
| 844 |
-
"""
|
| 845 |
-
Main tokenization method
|
| 846 |
-
"""
|
| 847 |
-
# Convert single string to list for batch processing
|
| 848 |
-
if isinstance(text, str):
|
| 849 |
-
text = [text]
|
| 850 |
-
if isinstance(lang, str):
|
| 851 |
-
lang = [lang]
|
| 852 |
-
# Ensure lang list matches texts list
|
| 853 |
-
if len(lang) == 1 and len(text) > 1:
|
| 854 |
-
lang = lang * len(text)
|
| 855 |
-
|
| 856 |
-
# Ensure text and lang lists have same length
|
| 857 |
-
if len(text) != len(lang):
|
| 858 |
-
raise ValueError(f"Number of texts ({len(text)}) does not match number of languages ({len(lang)}).")
|
| 859 |
-
|
| 860 |
-
# Convert padding strategy
|
| 861 |
-
if isinstance(padding, bool):
|
| 862 |
-
padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD
|
| 863 |
-
else:
|
| 864 |
-
padding_strategy = PaddingStrategy(padding)
|
| 865 |
-
|
| 866 |
-
# Convert truncation strategy
|
| 867 |
-
if isinstance(truncation, bool):
|
| 868 |
-
truncation_strategy = TruncationStrategy.LONGEST_FIRST if truncation else TruncationStrategy.DO_NOT_TRUNCATE
|
| 869 |
-
else:
|
| 870 |
-
truncation_strategy = TruncationStrategy(truncation)
|
| 871 |
-
|
| 872 |
-
# Use the batch encoding method
|
| 873 |
-
encoded = self._batch_encode_plus(
|
| 874 |
-
text,
|
| 875 |
-
add_special_tokens=add_special_tokens,
|
| 876 |
-
padding_strategy=padding_strategy,
|
| 877 |
-
truncation_strategy=truncation_strategy,
|
| 878 |
-
max_length=max_length,
|
| 879 |
-
stride=stride,
|
| 880 |
-
return_tensors=return_tensors,
|
| 881 |
-
return_token_type_ids=return_token_type_ids,
|
| 882 |
-
return_attention_mask=return_attention_mask,
|
| 883 |
-
lang=lang,
|
| 884 |
-
**kwargs
|
| 885 |
-
)
|
| 886 |
-
|
| 887 |
-
return encoded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xttsv2_gpt2/tokenizer_config.json
DELETED
|
@@ -1,192 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"added_tokens_decoder": {
|
| 3 |
-
"0": {
|
| 4 |
-
"content": "[STOP]",
|
| 5 |
-
"lstrip": false,
|
| 6 |
-
"normalized": false,
|
| 7 |
-
"rstrip": false,
|
| 8 |
-
"single_word": false,
|
| 9 |
-
"special": true
|
| 10 |
-
},
|
| 11 |
-
"1": {
|
| 12 |
-
"content": "[UNK]",
|
| 13 |
-
"lstrip": false,
|
| 14 |
-
"normalized": false,
|
| 15 |
-
"rstrip": false,
|
| 16 |
-
"single_word": false,
|
| 17 |
-
"special": true
|
| 18 |
-
},
|
| 19 |
-
"2": {
|
| 20 |
-
"content": "[SPACE]",
|
| 21 |
-
"lstrip": false,
|
| 22 |
-
"normalized": false,
|
| 23 |
-
"rstrip": false,
|
| 24 |
-
"single_word": false,
|
| 25 |
-
"special": true
|
| 26 |
-
},
|
| 27 |
-
"259": {
|
| 28 |
-
"content": "[en]",
|
| 29 |
-
"lstrip": false,
|
| 30 |
-
"normalized": false,
|
| 31 |
-
"rstrip": false,
|
| 32 |
-
"single_word": false,
|
| 33 |
-
"special": true
|
| 34 |
-
},
|
| 35 |
-
"260": {
|
| 36 |
-
"content": "[de]",
|
| 37 |
-
"lstrip": false,
|
| 38 |
-
"normalized": false,
|
| 39 |
-
"rstrip": false,
|
| 40 |
-
"single_word": false,
|
| 41 |
-
"special": true
|
| 42 |
-
},
|
| 43 |
-
"261": {
|
| 44 |
-
"content": "[START]",
|
| 45 |
-
"lstrip": false,
|
| 46 |
-
"normalized": false,
|
| 47 |
-
"rstrip": false,
|
| 48 |
-
"single_word": false,
|
| 49 |
-
"special": true
|
| 50 |
-
},
|
| 51 |
-
"262": {
|
| 52 |
-
"content": "[fr]",
|
| 53 |
-
"lstrip": false,
|
| 54 |
-
"normalized": false,
|
| 55 |
-
"rstrip": false,
|
| 56 |
-
"single_word": false,
|
| 57 |
-
"special": true
|
| 58 |
-
},
|
| 59 |
-
"267": {
|
| 60 |
-
"content": "[ru]",
|
| 61 |
-
"lstrip": false,
|
| 62 |
-
"normalized": false,
|
| 63 |
-
"rstrip": false,
|
| 64 |
-
"single_word": false,
|
| 65 |
-
"special": true
|
| 66 |
-
},
|
| 67 |
-
"284": {
|
| 68 |
-
"content": "[es]",
|
| 69 |
-
"lstrip": false,
|
| 70 |
-
"normalized": false,
|
| 71 |
-
"rstrip": false,
|
| 72 |
-
"single_word": false,
|
| 73 |
-
"special": true
|
| 74 |
-
},
|
| 75 |
-
"285": {
|
| 76 |
-
"content": "[it]",
|
| 77 |
-
"lstrip": false,
|
| 78 |
-
"normalized": false,
|
| 79 |
-
"rstrip": false,
|
| 80 |
-
"single_word": false,
|
| 81 |
-
"special": true
|
| 82 |
-
},
|
| 83 |
-
"286": {
|
| 84 |
-
"content": "[pt]",
|
| 85 |
-
"lstrip": false,
|
| 86 |
-
"normalized": false,
|
| 87 |
-
"rstrip": false,
|
| 88 |
-
"single_word": false,
|
| 89 |
-
"special": true
|
| 90 |
-
},
|
| 91 |
-
"293": {
|
| 92 |
-
"content": "[cs]",
|
| 93 |
-
"lstrip": false,
|
| 94 |
-
"normalized": false,
|
| 95 |
-
"rstrip": false,
|
| 96 |
-
"single_word": false,
|
| 97 |
-
"special": true
|
| 98 |
-
},
|
| 99 |
-
"294": {
|
| 100 |
-
"content": "[pl]",
|
| 101 |
-
"lstrip": false,
|
| 102 |
-
"normalized": false,
|
| 103 |
-
"rstrip": false,
|
| 104 |
-
"single_word": false,
|
| 105 |
-
"special": true
|
| 106 |
-
},
|
| 107 |
-
"295": {
|
| 108 |
-
"content": "[tr]",
|
| 109 |
-
"lstrip": false,
|
| 110 |
-
"normalized": false,
|
| 111 |
-
"rstrip": false,
|
| 112 |
-
"single_word": false,
|
| 113 |
-
"special": true
|
| 114 |
-
},
|
| 115 |
-
"297": {
|
| 116 |
-
"content": "[nl]",
|
| 117 |
-
"lstrip": false,
|
| 118 |
-
"normalized": false,
|
| 119 |
-
"rstrip": false,
|
| 120 |
-
"single_word": false,
|
| 121 |
-
"special": true
|
| 122 |
-
},
|
| 123 |
-
"5022": {
|
| 124 |
-
"content": "[ar]",
|
| 125 |
-
"lstrip": false,
|
| 126 |
-
"normalized": false,
|
| 127 |
-
"rstrip": false,
|
| 128 |
-
"single_word": false,
|
| 129 |
-
"special": true
|
| 130 |
-
},
|
| 131 |
-
"5023": {
|
| 132 |
-
"content": "[zh-cn]",
|
| 133 |
-
"lstrip": false,
|
| 134 |
-
"normalized": false,
|
| 135 |
-
"rstrip": false,
|
| 136 |
-
"single_word": false,
|
| 137 |
-
"special": true
|
| 138 |
-
},
|
| 139 |
-
"5412": {
|
| 140 |
-
"content": "[ja]",
|
| 141 |
-
"lstrip": false,
|
| 142 |
-
"normalized": false,
|
| 143 |
-
"rstrip": false,
|
| 144 |
-
"single_word": false,
|
| 145 |
-
"special": true
|
| 146 |
-
},
|
| 147 |
-
"5753": {
|
| 148 |
-
"content": "[hu]",
|
| 149 |
-
"lstrip": false,
|
| 150 |
-
"normalized": false,
|
| 151 |
-
"rstrip": false,
|
| 152 |
-
"single_word": false,
|
| 153 |
-
"special": true
|
| 154 |
-
},
|
| 155 |
-
"6152": {
|
| 156 |
-
"content": "[ko]",
|
| 157 |
-
"lstrip": false,
|
| 158 |
-
"normalized": false,
|
| 159 |
-
"rstrip": false,
|
| 160 |
-
"single_word": false,
|
| 161 |
-
"special": true
|
| 162 |
-
},
|
| 163 |
-
"6680": {
|
| 164 |
-
"content": "[hi]",
|
| 165 |
-
"lstrip": false,
|
| 166 |
-
"normalized": false,
|
| 167 |
-
"rstrip": false,
|
| 168 |
-
"single_word": false,
|
| 169 |
-
"special": true
|
| 170 |
-
},
|
| 171 |
-
"6681": {
|
| 172 |
-
"content": "[PAD]",
|
| 173 |
-
"lstrip": false,
|
| 174 |
-
"normalized": false,
|
| 175 |
-
"rstrip": false,
|
| 176 |
-
"single_word": false,
|
| 177 |
-
"special": true
|
| 178 |
-
}
|
| 179 |
-
},
|
| 180 |
-
"auto_map": {"AutoTokenizer": ["AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast", null]},
|
| 181 |
-
"bos_token": "[START]",
|
| 182 |
-
"clean_up_tokenization_spaces": true,
|
| 183 |
-
"eos_token": "[STOP]",
|
| 184 |
-
"max_length": null,
|
| 185 |
-
"model_max_length": 1000000000000000019884624838656,
|
| 186 |
-
"pad_to_multiple_of": null,
|
| 187 |
-
"pad_token": "[PAD]",
|
| 188 |
-
"pad_token_type_id": 0,
|
| 189 |
-
"padding_side": "right",
|
| 190 |
-
"tokenizer_class": "XTTSTokenizerFast",
|
| 191 |
-
"unk_token": "[UNK]"
|
| 192 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xttsv2_gpt2/xtts2_gpt_modeling.py
DELETED
|
@@ -1,505 +0,0 @@
|
|
| 1 |
-
import functools
|
| 2 |
-
import math
|
| 3 |
-
import random
|
| 4 |
-
import uuid
|
| 5 |
-
from array import array
|
| 6 |
-
|
| 7 |
-
import numpy as np
|
| 8 |
-
import torch
|
| 9 |
-
import torch.nn as nn
|
| 10 |
-
from typing import List, Optional, Union, Iterable, Tuple, Mapping, Dict
|
| 11 |
-
|
| 12 |
-
from torch import Tensor
|
| 13 |
-
from transformers import PretrainedConfig, GPT2Config
|
| 14 |
-
from vllm.attention import AttentionMetadata
|
| 15 |
-
from vllm.config import CacheConfig, MultiModalConfig
|
| 16 |
-
from vllm.distributed import get_pp_group
|
| 17 |
-
from vllm.inputs import InputContext, INPUT_REGISTRY, DecoderOnlyInputs, token_inputs
|
| 18 |
-
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
| 19 |
-
from vllm.model_executor.layers.quantization import QuantizationConfig
|
| 20 |
-
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
|
| 21 |
-
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding, ParallelLMHead
|
| 22 |
-
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
| 23 |
-
from vllm.model_executor.models.gpt2 import GPT2Block
|
| 24 |
-
from vllm.model_executor.models.utils import make_layers, make_empty_intermediate_tensors_factory
|
| 25 |
-
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
| 26 |
-
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalInputs
|
| 27 |
-
from vllm.sequence import IntermediateTensors, SequenceData, VLLM_TOKEN_ID_ARRAY_TYPE
|
| 28 |
-
from vllm.model_executor.models.interfaces import SupportsMultiModal, SupportsPP
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
class LearnedPositionEmbeddings(nn.Module):
|
| 33 |
-
def __init__(self, seq_len, model_dim, init=0.02, relative=False, supports_pp=False):
|
| 34 |
-
super().__init__()
|
| 35 |
-
# nn.Embedding
|
| 36 |
-
self.emb = VocabParallelEmbedding(seq_len, model_dim) if supports_pp else nn.Embedding(seq_len, model_dim)
|
| 37 |
-
# Initializing this way is standard for GPT-2
|
| 38 |
-
self.emb.weight.data.normal_(mean=0.0, std=init)
|
| 39 |
-
self.relative = relative
|
| 40 |
-
self.seq_len = seq_len
|
| 41 |
-
|
| 42 |
-
def forward(self, x):
|
| 43 |
-
sl = x.shape[1]
|
| 44 |
-
if self.relative:
|
| 45 |
-
start = random.randint(sl, self.seq_len) - sl
|
| 46 |
-
return self.emb(torch.arange(start, start + sl, device=x.device))
|
| 47 |
-
else:
|
| 48 |
-
return self.emb(torch.arange(0, sl, device=x.device))
|
| 49 |
-
|
| 50 |
-
def get_fixed_embedding(self, ind: torch.Tensor, dev: torch.device) -> torch.Tensor:
|
| 51 |
-
"""Get position embeddings with batch support.
|
| 52 |
-
|
| 53 |
-
Handles both single and batched inputs, returning embeddings that can be
|
| 54 |
-
directly added to input embeddings of the same shape.
|
| 55 |
-
|
| 56 |
-
Args:
|
| 57 |
-
ind: Position indices tensor. Can be single or batched
|
| 58 |
-
Shape: [..., seq_len] or [seq_len]
|
| 59 |
-
dev: Target device for the embeddings
|
| 60 |
-
|
| 61 |
-
Returns:
|
| 62 |
-
Position embeddings tensor matching input shape plus embedding dimension
|
| 63 |
-
Shape: [batch_size, seq_len, model_dim] or [1, 1, model_dim]
|
| 64 |
-
|
| 65 |
-
Example:
|
| 66 |
-
>>> pos_emb = LearnedPositionEmbeddings(100, 64)
|
| 67 |
-
>>> # Batched input
|
| 68 |
-
>>> batch_indices = torch.zeros((3, 5)) # batch_size=3, seq_len=5
|
| 69 |
-
>>> embeddings = pos_emb.get_fixed_embedding(batch_indices, 'cuda')
|
| 70 |
-
>>> embeddings.shape # Returns: [3, 5, 64]
|
| 71 |
-
"""
|
| 72 |
-
if ind.shape[0] > 1:
|
| 73 |
-
pos_embeddings = []
|
| 74 |
-
for index in ind:
|
| 75 |
-
# Create embeddings for each position in the sequence
|
| 76 |
-
pos_embeddings.append(self.emb(index))
|
| 77 |
-
|
| 78 |
-
# Shape: [1, seq_len, model_dim] -> [batch_size, seq_len, model_dim]
|
| 79 |
-
return torch.stack(pos_embeddings, dim=0)
|
| 80 |
-
else:
|
| 81 |
-
# Handle single input
|
| 82 |
-
# Shape: [1, 1, model_dim]
|
| 83 |
-
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def get_xtts_max_audio_tokens(ctx: InputContext) -> int:
|
| 87 |
-
"""Calculate maximum audio tokens based on text context and audio duration."""
|
| 88 |
-
# Based on GPT config and XTTSv2 settings
|
| 89 |
-
return 608
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def dummy_seq_data_for_xtts(
|
| 93 |
-
ctx: InputContext,
|
| 94 |
-
seq_len: int,
|
| 95 |
-
audio_count: int,
|
| 96 |
-
) -> SequenceData:
|
| 97 |
-
"""Create dummy sequence data for XTTS profiling."""
|
| 98 |
-
# Calculate audio token space needed
|
| 99 |
-
max_audio_token_conditioning = ctx.model_config.hf_config.max_prompt_tokens # in xtts prompt = voice conditioning
|
| 100 |
-
audio_placeholder = array(
|
| 101 |
-
VLLM_TOKEN_ID_ARRAY_TYPE,
|
| 102 |
-
[1]
|
| 103 |
-
) * max_audio_token_conditioning
|
| 104 |
-
|
| 105 |
-
# Add separator between chunks
|
| 106 |
-
audio_token_ids = (audio_placeholder + array(VLLM_TOKEN_ID_ARRAY_TYPE, [1])) * audio_count
|
| 107 |
-
|
| 108 |
-
# Fill remaining sequence with padding
|
| 109 |
-
other_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE, [1]) * (seq_len - len(audio_token_ids))
|
| 110 |
-
# not -1 since we add the start audio token
|
| 111 |
-
|
| 112 |
-
return SequenceData(
|
| 113 |
-
audio_token_ids +
|
| 114 |
-
other_token_ids
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
def dummy_conditioning_for_xtts(
|
| 118 |
-
ctx: InputContext,
|
| 119 |
-
seq_len: int,
|
| 120 |
-
audio_count: int,
|
| 121 |
-
) -> dict:
|
| 122 |
-
"""Create dummy conditioning data for XTTS."""
|
| 123 |
-
return {
|
| 124 |
-
"audio": {
|
| 125 |
-
"embeds":[
|
| 126 |
-
torch.zeros(
|
| 127 |
-
(seq_len, ctx.model_config.hf_config.hidden_size),
|
| 128 |
-
dtype=ctx.model_config.dtype) for _ in range(audio_count)
|
| 129 |
-
],
|
| 130 |
-
"is_logits_only_mode": False,
|
| 131 |
-
}
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
def dummy_data_for_xtts(
|
| 136 |
-
ctx: InputContext,
|
| 137 |
-
seq_len: int,
|
| 138 |
-
mm_counts: Mapping[str, int],
|
| 139 |
-
) -> Tuple[SequenceData, dict]:
|
| 140 |
-
"""Create complete dummy data for XTTS profiling."""
|
| 141 |
-
audio_count = mm_counts["audio"]
|
| 142 |
-
seq_data = dummy_seq_data_for_xtts(ctx, seq_len, audio_count)
|
| 143 |
-
cond_data = dummy_conditioning_for_xtts(ctx, seq_len, audio_count)
|
| 144 |
-
return seq_data, cond_data
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def input_mapper_for_xtts(ctx: InputContext, data: Union[Dict, List[Tensor]]) -> MultiModalInputs:
|
| 148 |
-
"""Map input data to XTTS format."""
|
| 149 |
-
|
| 150 |
-
assert isinstance(data, dict), "XTTS MultiModal input data must be a dictionary with keys: 'embeds', 'is_logits_only_mode'"
|
| 151 |
-
|
| 152 |
-
embeds = data.get("embeds")
|
| 153 |
-
is_logits_only_mode = data.get("is_logits_only_mode", False)
|
| 154 |
-
|
| 155 |
-
# Each item should be a torch tensor
|
| 156 |
-
for audio_input in embeds:
|
| 157 |
-
if not isinstance(audio_input, Tensor):
|
| 158 |
-
raise NotImplementedError(f"Unsupported data type: {type(audio_input)}")
|
| 159 |
-
|
| 160 |
-
return MultiModalInputs({"cond_latents": embeds,
|
| 161 |
-
"is_logits_only_mode": is_logits_only_mode,
|
| 162 |
-
})
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
def input_processor_for_xtts2_gpt(ctx: InputContext, inputs: DecoderOnlyInputs):
|
| 166 |
-
"""
|
| 167 |
-
We'll accomodate for the extra contditioning token and for the start audio token,
|
| 168 |
-
we actually insert a -1 repeated for the differecne in length between the conditioning and the tokenized text
|
| 169 |
-
and then we add 1 for the start audio token
|
| 170 |
-
Args:
|
| 171 |
-
ctx:
|
| 172 |
-
inputs:
|
| 173 |
-
|
| 174 |
-
Returns:
|
| 175 |
-
|
| 176 |
-
"""
|
| 177 |
-
multi_modal_data = inputs.get("multi_modal_data")
|
| 178 |
-
audio_dict = multi_modal_data['audio']
|
| 179 |
-
audio = audio_dict.get('embeds')
|
| 180 |
-
|
| 181 |
-
is_last_decoding_pass = audio_dict.get("is_logits_only_mode", False)
|
| 182 |
-
|
| 183 |
-
prompt_token_ids = inputs.get("prompt_token_ids")
|
| 184 |
-
|
| 185 |
-
if not is_last_decoding_pass:
|
| 186 |
-
# we fill everything with 0 since we don't actually needs text token ids, it would mess up in the sampling step
|
| 187 |
-
new_token_ids = [1] * (audio.shape[0] + 1) # +1 for the start audio generation token
|
| 188 |
-
else:
|
| 189 |
-
new_token_ids = ([1] * audio.shape[0]) + prompt_token_ids
|
| 190 |
-
# the encoding had already been done externally to reuse the embeddings for later use but we
|
| 191 |
-
# account for the new token that will be added before generation
|
| 192 |
-
new_prompt = None
|
| 193 |
-
return token_inputs(prompt_token_ids=new_token_ids,
|
| 194 |
-
prompt=new_prompt,
|
| 195 |
-
multi_modal_data=multi_modal_data)
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
@MULTIMODAL_REGISTRY.register_input_mapper("audio", input_mapper_for_xtts)
|
| 199 |
-
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens("audio", get_xtts_max_audio_tokens)
|
| 200 |
-
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_xtts)
|
| 201 |
-
@INPUT_REGISTRY.register_input_processor(input_processor_for_xtts2_gpt)
|
| 202 |
-
class XttsGPT(nn.Module, SupportsMultiModal, SupportsPP):
|
| 203 |
-
def __init__(
|
| 204 |
-
self,
|
| 205 |
-
config: PretrainedConfig,
|
| 206 |
-
multimodal_config: MultiModalConfig,
|
| 207 |
-
cache_config: Optional[CacheConfig] = None,
|
| 208 |
-
quant_config: Optional[QuantizationConfig] = None,
|
| 209 |
-
):
|
| 210 |
-
super().__init__()
|
| 211 |
-
self.config = config
|
| 212 |
-
self.quant_config = quant_config
|
| 213 |
-
|
| 214 |
-
# Core GPT components
|
| 215 |
-
self.gpt = GPT2Model(
|
| 216 |
-
config,
|
| 217 |
-
cache_config,
|
| 218 |
-
quant_config,
|
| 219 |
-
prefix="gpt"
|
| 220 |
-
)
|
| 221 |
-
self.final_norm = nn.LayerNorm(config.hidden_size, bias=True, eps=config.layer_norm_epsilon)
|
| 222 |
-
# Output head for mel tokens
|
| 223 |
-
self.mel_head = ParallelLMHead(
|
| 224 |
-
config.num_audio_tokens,
|
| 225 |
-
config.hidden_size,
|
| 226 |
-
bias=True,
|
| 227 |
-
quant_config=quant_config,
|
| 228 |
-
prefix="mel_head"
|
| 229 |
-
)
|
| 230 |
-
self.audio_start_generation_token = config.start_audio_token
|
| 231 |
-
|
| 232 |
-
# Initialize logits processor and sampler
|
| 233 |
-
logit_scale = getattr(config, "logit_scale", 1.0)
|
| 234 |
-
self.logits_processor = LogitsProcessor(config.num_audio_tokens,
|
| 235 |
-
config.num_audio_tokens,
|
| 236 |
-
logit_scale)
|
| 237 |
-
self.sampler = Sampler()
|
| 238 |
-
|
| 239 |
-
@staticmethod
|
| 240 |
-
def check_is_logits_only_mode(is_logits_only_mode):
|
| 241 |
-
|
| 242 |
-
# First check if it's a boolean
|
| 243 |
-
if isinstance(is_logits_only_mode, bool):
|
| 244 |
-
return is_logits_only_mode
|
| 245 |
-
|
| 246 |
-
# Then check if it's a tensor
|
| 247 |
-
if torch.is_tensor(is_logits_only_mode):
|
| 248 |
-
# if it's a scalar tensor, return the value
|
| 249 |
-
if is_logits_only_mode.numel() == 1:
|
| 250 |
-
return bool(is_logits_only_mode.item())
|
| 251 |
-
# for non-scalar tensors, check if all elements are the same
|
| 252 |
-
return is_logits_only_mode.any()
|
| 253 |
-
|
| 254 |
-
# Fallback
|
| 255 |
-
return bool(is_logits_only_mode)
|
| 256 |
-
|
| 257 |
-
def _calculate_start_token_indices(self, cond_latents: List[torch.Tensor]) -> List[int]:
|
| 258 |
-
"""Calcola gli indici dove inserire i token di start.
|
| 259 |
-
|
| 260 |
-
Args:
|
| 261 |
-
cond_latents: Lista di tensori di condizionamento
|
| 262 |
-
|
| 263 |
-
Returns:
|
| 264 |
-
Lista di indici dove inserire i token di start
|
| 265 |
-
"""
|
| 266 |
-
indices = []
|
| 267 |
-
current_idx = 0
|
| 268 |
-
|
| 269 |
-
for cond_latent in cond_latents:
|
| 270 |
-
# Aggiungi la lunghezza del segmento corrente
|
| 271 |
-
current_idx += cond_latent.shape[0]
|
| 272 |
-
# Aggiungi l'indice per il token di start dopo questo segmento
|
| 273 |
-
indices.append(current_idx)
|
| 274 |
-
# Incrementa per il token di start che verrà aggiunto
|
| 275 |
-
current_idx += 1
|
| 276 |
-
|
| 277 |
-
return indices
|
| 278 |
-
|
| 279 |
-
# noinspection PyMethodOverriding
|
| 280 |
-
def forward(
|
| 281 |
-
self,
|
| 282 |
-
input_ids: torch.Tensor,
|
| 283 |
-
positions: torch.Tensor,
|
| 284 |
-
kv_caches: List[torch.Tensor],
|
| 285 |
-
attn_metadata: AttentionMetadata,
|
| 286 |
-
intermediate_tensors: Optional["IntermediateTensors"] = None,
|
| 287 |
-
cond_latents: Optional[torch.Tensor] = None,
|
| 288 |
-
is_logits_only_mode: bool = False,
|
| 289 |
-
**kwargs,
|
| 290 |
-
) -> Union[torch.Tensor, "IntermediateTensors"]:
|
| 291 |
-
"""Forward pass following VLLM pattern."""
|
| 292 |
-
# it is not the first iter either if the cond latents are emtpy or if the kv_caches are not empty
|
| 293 |
-
is_first_iteration = (input_ids==1).all()
|
| 294 |
-
|
| 295 |
-
#assert len(input_ids) == 1 or (cond_latents is not None and not is_first_iteration), "Conditioning data (voice conditioning+text_embeddings) is required for XTTS"
|
| 296 |
-
|
| 297 |
-
is_logits_only_mode = self.check_is_logits_only_mode(is_logits_only_mode)
|
| 298 |
-
|
| 299 |
-
if is_first_iteration:
|
| 300 |
-
# we add it to enable the model to start the generation
|
| 301 |
-
input_ids[-1] = self.audio_start_generation_token
|
| 302 |
-
|
| 303 |
-
hidden_states = self.gpt(
|
| 304 |
-
input_ids=input_ids,
|
| 305 |
-
position_ids=positions,
|
| 306 |
-
kv_caches=kv_caches,
|
| 307 |
-
attn_metadata=attn_metadata,
|
| 308 |
-
intermediate_tensors=intermediate_tensors,
|
| 309 |
-
# this is the conditioning input ( voice conditioning + text_embeds )
|
| 310 |
-
input_embeds=cond_latents,
|
| 311 |
-
is_first_iteration=is_first_iteration,
|
| 312 |
-
is_logits_only_mode=is_logits_only_mode
|
| 313 |
-
)
|
| 314 |
-
|
| 315 |
-
return hidden_states
|
| 316 |
-
|
| 317 |
-
def compute_logits(
|
| 318 |
-
self,
|
| 319 |
-
hidden_states: torch.Tensor,
|
| 320 |
-
sampling_metadata: SamplingMetadata,
|
| 321 |
-
) -> Optional[torch.Tensor]:
|
| 322 |
-
|
| 323 |
-
# normalize the hidden states
|
| 324 |
-
hidden_states = self.final_norm(hidden_states)
|
| 325 |
-
|
| 326 |
-
# Check if we need to collect hidden states
|
| 327 |
-
sampling_params = sampling_metadata.seq_groups[0].sampling_params
|
| 328 |
-
if hasattr(sampling_params, 'hidden_state_collector'):
|
| 329 |
-
# Call the collector directly with the hidden states
|
| 330 |
-
sampling_params.hidden_state_collector(hidden_states, None) # The request_id is already bound
|
| 331 |
-
|
| 332 |
-
# Compute logits using the mel_head
|
| 333 |
-
logits = self.logits_processor(self.mel_head, hidden_states, sampling_metadata)
|
| 334 |
-
return logits
|
| 335 |
-
|
| 336 |
-
def sample(
|
| 337 |
-
self,
|
| 338 |
-
logits: torch.Tensor,
|
| 339 |
-
sampling_metadata: SamplingMetadata,
|
| 340 |
-
) -> Optional[SamplerOutput]:
|
| 341 |
-
next_tokens = self.sampler(logits, sampling_metadata)
|
| 342 |
-
return next_tokens
|
| 343 |
-
|
| 344 |
-
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
| 345 |
-
"""Load weights following VLLM pattern."""
|
| 346 |
-
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
| 347 |
-
loaded_names = set()
|
| 348 |
-
for name, loaded_weight in weights:
|
| 349 |
-
if name not in params_dict:
|
| 350 |
-
#print(f"Skipping loading of {name} bc it is not found") # used to check if all weights were loaded
|
| 351 |
-
continue
|
| 352 |
-
|
| 353 |
-
param = params_dict[name]
|
| 354 |
-
if "c_attn" in name or "c_proj" in name or "c_fc" in name:
|
| 355 |
-
if name.endswith(".weight"):
|
| 356 |
-
loaded_weight = loaded_weight.t()
|
| 357 |
-
|
| 358 |
-
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
| 359 |
-
weight_loader(param, loaded_weight)
|
| 360 |
-
loaded_names.add(name)
|
| 361 |
-
# used to check if all weights were loaded
|
| 362 |
-
assert set(params_dict.keys()) - loaded_names == set(), \
|
| 363 |
-
(f"Missing weights: {set(params_dict.keys()) - loaded_names}, "
|
| 364 |
-
f"this probably means you are using an incompatible model ")
|
| 365 |
-
|
| 366 |
-
class GPT2Model(nn.Module):
|
| 367 |
-
|
| 368 |
-
def __init__(
|
| 369 |
-
self,
|
| 370 |
-
config: GPT2Config,
|
| 371 |
-
cache_config: Optional[CacheConfig] = None,
|
| 372 |
-
quant_config: Optional[QuantizationConfig] = None,
|
| 373 |
-
prefix: str = "",
|
| 374 |
-
):
|
| 375 |
-
super().__init__()
|
| 376 |
-
self.config = config
|
| 377 |
-
assert not config.add_cross_attention
|
| 378 |
-
assert not config.scale_attn_by_inverse_layer_idx
|
| 379 |
-
assert not config.reorder_and_upcast_attn
|
| 380 |
-
self.embed_dim = config.hidden_size
|
| 381 |
-
self.wte = VocabParallelEmbedding(config.num_audio_tokens, self.embed_dim)
|
| 382 |
-
self.wpe = (
|
| 383 |
-
LearnedPositionEmbeddings(config.max_audio_tokens + 3, config.decoder_input_dim)
|
| 384 |
-
if config.max_audio_tokens != -1
|
| 385 |
-
else functools.partial(config.null_position_embeddings, dim=config.decoder_input_dim)
|
| 386 |
-
)
|
| 387 |
-
self.start_layer, self.end_layer, self.h = make_layers(
|
| 388 |
-
config.num_hidden_layers,
|
| 389 |
-
lambda prefix: GPT2Block(
|
| 390 |
-
config, cache_config, quant_config, prefix=prefix),
|
| 391 |
-
prefix=f"{prefix}.h")
|
| 392 |
-
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 393 |
-
self.make_empty_intermediate_tensors = (
|
| 394 |
-
make_empty_intermediate_tensors_factory(["hidden_states"],
|
| 395 |
-
config.hidden_size))
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
def forward(
|
| 399 |
-
self,
|
| 400 |
-
input_ids: torch.Tensor,
|
| 401 |
-
position_ids: torch.Tensor,
|
| 402 |
-
kv_caches: List[torch.Tensor],
|
| 403 |
-
attn_metadata: AttentionMetadata,
|
| 404 |
-
intermediate_tensors: Optional[IntermediateTensors],
|
| 405 |
-
# we pass this so that we can concatenate the text and conditioning input
|
| 406 |
-
input_embeds: Optional[torch.Tensor] = None,
|
| 407 |
-
is_first_iteration: bool = False,
|
| 408 |
-
is_logits_only_mode: bool = False,
|
| 409 |
-
) -> Union[torch.Tensor, IntermediateTensors]:
|
| 410 |
-
|
| 411 |
-
if get_pp_group().is_first_rank:
|
| 412 |
-
# if we are not doing the final conversion from token to latent and it is first pass(prefill)
|
| 413 |
-
if is_first_iteration and not is_logits_only_mode:
|
| 414 |
-
input_ids = input_ids[-1].reshape(1, 1)
|
| 415 |
-
elif is_logits_only_mode:
|
| 416 |
-
# we remove the contidioning input and keep just the audio token
|
| 417 |
-
if isinstance(input_embeds, list):
|
| 418 |
-
starting_idx = []
|
| 419 |
-
for input_embed in input_embeds:
|
| 420 |
-
starting_idx.append(input_embed.shape[0])
|
| 421 |
-
ending_ids = attn_metadata.seq_lens # list
|
| 422 |
-
|
| 423 |
-
# First sequence: from starting_idx[0] to ending_ids[0]
|
| 424 |
-
cumulative_starts = [starting_idx[0]] # First starts at its own index
|
| 425 |
-
cumulative_ends = [ending_ids[0]] # First ends at its ending_id
|
| 426 |
-
|
| 427 |
-
# For subsequent sequences:
|
| 428 |
-
# Start = previous_end + current_start
|
| 429 |
-
# End = previous_end + current_end
|
| 430 |
-
for i in range(1, len(starting_idx)):
|
| 431 |
-
next_start = cumulative_ends[i - 1] + starting_idx[i]
|
| 432 |
-
next_end = cumulative_ends[i - 1] + ending_ids[i]
|
| 433 |
-
cumulative_starts.append(next_start)
|
| 434 |
-
cumulative_ends.append(next_end)
|
| 435 |
-
|
| 436 |
-
ids_for_unpacking = [end-start for start, end in zip(cumulative_starts, cumulative_ends)]
|
| 437 |
-
|
| 438 |
-
input_ids = torch.cat([
|
| 439 |
-
input_ids[start:end].reshape(1, -1)
|
| 440 |
-
for start, end in zip(cumulative_starts, cumulative_ends)
|
| 441 |
-
], dim=-1)
|
| 442 |
-
position_ids = torch.cat([
|
| 443 |
-
position_ids[start:end].reshape(1, -1)
|
| 444 |
-
for start, end in zip(cumulative_starts, cumulative_ends)
|
| 445 |
-
], dim= -1).squeeze(0)
|
| 446 |
-
else:
|
| 447 |
-
input_ids = input_ids[input_embeds.shape[1]:].reshape(1, -1)
|
| 448 |
-
position_ids = position_ids[input_embeds.shape[1]:]#.reshape(1, -1)
|
| 449 |
-
else:
|
| 450 |
-
input_ids = input_ids
|
| 451 |
-
|
| 452 |
-
audio_inputs_embeds = self.wte(input_ids).squeeze(0)
|
| 453 |
-
|
| 454 |
-
# weird but they to it like this in the xtts2 model
|
| 455 |
-
position_embeds = self.wpe.get_fixed_embedding(
|
| 456 |
-
position_ids, input_ids.device
|
| 457 |
-
) if not is_first_iteration \
|
| 458 |
-
else self.wpe(audio_inputs_embeds.reshape(-1, 1)) # we need to reshape to 2D tensor or useless?
|
| 459 |
-
|
| 460 |
-
hidden_states = audio_inputs_embeds + position_embeds
|
| 461 |
-
|
| 462 |
-
if isinstance(input_embeds, list) and is_logits_only_mode:
|
| 463 |
-
hidden_states = list(hidden_states.split(ids_for_unpacking, dim=0))
|
| 464 |
-
|
| 465 |
-
if is_first_iteration or is_logits_only_mode:
|
| 466 |
-
# We concat the text and audio conditioning input in the sequence dimension
|
| 467 |
-
if isinstance(input_embeds, list):
|
| 468 |
-
input_embeds = [input_embed.view(-1, input_embed.shape[-1]) for input_embed in input_embeds]
|
| 469 |
-
else:
|
| 470 |
-
input_embeds = input_embeds.view(-1, input_embeds.shape[-1]) # we ensure we have a 2D tensor
|
| 471 |
-
|
| 472 |
-
if not isinstance(input_embeds, list) and input_embeds.shape[0] == attn_metadata.num_prefill_tokens:
|
| 473 |
-
# this is during profiling, wee need to remove the last token
|
| 474 |
-
# the attn_metadata.num_prefill_tokens(prompt len) should be == to input_embeds.shape[0] - 1
|
| 475 |
-
# to account for the start audio gen embedding that will be cat to the text embeddings
|
| 476 |
-
input_embeds = input_embeds[:-1]
|
| 477 |
-
|
| 478 |
-
if is_first_iteration or is_logits_only_mode:
|
| 479 |
-
# we concatenate the conditioning input to the text conditioning input
|
| 480 |
-
if isinstance(input_embeds, list):
|
| 481 |
-
hidden_states = torch.cat([
|
| 482 |
-
tensor for pair in zip(input_embeds, [hidden_states] * len(input_embeds)
|
| 483 |
-
if not isinstance(hidden_states, list) else hidden_states)
|
| 484 |
-
for tensor in pair
|
| 485 |
-
], dim=0)
|
| 486 |
-
else:
|
| 487 |
-
hidden_states = torch.cat([input_embeds, hidden_states], dim=0)
|
| 488 |
-
|
| 489 |
-
#flatten the hidden state
|
| 490 |
-
hidden_states = hidden_states.view(-1, self.embed_dim)
|
| 491 |
-
else:
|
| 492 |
-
assert intermediate_tensors is not None
|
| 493 |
-
hidden_states = intermediate_tensors["hidden_states"]
|
| 494 |
-
|
| 495 |
-
for i in range(self.start_layer, self.end_layer):
|
| 496 |
-
layer = self.h[i]
|
| 497 |
-
hidden_states = layer(hidden_states,
|
| 498 |
-
kv_caches[i - self.start_layer],
|
| 499 |
-
attn_metadata)
|
| 500 |
-
|
| 501 |
-
if not get_pp_group().is_last_rank:
|
| 502 |
-
return IntermediateTensors({"hidden_states": hidden_states})
|
| 503 |
-
|
| 504 |
-
hidden_states = self.ln_f(hidden_states)
|
| 505 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|