File size: 1,997 Bytes
aa825cd
 
526d029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa825cd
 
526d029
 
aa825cd
526d029
aa825cd
526d029
 
 
 
aa825cd
526d029
aa825cd
526d029
aa825cd
526d029
aa825cd
526d029
aa825cd
526d029
aa825cd
526d029
aa825cd
526d029
aa825cd
526d029
aa825cd
526d029
 
 
 
 
 
 
 
 
 
 
 
aa825cd
526d029
aa825cd
526d029
 
 
aa825cd
 
526d029
aa825cd
526d029
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-hindi-colab
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: hi
      split: test[:10%]
      args: hi
    metrics:
    - name: Wer
      type: wer
      value: 0.8416323474354175
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hindi-colab

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4875
- Wer: 0.8416

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 11.4536       | 26.6667 | 400  | 1.4875          | 0.8416 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0