upload
Browse files- README.md +52 -0
- config.json +16 -0
- pytorch_model.bin +3 -0
- rwkv_vocab_v20230424.json +0 -0
- special_tokens_map.json +1 -0
- tokenization_rwkv_world.py +505 -0
- tokenizer_config.json +12 -0
README.md
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### Run Huggingface RWKV World Model
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
#### CPU
|
| 5 |
+
|
| 6 |
+
```python
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
+
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained("BBuf/RWKV-4-World-1B5")
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("BBuf/RWKV-4-World-1B5", trust_remote_code=True)
|
| 11 |
+
|
| 12 |
+
text = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
|
| 13 |
+
prompt = f'Question: {text.strip()}\n\nAnswer:'
|
| 14 |
+
|
| 15 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 16 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=256)
|
| 17 |
+
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
| 18 |
+
```
|
| 19 |
+
|
| 20 |
+
output:
|
| 21 |
+
|
| 22 |
+
```shell
|
| 23 |
+
Question: In a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese.
|
| 24 |
+
|
| 25 |
+
Answer: The researchers discovered a mysterious finding in a remote, undisclosed valley, in a remote, undisclosed valley.
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
#### GPU
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import torch
|
| 32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 33 |
+
|
| 34 |
+
model = AutoModelForCausalLM.from_pretrained("BBuf/RWKV-4-World-1B5", torch_dtype=torch.float16).to(0)
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained("BBuf/RWKV-4-World-1B5", trust_remote_code=True)
|
| 36 |
+
|
| 37 |
+
text = "你叫什么名字?"
|
| 38 |
+
prompt = f'Question: {text.strip()}\n\nAnswer:'
|
| 39 |
+
|
| 40 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(0)
|
| 41 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=40)
|
| 42 |
+
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
output:
|
| 46 |
+
|
| 47 |
+
```shell
|
| 48 |
+
Question: 你叫什么名字?
|
| 49 |
+
|
| 50 |
+
Answer: 我是一个人工智能语言模型,没有具体的身份或者特征,也没有能力进行人类的任何任务
|
| 51 |
+
```
|
| 52 |
+
|
config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_hidden_size": 2048,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"context_length": 1024,
|
| 5 |
+
"eos_token_id": 0,
|
| 6 |
+
"hidden_size": 2048,
|
| 7 |
+
"intermediate_size": 8192,
|
| 8 |
+
"layer_norm_epsilon": 1e-05,
|
| 9 |
+
"model_type": "rwkv",
|
| 10 |
+
"num_hidden_layers": 24,
|
| 11 |
+
"rescale_every": 6,
|
| 12 |
+
"tie_word_embeddings": false,
|
| 13 |
+
"transformers_version": "4.33.1",
|
| 14 |
+
"use_cache": true,
|
| 15 |
+
"vocab_size": 65536
|
| 16 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a862fd5e63b62ba7483ecbfd8b4e29afbd38c806381c684de29d2ae3e5091b6
|
| 3 |
+
size 3155266561
|
rwkv_vocab_v20230424.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
tokenization_rwkv_world.py
ADDED
|
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Tokenization classes for OpenAI GPT."""
|
| 16 |
+
|
| 17 |
+
import json
|
| 18 |
+
import os
|
| 19 |
+
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
| 20 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 21 |
+
from transformers.utils import logging, to_py_obj
|
| 22 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
| 23 |
+
|
| 24 |
+
import bisect
|
| 25 |
+
import itertools
|
| 26 |
+
import re
|
| 27 |
+
import unicodedata
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from typing import Any, Dict, List, Optional, Tuple, Union, overload
|
| 30 |
+
|
| 31 |
+
from transformers.tokenization_utils_base import (
|
| 32 |
+
ENCODE_KWARGS_DOCSTRING,
|
| 33 |
+
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
|
| 34 |
+
INIT_TOKENIZER_DOCSTRING,
|
| 35 |
+
AddedToken,
|
| 36 |
+
BatchEncoding,
|
| 37 |
+
EncodedInput,
|
| 38 |
+
EncodedInputPair,
|
| 39 |
+
PreTokenizedInput,
|
| 40 |
+
PreTokenizedInputPair,
|
| 41 |
+
PreTrainedTokenizerBase,
|
| 42 |
+
TextInput,
|
| 43 |
+
TextInputPair,
|
| 44 |
+
TruncationStrategy,
|
| 45 |
+
)
|
| 46 |
+
from transformers.utils import PaddingStrategy, TensorType, add_end_docstrings, logging
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if TYPE_CHECKING:
|
| 50 |
+
from transformers.pipelines.conversational import Conversation
|
| 51 |
+
|
| 52 |
+
logger = logging.get_logger(__name__)
|
| 53 |
+
|
| 54 |
+
VOCAB_FILES_NAMES = {
|
| 55 |
+
"vocab_file": "rwkv_vocab_v20230424.json",
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class DATrie:
|
| 60 |
+
class Node:
|
| 61 |
+
def __init__(self, is_leaf=False, leaf_data=None, tail=""):
|
| 62 |
+
self._is_leaf = is_leaf
|
| 63 |
+
self._leaf_data = leaf_data
|
| 64 |
+
self._tail = tail
|
| 65 |
+
self._next_map = {}
|
| 66 |
+
|
| 67 |
+
def is_leaf(self):
|
| 68 |
+
return self._is_leaf
|
| 69 |
+
|
| 70 |
+
def set_leaf(self):
|
| 71 |
+
self._is_leaf = True
|
| 72 |
+
|
| 73 |
+
def has_next(self, w):
|
| 74 |
+
if w in self._next_map:
|
| 75 |
+
return True
|
| 76 |
+
return False
|
| 77 |
+
|
| 78 |
+
def add_node(self, w, node):
|
| 79 |
+
self._next_map[w] = node
|
| 80 |
+
|
| 81 |
+
def get_node(self, w):
|
| 82 |
+
if w in self._next_map:
|
| 83 |
+
return self._next_map[w]
|
| 84 |
+
return None
|
| 85 |
+
|
| 86 |
+
def get_tail(self):
|
| 87 |
+
return self._tail
|
| 88 |
+
|
| 89 |
+
def get_data(self):
|
| 90 |
+
return self._leaf_data
|
| 91 |
+
|
| 92 |
+
def set_data(self, data):
|
| 93 |
+
self._leaf_data = data
|
| 94 |
+
|
| 95 |
+
def __init__(self, special_ids):
|
| 96 |
+
self.root = self.Node()
|
| 97 |
+
self.data = {}
|
| 98 |
+
self.r_data = {}
|
| 99 |
+
self.special_ids = special_ids
|
| 100 |
+
|
| 101 |
+
def insert(self, word, data):
|
| 102 |
+
self.data[word] = data
|
| 103 |
+
self.r_data[data] = word
|
| 104 |
+
idx = 0
|
| 105 |
+
node = self.root
|
| 106 |
+
while idx < len(word):
|
| 107 |
+
w = word[idx]
|
| 108 |
+
is_leaf = (idx == (len(word) - 1))
|
| 109 |
+
leaf_data = (data if is_leaf else None)
|
| 110 |
+
# 不存在则插入
|
| 111 |
+
if not node.has_next(w):
|
| 112 |
+
node.add_node(w, self.Node(is_leaf=is_leaf, leaf_data=leaf_data))
|
| 113 |
+
# last word
|
| 114 |
+
node = node.get_node(w)
|
| 115 |
+
idx += 1
|
| 116 |
+
if not node.is_leaf():
|
| 117 |
+
node.set_leaf()
|
| 118 |
+
node.set_data(data)
|
| 119 |
+
|
| 120 |
+
def findStrict(self, word):
|
| 121 |
+
idx = 0
|
| 122 |
+
node = self.root
|
| 123 |
+
while node is not None and idx < len(word):
|
| 124 |
+
w = word[idx]
|
| 125 |
+
if not node.has_next(w):
|
| 126 |
+
return None
|
| 127 |
+
# last word
|
| 128 |
+
node = node.get_node(w)
|
| 129 |
+
idx += 1
|
| 130 |
+
if node.is_leaf():
|
| 131 |
+
return node.get_data()
|
| 132 |
+
return None
|
| 133 |
+
|
| 134 |
+
def prefix(self, word):
|
| 135 |
+
idx = 0
|
| 136 |
+
node = self.root
|
| 137 |
+
result = []
|
| 138 |
+
while node is not None and idx < len(word):
|
| 139 |
+
w = word[idx]
|
| 140 |
+
if not node.has_next(w):
|
| 141 |
+
return result
|
| 142 |
+
# last word
|
| 143 |
+
node = node.get_node(w)
|
| 144 |
+
if node.is_leaf():
|
| 145 |
+
result.append([word[:idx + 1], node.get_data()])
|
| 146 |
+
idx += 1
|
| 147 |
+
return result
|
| 148 |
+
|
| 149 |
+
def max_prefix(self, content, start_idx):
|
| 150 |
+
idx = start_idx
|
| 151 |
+
node = self.root
|
| 152 |
+
l = len(content)
|
| 153 |
+
result = [["", ], ]
|
| 154 |
+
while node is not None and idx < l:
|
| 155 |
+
w = content[idx]
|
| 156 |
+
if not node.has_next(w):
|
| 157 |
+
return result[-1]
|
| 158 |
+
# last word
|
| 159 |
+
node = node.get_node(w)
|
| 160 |
+
if node.is_leaf():
|
| 161 |
+
result.append([content[start_idx:idx + 1], node.get_data()])
|
| 162 |
+
idx += 1
|
| 163 |
+
return result[-1]
|
| 164 |
+
|
| 165 |
+
def max_score(self, content, start_idx):
|
| 166 |
+
idx = start_idx
|
| 167 |
+
node = self.root
|
| 168 |
+
l = len(content)
|
| 169 |
+
result = [["", (3, 0)], ]
|
| 170 |
+
while node is not None and idx < l:
|
| 171 |
+
w = content[idx]
|
| 172 |
+
if not node.has_next(w):
|
| 173 |
+
break
|
| 174 |
+
# last word
|
| 175 |
+
node = node.get_node(w)
|
| 176 |
+
if node.is_leaf():
|
| 177 |
+
result.append([content[start_idx:idx + 1], node.get_data()])
|
| 178 |
+
idx += 1
|
| 179 |
+
if len(result) > 1:
|
| 180 |
+
result = sorted(result, key=lambda x: x[1][1])
|
| 181 |
+
return result[-1]
|
| 182 |
+
|
| 183 |
+
def match(self, content, add_unk=True, unk_id=-1, **kwargs):
|
| 184 |
+
# length
|
| 185 |
+
l = len(content)
|
| 186 |
+
i = 0
|
| 187 |
+
result_list = []
|
| 188 |
+
while i < l:
|
| 189 |
+
match_word = self.max_prefix(content=content, start_idx=i)
|
| 190 |
+
# print(match_word)
|
| 191 |
+
w = match_word[0]
|
| 192 |
+
if len(w) > 0:
|
| 193 |
+
result_list.append(match_word[1])
|
| 194 |
+
i += len(w)
|
| 195 |
+
else:
|
| 196 |
+
if add_unk:
|
| 197 |
+
result_list.append(unk_id)
|
| 198 |
+
i += 1
|
| 199 |
+
return result_list
|
| 200 |
+
|
| 201 |
+
def id2str(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
|
| 202 |
+
res_str = ""
|
| 203 |
+
for rid in ids:
|
| 204 |
+
if rid in self.r_data:
|
| 205 |
+
if rid in end_ids:
|
| 206 |
+
break
|
| 207 |
+
if escape_special_ids and rid in self.special_ids:
|
| 208 |
+
continue
|
| 209 |
+
rstr = self.r_data[rid]
|
| 210 |
+
res_str += rstr
|
| 211 |
+
elif rid == 0:
|
| 212 |
+
break
|
| 213 |
+
else:
|
| 214 |
+
print("ERROR unknown id %d" % rid)
|
| 215 |
+
res_str += "UNK"
|
| 216 |
+
return res_str
|
| 217 |
+
|
| 218 |
+
def id2str_v2(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
|
| 219 |
+
res_str = ""
|
| 220 |
+
for rid in ids:
|
| 221 |
+
if rid in self.r_data:
|
| 222 |
+
if rid in end_ids:
|
| 223 |
+
break
|
| 224 |
+
rstr = self.r_data[rid]
|
| 225 |
+
if escape_special_ids and rid in self.special_ids:
|
| 226 |
+
continue
|
| 227 |
+
res_str += rstr
|
| 228 |
+
elif rid == 0:
|
| 229 |
+
break
|
| 230 |
+
else:
|
| 231 |
+
print("ERROR unknown id %d" % rid)
|
| 232 |
+
res_str += "UNK"
|
| 233 |
+
return res_str
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class RWKVWorldTokenizer(PreTrainedTokenizer):
|
| 237 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 238 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 239 |
+
|
| 240 |
+
def __init__(
|
| 241 |
+
self,
|
| 242 |
+
vocab_file,
|
| 243 |
+
errors="replace",
|
| 244 |
+
**kwargs
|
| 245 |
+
):
|
| 246 |
+
self.add_bos_token = False
|
| 247 |
+
super().__init__(
|
| 248 |
+
errors=errors,
|
| 249 |
+
**kwargs,
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
| 253 |
+
self.encoder = json.load(vocab_handle)
|
| 254 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 255 |
+
self.trie = DATrie(self.all_special_ids)
|
| 256 |
+
for k, v in self.encoder.items():
|
| 257 |
+
self.trie.insert(k, v)
|
| 258 |
+
self.errors = errors # how to handle errors in decoding
|
| 259 |
+
self.cache = {}
|
| 260 |
+
|
| 261 |
+
@property
|
| 262 |
+
def vocab_size(self):
|
| 263 |
+
return len(self.encoder)
|
| 264 |
+
|
| 265 |
+
def get_vocab(self):
|
| 266 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
| 267 |
+
|
| 268 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 269 |
+
if self.add_bos_token:
|
| 270 |
+
bos_token_ids = [self.bos_token_id]
|
| 271 |
+
else:
|
| 272 |
+
bos_token_ids = []
|
| 273 |
+
|
| 274 |
+
output = bos_token_ids + token_ids_0
|
| 275 |
+
|
| 276 |
+
if token_ids_1 is None:
|
| 277 |
+
return output
|
| 278 |
+
|
| 279 |
+
return output + bos_token_ids + token_ids_1
|
| 280 |
+
|
| 281 |
+
def get_special_tokens_mask(
|
| 282 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
| 283 |
+
already_has_special_tokens: bool = False
|
| 284 |
+
) -> List[int]:
|
| 285 |
+
"""
|
| 286 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 287 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
token_ids_0 (`List[int]`):
|
| 291 |
+
List of IDs.
|
| 292 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 293 |
+
Optional second list of IDs for sequence pairs.
|
| 294 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 295 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 296 |
+
|
| 297 |
+
Returns:
|
| 298 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 299 |
+
"""
|
| 300 |
+
if already_has_special_tokens:
|
| 301 |
+
return super().get_special_tokens_mask(
|
| 302 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
if not self.add_bos_token:
|
| 306 |
+
return super().get_special_tokens_mask(
|
| 307 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
if token_ids_1 is None:
|
| 311 |
+
return [1] + ([0] * len(token_ids_0))
|
| 312 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
| 313 |
+
|
| 314 |
+
def _tokenize(self, text, **kwargs):
|
| 315 |
+
"""Tokenize a string."""
|
| 316 |
+
return self.trie.match(text, unk_id=self.unk_token_id, **kwargs)
|
| 317 |
+
|
| 318 |
+
def _decode(self,
|
| 319 |
+
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
| 320 |
+
skip_special_tokens: bool = False,
|
| 321 |
+
**kwargs
|
| 322 |
+
) -> str:
|
| 323 |
+
|
| 324 |
+
# Convert inputs to python lists
|
| 325 |
+
token_ids = to_py_obj(token_ids)
|
| 326 |
+
if isinstance(token_ids, int):
|
| 327 |
+
if token_ids in self.all_special_ids and skip_special_tokens:
|
| 328 |
+
return ""
|
| 329 |
+
return self.decoder.get(token_ids, self.unk_token)
|
| 330 |
+
elif isinstance(token_ids, list):
|
| 331 |
+
return self.trie.id2str(
|
| 332 |
+
token_ids,
|
| 333 |
+
escape_special_ids=skip_special_tokens,
|
| 334 |
+
**kwargs
|
| 335 |
+
)
|
| 336 |
+
else:
|
| 337 |
+
return token_ids
|
| 338 |
+
|
| 339 |
+
def _convert_token_to_id(self, token):
|
| 340 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 341 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
| 342 |
+
|
| 343 |
+
def _convert_id_to_token(self, index):
|
| 344 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 345 |
+
return self.decoder.get(index)
|
| 346 |
+
|
| 347 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 348 |
+
if not os.path.exists(save_directory):
|
| 349 |
+
os.mkdir(save_directory)
|
| 350 |
+
if not os.path.isdir(save_directory):
|
| 351 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 352 |
+
return
|
| 353 |
+
vocab_file = os.path.join(
|
| 354 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 358 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
| 359 |
+
|
| 360 |
+
return (vocab_file,)
|
| 361 |
+
|
| 362 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
| 363 |
+
return (text, kwargs)
|
| 364 |
+
|
| 365 |
+
def _encode_plus(
|
| 366 |
+
self,
|
| 367 |
+
text: Union[TextInput, EncodedInput],
|
| 368 |
+
add_special_tokens: bool = True,
|
| 369 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
| 370 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
| 371 |
+
max_length: Optional[int] = None,
|
| 372 |
+
stride: int = 0,
|
| 373 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 374 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 375 |
+
return_token_type_ids: Optional[bool] = None,
|
| 376 |
+
return_attention_mask: Optional[bool] = None,
|
| 377 |
+
return_overflowing_tokens: bool = False,
|
| 378 |
+
return_special_tokens_mask: bool = False,
|
| 379 |
+
return_offsets_mapping: bool = False,
|
| 380 |
+
return_length: bool = False,
|
| 381 |
+
verbose: bool = True,
|
| 382 |
+
**kwargs
|
| 383 |
+
) -> BatchEncoding:
|
| 384 |
+
def get_input_ids(text):
|
| 385 |
+
if isinstance(text, str):
|
| 386 |
+
text_id = self.trie.match(text, unk_id=self.unk_token_id)
|
| 387 |
+
return text_id
|
| 388 |
+
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
| 389 |
+
return [self.trie.match(t, unk_id=self.unk_token_id) for t in text]
|
| 390 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
| 391 |
+
return text
|
| 392 |
+
else:
|
| 393 |
+
raise ValueError(
|
| 394 |
+
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
if return_offsets_mapping:
|
| 398 |
+
raise NotImplementedError(
|
| 399 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
| 400 |
+
"To use this feature, change your tokenizer to one deriving from "
|
| 401 |
+
"transformers.PreTrainedTokenizerFast. "
|
| 402 |
+
"More information on available tokenizers at "
|
| 403 |
+
"https://github.com/huggingface/transformers/pull/2674"
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
first_ids = get_input_ids(text)
|
| 407 |
+
|
| 408 |
+
return self.prepare_for_model(
|
| 409 |
+
first_ids,
|
| 410 |
+
pair_ids=None,
|
| 411 |
+
add_special_tokens=add_special_tokens,
|
| 412 |
+
padding=padding_strategy.value,
|
| 413 |
+
truncation=truncation_strategy.value,
|
| 414 |
+
max_length=max_length,
|
| 415 |
+
stride=stride,
|
| 416 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 417 |
+
return_tensors=return_tensors,
|
| 418 |
+
prepend_batch_axis=True,
|
| 419 |
+
return_attention_mask=return_attention_mask,
|
| 420 |
+
return_token_type_ids=return_token_type_ids,
|
| 421 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
| 422 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
| 423 |
+
return_length=return_length,
|
| 424 |
+
verbose=verbose,
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
def _batch_encode_plus(
|
| 428 |
+
self,
|
| 429 |
+
batch_text_or_text_pairs: Union[
|
| 430 |
+
List[TextInput],
|
| 431 |
+
List[EncodedInput],
|
| 432 |
+
],
|
| 433 |
+
add_special_tokens: bool = True,
|
| 434 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
| 435 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
| 436 |
+
max_length: Optional[int] = None,
|
| 437 |
+
stride: int = 0,
|
| 438 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 439 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 440 |
+
return_token_type_ids: Optional[bool] = None,
|
| 441 |
+
return_attention_mask: Optional[bool] = None,
|
| 442 |
+
return_overflowing_tokens: bool = False,
|
| 443 |
+
return_special_tokens_mask: bool = False,
|
| 444 |
+
return_offsets_mapping: bool = False,
|
| 445 |
+
return_length: bool = False,
|
| 446 |
+
verbose: bool = True,
|
| 447 |
+
**kwargs
|
| 448 |
+
) -> BatchEncoding:
|
| 449 |
+
def get_input_ids(text):
|
| 450 |
+
if isinstance(text, str):
|
| 451 |
+
text_id = self.trie.match(text, unk_id=self.unk_token_id)
|
| 452 |
+
return text_id
|
| 453 |
+
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
| 454 |
+
return [self.trie.match(t, unk_id=self.unk_token_id) for t in text]
|
| 455 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
| 456 |
+
return text
|
| 457 |
+
else:
|
| 458 |
+
raise ValueError(
|
| 459 |
+
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
if return_offsets_mapping:
|
| 463 |
+
raise NotImplementedError(
|
| 464 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
| 465 |
+
"To use this feature, change your tokenizer to one deriving from "
|
| 466 |
+
"transformers.PreTrainedTokenizerFast."
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
input_ids = []
|
| 470 |
+
for ids_or_pair_ids in batch_text_or_text_pairs:
|
| 471 |
+
if not isinstance(ids_or_pair_ids, (list, tuple)):
|
| 472 |
+
ids, pair_ids = ids_or_pair_ids, None
|
| 473 |
+
else:
|
| 474 |
+
ids, pair_ids = ids_or_pair_ids
|
| 475 |
+
|
| 476 |
+
first_ids = get_input_ids(ids)
|
| 477 |
+
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
|
| 478 |
+
input_ids.append((first_ids, second_ids))
|
| 479 |
+
|
| 480 |
+
batch_outputs = self._batch_prepare_for_model(
|
| 481 |
+
input_ids,
|
| 482 |
+
add_special_tokens=add_special_tokens,
|
| 483 |
+
padding_strategy=padding_strategy,
|
| 484 |
+
truncation_strategy=truncation_strategy,
|
| 485 |
+
max_length=max_length,
|
| 486 |
+
stride=stride,
|
| 487 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 488 |
+
return_attention_mask=return_attention_mask,
|
| 489 |
+
return_token_type_ids=return_token_type_ids,
|
| 490 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
| 491 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
| 492 |
+
return_length=return_length,
|
| 493 |
+
return_tensors=return_tensors,
|
| 494 |
+
verbose=verbose,
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
return BatchEncoding(batch_outputs)
|
| 498 |
+
|
| 499 |
+
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
|
| 500 |
+
input_ids = []
|
| 501 |
+
for is_user, text in conversation.iter_texts():
|
| 502 |
+
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
|
| 503 |
+
if len(input_ids) > self.model_max_length:
|
| 504 |
+
input_ids = input_ids[-self.model_max_length:]
|
| 505 |
+
return input_ids
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name_or_path": "rwkv-world",
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"tokenizer_class": "RWKVWorldTokenizer",
|
| 5 |
+
"use_fast": false,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoTokenizer": [
|
| 8 |
+
"tokenization_rwkv_world.RWKVWorldTokenizer",
|
| 9 |
+
null
|
| 10 |
+
]
|
| 11 |
+
}
|
| 12 |
+
}
|