File size: 3,413 Bytes
bb97a1a 65a00e3 a55d583 bb97a1a 5f93079 5b96a1b 65a00e3 697d955 bb97a1a 8393d51 bb97a1a 8393d51 bb97a1a 5f93079 bb97a1a 5f93079 735fbff 5f93079 735fbff 5f93079 0eeef3f 5f93079 bb97a1a 65a00e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: cc-by-nc-4.0
library_name: transformers
pipeline_tag: voice-activity-detection
tags:
- speaker
- speaker-diarization
- meeting
- wavlm
- wespeaker
- diarizen
- pyannote
- pyannote-audio-pipeline
---
## Overview
This hub features the pre-trained model by [DiariZen](https://github.com/BUTSpeechFIT/DiariZen). The EEND component is built upon WavLM Large and Conformer layers. The model was trained on far-field, single-channel audio from a diverse set of public datasets, including AMI, AISHELL-4, AliMeeting, NOTSOFAR-1, MSDWild, DIHARD3, RAMC, and VoxConverse.
Then structured pruning at 80% sparsity is applied. After pruning, the number of parameters in WavLM Large is reduced from **316.6M to 63.3M**, and the computational cost (MACs) decreases from **17.8G to 3.8G** per second. When loading this model, please ensure **non-commercial** usage, in accordance with the CC BY-NC 4.0 license.
## Usage
```python
from diarizen.pipelines.inference import DiariZenPipeline
# load pre-trained model
diar_pipeline = DiariZenPipeline.from_pretrained("BUT-FIT/diarizen-wavlm-large-s80-md")
# apply diarization pipeline
diar_results = diar_pipeline('audio.wav')
# print results
for turn, _, speaker in diar_results.itertracks(yield_label=True):
print(f"start={turn.start:.1f}s stop={turn.end:.1f}s speaker_{speaker}")
# load pre-trained model and save RTTM result
diar_pipeline = DiariZenPipeline.from_pretrained(
"BUT-FIT/diarizen-wavlm-large-s80-md",
rttm_out_dir='.'
)
# apply diarization pipeline
diar_results = diar_pipeline('audio.wav', sess_name='session_name')
```
## Results (collar=0s)
| Dataset | [Pyannote v3.1](https://github.com/pyannote/pyannote-audio) | DiariZen |
|:---------------|:-----------:|:-----------:|
| AMI | 22.4 | 14.0 |
| AISHELL-4 | 12.2 | 9.8 |
| AliMeeting | 24.4 | 12.5 |
| NOTSOFAR-1 | - | 17.9 |
| MSDWild | 25.3 | 15.6 |
| DIHARD3 | 21.7 | 14.5 |
| RAMC | 22.2 | 11.0 |
| VoxConverse | 11.3 | 9.2 |
## Citation
If you found this work helpful, please consider citing:
```
@inproceedings{han2025leveraging,
title={Leveraging self-supervised learning for speaker diarization},
author={Han, Jiangyu and Landini, Federico and Rohdin, Johan and Silnova, Anna and Diez, Mireia and Burget, Luk{\'a}{\v{s}}},
booktitle={Proc. ICASSP},
year={2025}
}
@article{han2025fine,
title={Fine-tune Before Structured Pruning: Towards Compact and Accurate Self-Supervised Models for Speaker Diarization},
author={Han, Jiangyu and Landini, Federico and Rohdin, Johan and Silnova, Anna and Diez, Mireia and Cernocky, Jan and Burget, Lukas},
journal={arXiv preprint arXiv:2505.24111},
year={2025}
}
@article{han2025efficient,
title={Efficient and Generalizable Speaker Diarization via Structured Pruning of Self-Supervised Models},
author={Han, Jiangyu and P{\'a}lka, Petr and Delcroix, Marc and Landini, Federico and Rohdin, Johan and Cernock{\`y}, Jan and Burget, Luk{\'a}{\v{s}}},
journal={arXiv preprint arXiv:2506.18623},
year={2025}
}
```
## License
- **Source code**: MIT (see the [project’s GitHub repository](https://github.com/BUTSpeechFIT/DiariZen)).
- **Model weights**: CC BY-NC 4.0 (non-commercial).
- Rationale: some training datasets are research-only or non-commercial, so the released weights cannot be used commercially. |