BennyDaBall commited on
Commit
aad0a2d
·
verified ·
1 Parent(s): 6bf3f3f

Delete BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit

Browse files
Files changed (17) hide show
  1. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/Qwen3 Coder a3b 480b DISTILL LM STUDIO TOOL USE.preset.json +0 -61
  2. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/README.md +0 -82
  3. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/added_tokens.json +0 -28
  4. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/chat_template.jinja +0 -33
  5. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/config.json +0 -433
  6. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/generation_config.json +0 -12
  7. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/merges.txt +0 -0
  8. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model-00001-of-00004.safetensors +0 -3
  9. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model-00002-of-00004.safetensors +0 -3
  10. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model-00003-of-00004.safetensors +0 -3
  11. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model-00004-of-00004.safetensors +0 -3
  12. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model.safetensors.index.json +0 -0
  13. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/qwen3coder_tool_parser.py +0 -689
  14. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/special_tokens_map.json +0 -31
  15. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/tokenizer.json +0 -3
  16. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/tokenizer_config.json +0 -239
  17. BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/vocab.json +0 -0
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/Qwen3 Coder a3b 480b DISTILL LM STUDIO TOOL USE.preset.json DELETED
@@ -1,61 +0,0 @@
1
- {
2
- "identifier": "@local:qwen3-coder-a3b-480b-distill-lm-studio-tool-use",
3
- "name": "Qwen3 Coder a3b - 480b DISTILL - LM STUDIO (TOOL USE)",
4
- "changed": false,
5
- "operation": {
6
- "fields": [
7
- {
8
- "key": "llm.prediction.systemPrompt",
9
- "value": "TOOL USE RULES\n- If you decide to call a tool, output the tool call ONLY. Do not output any other text in the same message.\n- Do NOT print control tokens like <start_of_turn>user or <start_of_turn>model in your output.\n- After a successful tool call, WAIT for the tool result. Do not immediately call the tool again unless the previous call failed or returned nextThoughtNeeded=true and you have NEW parameters.\n- Never call the same tool twice in a row with identical parameters.\n- After summarizing a tool result once, STOP."
10
- },
11
- {
12
- "key": "llm.prediction.promptTemplate",
13
- "value": {
14
- "type": "jinja",
15
- "jinjaPromptTemplate": {
16
- "template": "{{ bos_token }}\n{%- if messages and messages[0]['role'] == 'system' -%}\n {%- set first_user_prefix = messages[0]['content'] ~ '\\n\\n' -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = '' -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- set role = 'model' if message['role'] == 'assistant' else message['role'] -%}\n {{ '<start_of_turn>' ~ role ~ '\\n' ~ (first_user_prefix if loop.first else '') }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- elif item['type'] == 'tool_call' -%}\n ```tool_code\n {{ item['code'] | trim }}\n ```\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception('Invalid content type') }}\n {%- endif -%}\n {{ '<end_of_turn>\\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt and (loop_messages | length == 0 or loop_messages[-1]['role'] == 'user') -%}\n {{ '<start_of_turn>model\\n' }}\n{%- endif -%}"
17
- },
18
- "stopStrings": [
19
- "<end_of_turn>",
20
- "<start_of_turn>user",
21
- "<start_of_turn>model",
22
- "<start_of_turn>tool"
23
- ],
24
- "manualPromptTemplate": {
25
- "beforeSystem": "<|im_start|>system\n",
26
- "afterSystem": "<|im_end|>\n",
27
- "beforeUser": "<|im_start|>user\n",
28
- "afterUser": "<|im_end|>\n",
29
- "beforeAssistant": "<|im_start|>assistant\n",
30
- "afterAssistant": "<|im_end|>\n"
31
- }
32
- }
33
- },
34
- {
35
- "key": "llm.prediction.topPSampling",
36
- "value": {
37
- "checked": true,
38
- "value": 0.8
39
- }
40
- },
41
- {
42
- "key": "llm.prediction.topKSampling",
43
- "value": 20
44
- },
45
- {
46
- "key": "llm.prediction.temperature",
47
- "value": 0.7
48
- },
49
- {
50
- "key": "llm.prediction.repeatPenalty",
51
- "value": {
52
- "checked": true,
53
- "value": 1.05
54
- }
55
- }
56
- ]
57
- },
58
- "load": {
59
- "fields": []
60
- }
61
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/README.md DELETED
@@ -1,82 +0,0 @@
1
- # BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2 - MLX 4-bit Quantization
2
-
3
- A massive and gentlemanly thank you to the original author **[BasedBase](https://huggingface.co/BasedBase)** for creating this incredible model. This is a 4-bit quantized version of the original [Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32](https://huggingface.co/BasedBase/Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-Fp32) model, optimized for Apple Silicon with MLX.
4
-
5
- All of my additions and modifications are detailed below. The original, highly-detailed model card from `BasedBase` can be found further down this page.
6
-
7
- ---
8
-
9
- ## My Contributions & Modifications
10
-
11
- ### MLX Quantization
12
-
13
- This version of the model has been quantized to **4-bit precision** using the MLX framework, making it incredibly efficient to run on Apple Silicon devices.
14
-
15
- - **Framework:** MLX
16
- - **Quantization:** 4-bit
17
- - **Performance:** Blazing fast! From my limited testing, you can expect speeds of **70-90 tokens per second** on an M4 Pro Mac.
18
-
19
- ### LM Studio Configuration & A Little Hackery...
20
-
21
- To get this model purring perfectly with tool-calling in LM Studio, a little creative problem-solving was required.
22
-
23
- > I'm not a big Qwen guy, so I re-used a prompt template I knew worked with my last Gemma 3 MLX quant and I adapted it. Hey, if it works, it works! 😉
24
-
25
- This workaround involved modifying the `.jinja` prompt template to ensure native tool-calling compatibility. Because of this, a few extra steps are needed for optimal performance:
26
-
27
- - **Additional Stop Strings:** Custom stop strings are necessary to prevent the model from generating unwanted text.
28
- - **Reinforcing System Prompt:** A specific system prompt helps guide the model's behavior.
29
-
30
- To make your life easier, I've included an **LM Studio preset** (`.preset.json` file) in this repository. This preset includes the correct stop strings and a well-tuned sampling/generation configuration. Just load it up, and you're good to go!
31
-
32
- ---
33
- ---
34
-
35
- ## Original Model Card from BasedBase
36
-
37
- *(The following is the original information provided by the model's creator.)*
38
-
39
- ### Model Description
40
-
41
- This model is a distilled version of **`Qwen/Qwen3-Coder-30B-A3B-Instruct`** designed to achieve coding and reasoning capabilities approaching those of a much larger teacher model.
42
-
43
- It is the result of applying a LoRA made via a SVD distillation pipeline, and then merging those weights into the base model. The core of this process was to transfer the nuanced knowledge from a **62-layer, 160-expert teacher model** into the more efficient **48-layer, 128-expert architecture** of the `Qwen3-Coder-30b-a3b` student model.
44
-
45
- The primary goal was to significantly enhance performance on **complex coding tasks**, where the specialized knowledge of Mixture-of-Experts (MoE) layers is critical.
46
-
47
- ### The Distillation Methodology
48
-
49
- This model was not trained in a conventional sense. Instead, it was created using a layer-by-layer distillation process implemented in the `SVD-based` script. This pipeline was designed to ensure maximum precision and knowledge transfer.
50
-
51
- #### Core Components
52
-
53
- * **Teacher Model:** 'Qwen/Qwen3-Coder-480B-A35B-Instruct'.
54
- * **Student Model:** `Qwen/Qwen3-Coder-30B-A3B-Instruct`.
55
- * **LoRA Rank:** A high rank of **`r=2048`** was used for all modules to capture a very high degree of information from the teacher.
56
-
57
- #### The Distillation Pipeline
58
-
59
- For each corresponding layer in the student and teacher, the following pipeline was executed:
60
-
61
- 1. **Spherical Linear Interpolation (SLERP):** For layers that fall between two teacher layers, SLERP was used to create a smooth, geometrically sound interpolation of the teacher's weights. This avoids the pitfalls of simple linear averaging.
62
-
63
- 2. **Singular Value Decomposition (SVD) Projection:** The core of the distillation. The (potentially blended) teacher layer's weight matrix was decomposed into its fundamental components (`U`, `S`, `V`). The **top 2048** most important components were selected and then reconstructed to fit the student layer's smaller dimensions. This high-rank projection ensures maximum fidelity.
64
-
65
- 3. **Procrustes Analysis:** After projection, the newly created "synthetic" tensor was optimally rotated in high-dimensional space to perfectly align with the student's original pre-trained tensor. This minimizes the "distance" between them before calculating the difference.
66
-
67
- 4. **DARE (Drop and Rescale):** The difference tensor (`Distilled - Aligned Student`) was then purified using DARE. This process drops a significant percentage of the lowest-magnitude values (noise) and rescales the remaining important differences, creating a clean signal for the final LoRA.
68
-
69
- #### Mixture-of-Experts (MoE) Distillation
70
-
71
- The standout feature of this process is the full distillation of the MoE layers, which are critical for complex reasoning.
72
-
73
- * **Expert Fingerprinting & Clustering:** To map the 160 teacher experts to the 128 student experts, each teacher expert was "fingerprinted." **K-Means clustering** was then used to group these 160 fingerprints into 128 distinct clusters.
74
- * **Expert-to-Expert Distillation:** Each of the student's 128 experts was then distilled from a weighted blend of the teacher experts assigned to its cluster. This ensures the specialized knowledge (e.g., recursion, API usage, security patterns) is transferred.
75
- * **Router Gate Distillation:** The main MoE router gate, which decides which expert to use for a given token, was also distilled to preserve the teacher's intelligent routing logic.
76
-
77
- ### Intended Use
78
-
79
- This model is intended for **code generation**. It should be better at tasks that require understanding complex logic, algorithms, and software architecture.
80
-
81
- * **Primary Use:** Code generation, refactoring, explanation (although since its an instruct it may not be perfect for explaining things), and debugging.
82
- * **Out of Scope:** This is not a general-purpose conversational chatbot. While it can follow instructions, its knowledge is specialized for programming tasks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/added_tokens.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "</think>": 151668,
3
- "</tool_call>": 151658,
4
- "</tool_response>": 151666,
5
- "<think>": 151667,
6
- "<tool_call>": 151657,
7
- "<tool_response>": 151665,
8
- "<|box_end|>": 151649,
9
- "<|box_start|>": 151648,
10
- "<|endoftext|>": 151643,
11
- "<|file_sep|>": 151664,
12
- "<|fim_middle|>": 151660,
13
- "<|fim_pad|>": 151662,
14
- "<|fim_prefix|>": 151659,
15
- "<|fim_suffix|>": 151661,
16
- "<|im_end|>": 151645,
17
- "<|im_start|>": 151644,
18
- "<|image_pad|>": 151655,
19
- "<|object_ref_end|>": 151647,
20
- "<|object_ref_start|>": 151646,
21
- "<|quad_end|>": 151651,
22
- "<|quad_start|>": 151650,
23
- "<|repo_name|>": 151663,
24
- "<|video_pad|>": 151656,
25
- "<|vision_end|>": 151653,
26
- "<|vision_pad|>": 151654,
27
- "<|vision_start|>": 151652
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/chat_template.jinja DELETED
@@ -1,33 +0,0 @@
1
- {{ bos_token }}
2
- {%- if messages and messages[0]['role'] == 'system' -%}
3
- {%- set first_user_prefix = messages[0]['content'] ~ '\n\n' -%}
4
- {%- set loop_messages = messages[1:] -%}
5
- {%- else -%}
6
- {%- set first_user_prefix = '' -%}
7
- {%- set loop_messages = messages -%}
8
- {%- endif -%}
9
- {%- for message in loop_messages -%}
10
- {%- set role = 'model' if message['role'] == 'assistant' else message['role'] -%}
11
- {{ '<start_of_turn>' ~ role ~ '\n' ~ (first_user_prefix if loop.first else '') }}
12
- {%- if message['content'] is string -%}
13
- {{ message['content'] | trim }}
14
- {%- elif message['content'] is iterable -%}
15
- {%- for item in message['content'] -%}
16
- {%- if item['type'] == 'image' -%}
17
- {{ '<start_of_image>' }}
18
- {%- elif item['type'] == 'text' -%}
19
- {{ item['text'] | trim }}
20
- {%- elif item['type'] == 'tool_call' -%}
21
- ```tool_code
22
- {{ item['code'] | trim }}
23
- ```
24
- {%- endif -%}
25
- {%- endfor -%}
26
- {%- else -%}
27
- {{ raise_exception('Invalid content type') }}
28
- {%- endif -%}
29
- {{ '<end_of_turn>\n' }}
30
- {%- endfor -%}
31
- {%- if add_generation_prompt and (loop_messages | length == 0 or loop_messages[-1]['role'] == 'user') -%}
32
- {{ '<start_of_turn>model\n' }}
33
- {%- endif -%}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/config.json DELETED
@@ -1,433 +0,0 @@
1
- {
2
- "architectures": [
3
- "Qwen3MoeForCausalLM"
4
- ],
5
- "attention_dropout": 0.0,
6
- "decoder_sparse_step": 1,
7
- "eos_token_id": 151645,
8
- "head_dim": 128,
9
- "hidden_act": "silu",
10
- "hidden_size": 2048,
11
- "initializer_range": 0.02,
12
- "intermediate_size": 5472,
13
- "max_position_embeddings": 262144,
14
- "max_window_layers": 28,
15
- "mlp_only_layers": [],
16
- "model_type": "qwen3_moe",
17
- "moe_intermediate_size": 768,
18
- "norm_topk_prob": true,
19
- "num_attention_heads": 32,
20
- "num_experts": 128,
21
- "num_experts_per_tok": 8,
22
- "num_hidden_layers": 48,
23
- "num_key_value_heads": 4,
24
- "output_router_logits": false,
25
- "qkv_bias": false,
26
- "quantization": {
27
- "group_size": 32,
28
- "bits": 4,
29
- "mode": "affine",
30
- "model.layers.0.mlp.gate": {
31
- "group_size": 64,
32
- "bits": 8
33
- },
34
- "model.layers.1.mlp.gate": {
35
- "group_size": 64,
36
- "bits": 8
37
- },
38
- "model.layers.2.mlp.gate": {
39
- "group_size": 64,
40
- "bits": 8
41
- },
42
- "model.layers.3.mlp.gate": {
43
- "group_size": 64,
44
- "bits": 8
45
- },
46
- "model.layers.4.mlp.gate": {
47
- "group_size": 64,
48
- "bits": 8
49
- },
50
- "model.layers.5.mlp.gate": {
51
- "group_size": 64,
52
- "bits": 8
53
- },
54
- "model.layers.6.mlp.gate": {
55
- "group_size": 64,
56
- "bits": 8
57
- },
58
- "model.layers.7.mlp.gate": {
59
- "group_size": 64,
60
- "bits": 8
61
- },
62
- "model.layers.8.mlp.gate": {
63
- "group_size": 64,
64
- "bits": 8
65
- },
66
- "model.layers.9.mlp.gate": {
67
- "group_size": 64,
68
- "bits": 8
69
- },
70
- "model.layers.10.mlp.gate": {
71
- "group_size": 64,
72
- "bits": 8
73
- },
74
- "model.layers.11.mlp.gate": {
75
- "group_size": 64,
76
- "bits": 8
77
- },
78
- "model.layers.12.mlp.gate": {
79
- "group_size": 64,
80
- "bits": 8
81
- },
82
- "model.layers.13.mlp.gate": {
83
- "group_size": 64,
84
- "bits": 8
85
- },
86
- "model.layers.14.mlp.gate": {
87
- "group_size": 64,
88
- "bits": 8
89
- },
90
- "model.layers.15.mlp.gate": {
91
- "group_size": 64,
92
- "bits": 8
93
- },
94
- "model.layers.16.mlp.gate": {
95
- "group_size": 64,
96
- "bits": 8
97
- },
98
- "model.layers.17.mlp.gate": {
99
- "group_size": 64,
100
- "bits": 8
101
- },
102
- "model.layers.18.mlp.gate": {
103
- "group_size": 64,
104
- "bits": 8
105
- },
106
- "model.layers.19.mlp.gate": {
107
- "group_size": 64,
108
- "bits": 8
109
- },
110
- "model.layers.20.mlp.gate": {
111
- "group_size": 64,
112
- "bits": 8
113
- },
114
- "model.layers.21.mlp.gate": {
115
- "group_size": 64,
116
- "bits": 8
117
- },
118
- "model.layers.22.mlp.gate": {
119
- "group_size": 64,
120
- "bits": 8
121
- },
122
- "model.layers.23.mlp.gate": {
123
- "group_size": 64,
124
- "bits": 8
125
- },
126
- "model.layers.24.mlp.gate": {
127
- "group_size": 64,
128
- "bits": 8
129
- },
130
- "model.layers.25.mlp.gate": {
131
- "group_size": 64,
132
- "bits": 8
133
- },
134
- "model.layers.26.mlp.gate": {
135
- "group_size": 64,
136
- "bits": 8
137
- },
138
- "model.layers.27.mlp.gate": {
139
- "group_size": 64,
140
- "bits": 8
141
- },
142
- "model.layers.28.mlp.gate": {
143
- "group_size": 64,
144
- "bits": 8
145
- },
146
- "model.layers.29.mlp.gate": {
147
- "group_size": 64,
148
- "bits": 8
149
- },
150
- "model.layers.30.mlp.gate": {
151
- "group_size": 64,
152
- "bits": 8
153
- },
154
- "model.layers.31.mlp.gate": {
155
- "group_size": 64,
156
- "bits": 8
157
- },
158
- "model.layers.32.mlp.gate": {
159
- "group_size": 64,
160
- "bits": 8
161
- },
162
- "model.layers.33.mlp.gate": {
163
- "group_size": 64,
164
- "bits": 8
165
- },
166
- "model.layers.34.mlp.gate": {
167
- "group_size": 64,
168
- "bits": 8
169
- },
170
- "model.layers.35.mlp.gate": {
171
- "group_size": 64,
172
- "bits": 8
173
- },
174
- "model.layers.36.mlp.gate": {
175
- "group_size": 64,
176
- "bits": 8
177
- },
178
- "model.layers.37.mlp.gate": {
179
- "group_size": 64,
180
- "bits": 8
181
- },
182
- "model.layers.38.mlp.gate": {
183
- "group_size": 64,
184
- "bits": 8
185
- },
186
- "model.layers.39.mlp.gate": {
187
- "group_size": 64,
188
- "bits": 8
189
- },
190
- "model.layers.40.mlp.gate": {
191
- "group_size": 64,
192
- "bits": 8
193
- },
194
- "model.layers.41.mlp.gate": {
195
- "group_size": 64,
196
- "bits": 8
197
- },
198
- "model.layers.42.mlp.gate": {
199
- "group_size": 64,
200
- "bits": 8
201
- },
202
- "model.layers.43.mlp.gate": {
203
- "group_size": 64,
204
- "bits": 8
205
- },
206
- "model.layers.44.mlp.gate": {
207
- "group_size": 64,
208
- "bits": 8
209
- },
210
- "model.layers.45.mlp.gate": {
211
- "group_size": 64,
212
- "bits": 8
213
- },
214
- "model.layers.46.mlp.gate": {
215
- "group_size": 64,
216
- "bits": 8
217
- },
218
- "model.layers.47.mlp.gate": {
219
- "group_size": 64,
220
- "bits": 8
221
- }
222
- },
223
- "quantization_config": {
224
- "group_size": 32,
225
- "bits": 4,
226
- "mode": "affine",
227
- "model.layers.0.mlp.gate": {
228
- "group_size": 64,
229
- "bits": 8
230
- },
231
- "model.layers.1.mlp.gate": {
232
- "group_size": 64,
233
- "bits": 8
234
- },
235
- "model.layers.2.mlp.gate": {
236
- "group_size": 64,
237
- "bits": 8
238
- },
239
- "model.layers.3.mlp.gate": {
240
- "group_size": 64,
241
- "bits": 8
242
- },
243
- "model.layers.4.mlp.gate": {
244
- "group_size": 64,
245
- "bits": 8
246
- },
247
- "model.layers.5.mlp.gate": {
248
- "group_size": 64,
249
- "bits": 8
250
- },
251
- "model.layers.6.mlp.gate": {
252
- "group_size": 64,
253
- "bits": 8
254
- },
255
- "model.layers.7.mlp.gate": {
256
- "group_size": 64,
257
- "bits": 8
258
- },
259
- "model.layers.8.mlp.gate": {
260
- "group_size": 64,
261
- "bits": 8
262
- },
263
- "model.layers.9.mlp.gate": {
264
- "group_size": 64,
265
- "bits": 8
266
- },
267
- "model.layers.10.mlp.gate": {
268
- "group_size": 64,
269
- "bits": 8
270
- },
271
- "model.layers.11.mlp.gate": {
272
- "group_size": 64,
273
- "bits": 8
274
- },
275
- "model.layers.12.mlp.gate": {
276
- "group_size": 64,
277
- "bits": 8
278
- },
279
- "model.layers.13.mlp.gate": {
280
- "group_size": 64,
281
- "bits": 8
282
- },
283
- "model.layers.14.mlp.gate": {
284
- "group_size": 64,
285
- "bits": 8
286
- },
287
- "model.layers.15.mlp.gate": {
288
- "group_size": 64,
289
- "bits": 8
290
- },
291
- "model.layers.16.mlp.gate": {
292
- "group_size": 64,
293
- "bits": 8
294
- },
295
- "model.layers.17.mlp.gate": {
296
- "group_size": 64,
297
- "bits": 8
298
- },
299
- "model.layers.18.mlp.gate": {
300
- "group_size": 64,
301
- "bits": 8
302
- },
303
- "model.layers.19.mlp.gate": {
304
- "group_size": 64,
305
- "bits": 8
306
- },
307
- "model.layers.20.mlp.gate": {
308
- "group_size": 64,
309
- "bits": 8
310
- },
311
- "model.layers.21.mlp.gate": {
312
- "group_size": 64,
313
- "bits": 8
314
- },
315
- "model.layers.22.mlp.gate": {
316
- "group_size": 64,
317
- "bits": 8
318
- },
319
- "model.layers.23.mlp.gate": {
320
- "group_size": 64,
321
- "bits": 8
322
- },
323
- "model.layers.24.mlp.gate": {
324
- "group_size": 64,
325
- "bits": 8
326
- },
327
- "model.layers.25.mlp.gate": {
328
- "group_size": 64,
329
- "bits": 8
330
- },
331
- "model.layers.26.mlp.gate": {
332
- "group_size": 64,
333
- "bits": 8
334
- },
335
- "model.layers.27.mlp.gate": {
336
- "group_size": 64,
337
- "bits": 8
338
- },
339
- "model.layers.28.mlp.gate": {
340
- "group_size": 64,
341
- "bits": 8
342
- },
343
- "model.layers.29.mlp.gate": {
344
- "group_size": 64,
345
- "bits": 8
346
- },
347
- "model.layers.30.mlp.gate": {
348
- "group_size": 64,
349
- "bits": 8
350
- },
351
- "model.layers.31.mlp.gate": {
352
- "group_size": 64,
353
- "bits": 8
354
- },
355
- "model.layers.32.mlp.gate": {
356
- "group_size": 64,
357
- "bits": 8
358
- },
359
- "model.layers.33.mlp.gate": {
360
- "group_size": 64,
361
- "bits": 8
362
- },
363
- "model.layers.34.mlp.gate": {
364
- "group_size": 64,
365
- "bits": 8
366
- },
367
- "model.layers.35.mlp.gate": {
368
- "group_size": 64,
369
- "bits": 8
370
- },
371
- "model.layers.36.mlp.gate": {
372
- "group_size": 64,
373
- "bits": 8
374
- },
375
- "model.layers.37.mlp.gate": {
376
- "group_size": 64,
377
- "bits": 8
378
- },
379
- "model.layers.38.mlp.gate": {
380
- "group_size": 64,
381
- "bits": 8
382
- },
383
- "model.layers.39.mlp.gate": {
384
- "group_size": 64,
385
- "bits": 8
386
- },
387
- "model.layers.40.mlp.gate": {
388
- "group_size": 64,
389
- "bits": 8
390
- },
391
- "model.layers.41.mlp.gate": {
392
- "group_size": 64,
393
- "bits": 8
394
- },
395
- "model.layers.42.mlp.gate": {
396
- "group_size": 64,
397
- "bits": 8
398
- },
399
- "model.layers.43.mlp.gate": {
400
- "group_size": 64,
401
- "bits": 8
402
- },
403
- "model.layers.44.mlp.gate": {
404
- "group_size": 64,
405
- "bits": 8
406
- },
407
- "model.layers.45.mlp.gate": {
408
- "group_size": 64,
409
- "bits": 8
410
- },
411
- "model.layers.46.mlp.gate": {
412
- "group_size": 64,
413
- "bits": 8
414
- },
415
- "model.layers.47.mlp.gate": {
416
- "group_size": 64,
417
- "bits": 8
418
- }
419
- },
420
- "rms_norm_eps": 1e-06,
421
- "rope_scaling": null,
422
- "rope_theta": 10000000,
423
- "router_aux_loss_coef": 0.0,
424
- "shared_expert_intermediate_size": 0,
425
- "sliding_window": null,
426
- "tie_word_embeddings": false,
427
- "torch_dtype": "bfloat16",
428
- "transformers_version": "4.52.3",
429
- "use_cache": true,
430
- "use_qk_norm": true,
431
- "use_sliding_window": false,
432
- "vocab_size": 151936
433
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/generation_config.json DELETED
@@ -1,12 +0,0 @@
1
- {
2
- "pad_token_id": 151643,
3
- "do_sample": true,
4
- "eos_token_id": [
5
- 151645,
6
- 151643
7
- ],
8
- "repetition_penalty": 1.05,
9
- "temperature": 0.7,
10
- "top_p": 0.8,
11
- "top_k": 20
12
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model-00001-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4fb65aa867a695472c5e167d484332cdfcd6053553f36dc476c92665108c31a9
3
- size 5271030693
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model-00002-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b838beb2bf7d79a16f8dccec9e5a4f7f5097a39369611fe043d55d60469e2545
3
- size 5316125765
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model-00003-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b4a4383af06ad95c82f3c00400042bfe26a33551016851e2b3278562d2389d52
3
- size 5328211659
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model-00004-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:08b8bedf6e8d4c508afb7f00950cf8bab348c1d432cb807c01b8a01f1f86c8a8
3
- size 3173162067
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/model.safetensors.index.json DELETED
The diff for this file is too large to render. See raw diff
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/qwen3coder_tool_parser.py DELETED
@@ -1,689 +0,0 @@
1
- # SPDX-License-Identifier: Apache-2.0
2
- # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
- import ast
4
- import json
5
- import uuid
6
- from collections.abc import Sequence
7
- from typing import Any, List, Optional, Union
8
-
9
- import regex as re
10
-
11
- from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
12
- ChatCompletionToolsParam,
13
- DeltaFunctionCall, DeltaMessage,
14
- DeltaToolCall,
15
- ExtractedToolCallInformation,
16
- FunctionCall, ToolCall)
17
- from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
18
- ToolParser, ToolParserManager)
19
- from vllm.logger import init_logger
20
- from vllm.transformers_utils.tokenizer import AnyTokenizer
21
-
22
- logger = init_logger(__name__)
23
-
24
-
25
- @ToolParserManager.register_module("qwen3_coder")
26
- class Qwen3CoderToolParser(ToolParser):
27
-
28
- def __init__(self, tokenizer: AnyTokenizer):
29
- super().__init__(tokenizer)
30
-
31
- self.current_tool_name_sent: bool = False
32
- self.prev_tool_call_arr: list[dict] = []
33
- self.current_tool_id: int = -1
34
- self.streamed_args_for_tool: list[str] = []
35
-
36
- # Sentinel tokens for streaming mode
37
- self.tool_call_start_token: str = "<tool_call>"
38
- self.tool_call_end_token: str = "</tool_call>"
39
- self.tool_call_prefix: str = "<function="
40
- self.function_end_token: str = "</function>"
41
- self.parameter_prefix: str = "<parameter="
42
- self.parameter_end_token: str = "</parameter>"
43
- self.is_tool_call_started: bool = False
44
- self.failed_count: int = 0
45
-
46
- # Enhanced streaming state - reset for each new message
47
- self._reset_streaming_state()
48
-
49
- # Regex patterns
50
- self.tool_call_complete_regex = re.compile(
51
- r"<tool_call>(.*?)</tool_call>", re.DOTALL)
52
- self.tool_call_regex = re.compile(
53
- r"<tool_call>(.*?)</tool_call>|<tool_call>(.*?)$", re.DOTALL)
54
- self.tool_call_function_regex = re.compile(
55
- r"<function=(.*?)</function>|<function=(.*)$", re.DOTALL)
56
- self.tool_call_parameter_regex = re.compile(
57
- r"<parameter=(.*?)(?:</parameter>|(?=<parameter=)|(?=</function>)|$)",
58
- re.DOTALL)
59
-
60
- if not self.model_tokenizer:
61
- raise ValueError(
62
- "The model tokenizer must be passed to the ToolParser "
63
- "constructor during construction.")
64
-
65
- self.tool_call_start_token_id = self.vocab.get(
66
- self.tool_call_start_token)
67
- self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
68
-
69
- if self.tool_call_start_token_id is None or self.tool_call_end_token_id is None:
70
- raise RuntimeError(
71
- "Qwen3 XML Tool parser could not locate tool call start/end "
72
- "tokens in the tokenizer!")
73
-
74
- logger.info(
75
- f"vLLM Successfully import tool parser {self.__class__.__name__} !"
76
- )
77
-
78
- def _generate_tool_call_id(self) -> str:
79
- """Generate a unique tool call ID."""
80
- return f"call_{uuid.uuid4().hex[:24]}"
81
-
82
- def _reset_streaming_state(self):
83
- """Reset all streaming state."""
84
- self.current_tool_index = 0
85
- self.is_tool_call_started = False
86
- self.header_sent = False
87
- self.current_tool_id = None
88
- self.current_function_name = None
89
- self.current_param_name = None
90
- self.current_param_value = ""
91
- self.param_count = 0
92
- self.in_param = False
93
- self.in_function = False
94
- self.accumulated_text = ""
95
- self.json_started = False
96
- self.json_closed = False
97
- # Store accumulated parameters for type conversion
98
- self.accumulated_params = {}
99
- self.streaming_request = None
100
-
101
- def _get_arguments_config(
102
- self, func_name: str,
103
- tools: Optional[list[ChatCompletionToolsParam]]) -> dict:
104
- """Extract argument configuration for a function."""
105
- if tools is None:
106
- return {}
107
- for config in tools:
108
- if not hasattr(config, "type") or not (hasattr(
109
- config, "function") and hasattr(config.function, "name")):
110
- continue
111
- if config.type == "function" and config.function.name == func_name:
112
- if not hasattr(config.function, "parameters"):
113
- return {}
114
- params = config.function.parameters
115
- if isinstance(params, dict) and "properties" in params:
116
- return params["properties"]
117
- elif isinstance(params, dict):
118
- return params
119
- else:
120
- return {}
121
- logger.warning(f"Tool '{func_name}' is not defined in the tools list.")
122
- return {}
123
-
124
- def _convert_param_value(self, param_value: str, param_name: str,
125
- param_config: dict, func_name: str) -> Any:
126
- """Convert parameter value based on its type in the schema."""
127
- # Handle null value for any type
128
- if param_value.lower() == "null":
129
- return None
130
-
131
- if param_name not in param_config:
132
- if param_config != {}:
133
- logger.warning(
134
- f"Parsed parameter '{param_name}' is not defined in the tool "
135
- f"parameters for tool '{func_name}', directly returning the string value."
136
- )
137
- return param_value
138
-
139
- if isinstance(param_config[param_name],
140
- dict) and "type" in param_config[param_name]:
141
- param_type = str(param_config[param_name]["type"]).strip().lower()
142
- else:
143
- param_type = "string"
144
- if param_type in ["string", "str", "text", "varchar", "char", "enum"]:
145
- return param_value
146
- elif param_type.startswith("int") or param_type.startswith(
147
- "uint") or param_type.startswith(
148
- "long") or param_type.startswith(
149
- "short") or param_type.startswith("unsigned"):
150
- try:
151
- param_value = int(param_value)
152
- except:
153
- logger.warning(
154
- f"Parsed value '{param_value}' of parameter '{param_name}' is not an integer in tool "
155
- f"'{func_name}', degenerating to string.")
156
- return param_value
157
- elif param_type.startswith("num") or param_type.startswith("float"):
158
- try:
159
- float_param_value = float(param_value)
160
- param_value = float_param_value if float_param_value - int(
161
- float_param_value) != 0 else int(float_param_value)
162
- except:
163
- logger.warning(
164
- f"Parsed value '{param_value}' of parameter '{param_name}' is not a float in tool "
165
- f"'{func_name}', degenerating to string.")
166
- return param_value
167
- elif param_type in ["boolean", "bool", "binary"]:
168
- param_value = param_value.lower()
169
- if param_value not in ["true", "false"]:
170
- logger.warning(
171
- f"Parsed value '{param_value}' of parameter '{param_name}' is not a boolean (`true` of `false`) in tool '{func_name}', degenerating to false."
172
- )
173
- return param_value == "true"
174
- else:
175
- if param_type in ["object", "array", "arr"
176
- ] or param_type.startswith(
177
- "dict") or param_type.startswith("list"):
178
- try:
179
- param_value = json.loads(param_value)
180
- return param_value
181
- except:
182
- logger.warning(
183
- f"Parsed value '{param_value}' of parameter '{param_name}' cannot be parsed with json.loads in tool "
184
- f"'{func_name}', will try other methods to parse it.")
185
- try:
186
- param_value = ast.literal_eval(param_value) # safer
187
- except:
188
- logger.warning(
189
- f"Parsed value '{param_value}' of parameter '{param_name}' cannot be converted via Python `ast.literal_eval()` in tool '{func_name}', degenerating to string."
190
- )
191
- return param_value
192
-
193
- def _parse_xml_function_call(
194
- self, function_call_str: str,
195
- tools: Optional[list[ChatCompletionToolsParam]]
196
- ) -> Optional[ToolCall]:
197
-
198
- # Extract function name
199
- end_index = function_call_str.index(">")
200
- function_name = function_call_str[:end_index]
201
- param_config = self._get_arguments_config(function_name, tools)
202
- parameters = function_call_str[end_index + 1:]
203
- param_dict = {}
204
- for match_text in self.tool_call_parameter_regex.findall(parameters):
205
- idx = match_text.index(">")
206
- param_name = match_text[:idx]
207
- param_value = str(match_text[idx + 1:])
208
- # Remove prefix and trailing \n
209
- if param_value.startswith("\n"):
210
- param_value = param_value[1:]
211
- if param_value.endswith("\n"):
212
- param_value = param_value[:-1]
213
-
214
- param_dict[param_name] = self._convert_param_value(
215
- param_value, param_name, param_config, function_name)
216
- return ToolCall(
217
- type="function",
218
- function=FunctionCall(name=function_name,
219
- arguments=json.dumps(param_dict,
220
- ensure_ascii=False)),
221
- )
222
-
223
- def _get_function_calls(self, model_output: str) -> List[str]:
224
- # Find all tool calls
225
- matched_ranges = self.tool_call_regex.findall(model_output)
226
- raw_tool_calls = [
227
- match[0] if match[0] else match[1] for match in matched_ranges
228
- ]
229
-
230
- # Back-off strategy if no tool_call tags found
231
- if len(raw_tool_calls) == 0:
232
- raw_tool_calls = [model_output]
233
-
234
- raw_function_calls = []
235
- for tool_call in raw_tool_calls:
236
- raw_function_calls.extend(
237
- self.tool_call_function_regex.findall(tool_call))
238
-
239
- function_calls = [
240
- match[0] if match[0] else match[1] for match in raw_function_calls
241
- ]
242
- return function_calls
243
-
244
- def extract_tool_calls(
245
- self,
246
- model_output: str,
247
- request: ChatCompletionRequest,
248
- ) -> ExtractedToolCallInformation:
249
- # Quick check to avoid unnecessary processing
250
- if self.tool_call_prefix not in model_output:
251
- return ExtractedToolCallInformation(tools_called=False,
252
- tool_calls=[],
253
- content=model_output)
254
-
255
- try:
256
- function_calls = self._get_function_calls(model_output)
257
- if len(function_calls) == 0:
258
- return ExtractedToolCallInformation(tools_called=False,
259
- tool_calls=[],
260
- content=model_output)
261
-
262
- tool_calls = [
263
- self._parse_xml_function_call(function_call_str, request.tools)
264
- for function_call_str in function_calls
265
- ]
266
-
267
- # Populate prev_tool_call_arr for serving layer to set finish_reason
268
- self.prev_tool_call_arr.clear() # Clear previous calls
269
- for tool_call in tool_calls:
270
- if tool_call:
271
- self.prev_tool_call_arr.append({
272
- "name":
273
- tool_call.function.name,
274
- "arguments":
275
- tool_call.function.arguments,
276
- })
277
-
278
- # Extract content before tool calls
279
- content_index = model_output.find(self.tool_call_start_token)
280
- content_index = content_index if content_index >= 0 else model_output.find(
281
- self.tool_call_prefix)
282
- content = model_output[:content_index] # .rstrip()
283
-
284
- return ExtractedToolCallInformation(
285
- tools_called=(len(tool_calls) > 0),
286
- tool_calls=tool_calls,
287
- content=content if content else None,
288
- )
289
-
290
- except Exception:
291
- logger.exception("Error in extracting tool call from response.")
292
- return ExtractedToolCallInformation(tools_called=False,
293
- tool_calls=[],
294
- content=model_output)
295
-
296
- def extract_tool_calls_streaming(
297
- self,
298
- previous_text: str,
299
- current_text: str,
300
- delta_text: str,
301
- previous_token_ids: Sequence[int],
302
- current_token_ids: Sequence[int],
303
- delta_token_ids: Sequence[int],
304
- request: ChatCompletionRequest,
305
- ) -> Union[DeltaMessage, None]:
306
- # Store request for type conversion
307
- if not previous_text:
308
- self._reset_streaming_state()
309
- self.streaming_request = request
310
-
311
- # If no delta text, return None unless it's an EOS token after tool calls
312
- if not delta_text:
313
- # Check if this is an EOS token after all tool calls are complete
314
- # We check for tool calls in the text even if is_tool_call_started is False
315
- # because it might have been reset after processing all tools
316
- if delta_token_ids and self.tool_call_end_token_id not in delta_token_ids:
317
- # Count complete tool calls
318
- complete_calls = len(
319
- self.tool_call_complete_regex.findall(current_text))
320
-
321
- # If we have completed tool calls and populated prev_tool_call_arr
322
- if complete_calls > 0 and len(self.prev_tool_call_arr) > 0:
323
- # Check if all tool calls are closed
324
- open_calls = current_text.count(
325
- self.tool_call_start_token) - current_text.count(
326
- self.tool_call_end_token)
327
- if open_calls == 0:
328
- # Return empty delta message to allow finish_reason processing
329
- return DeltaMessage(content="")
330
- elif not self.is_tool_call_started and current_text:
331
- # This is a regular content response that's now complete
332
- return DeltaMessage(content="")
333
- return None
334
-
335
- # Update accumulated text
336
- self.accumulated_text = current_text
337
-
338
- # Check if we need to advance to next tool
339
- if self.json_closed and not self.in_function:
340
- # Check if this tool call has ended
341
- tool_ends = current_text.count(self.tool_call_end_token)
342
- if tool_ends > self.current_tool_index:
343
- # This tool has ended, advance to next
344
- self.current_tool_index += 1
345
- self.header_sent = False
346
- self.param_count = 0
347
- self.json_started = False
348
- self.json_closed = False
349
- self.accumulated_params = {}
350
-
351
- # Check if there are more tool calls
352
- tool_starts = current_text.count(self.tool_call_start_token)
353
- if self.current_tool_index >= tool_starts:
354
- # No more tool calls
355
- self.is_tool_call_started = False
356
- # Continue processing next tool
357
- return None
358
-
359
- # Handle normal content before tool calls
360
- if not self.is_tool_call_started:
361
- # Check if tool call is starting
362
- if self.tool_call_start_token_id in delta_token_ids or self.tool_call_start_token in delta_text:
363
- self.is_tool_call_started = True
364
- # Return any content before the tool call
365
- if self.tool_call_start_token in delta_text:
366
- content_before = delta_text[:delta_text.index(
367
- self.tool_call_start_token)]
368
- if content_before:
369
- return DeltaMessage(content=content_before)
370
- return None
371
- else:
372
- # Check if we're between tool calls - skip whitespace
373
- if current_text.rstrip().endswith(self.tool_call_end_token):
374
- # We just ended a tool call, skip whitespace
375
- if delta_text.strip() == "":
376
- return None
377
- # Normal content, no tool call
378
- return DeltaMessage(content=delta_text)
379
-
380
- # Check if we're between tool calls (waiting for next one)
381
- # Count tool calls we've seen vs processed
382
- tool_starts_count = current_text.count(self.tool_call_start_token)
383
- if self.current_tool_index >= tool_starts_count:
384
- # We're past all tool calls, shouldn't be here
385
- return None
386
-
387
- # We're in a tool call, find the current tool call portion
388
- # Need to find the correct tool call based on current_tool_index
389
- tool_starts = []
390
- idx = 0
391
- while True:
392
- idx = current_text.find(self.tool_call_start_token, idx)
393
- if idx == -1:
394
- break
395
- tool_starts.append(idx)
396
- idx += len(self.tool_call_start_token)
397
-
398
- if self.current_tool_index >= len(tool_starts):
399
- # No more tool calls to process yet
400
- return None
401
-
402
- tool_start_idx = tool_starts[self.current_tool_index]
403
- # Find where this tool call ends (or current position if not ended yet)
404
- tool_end_idx = current_text.find(self.tool_call_end_token,
405
- tool_start_idx)
406
- if tool_end_idx == -1:
407
- tool_text = current_text[tool_start_idx:]
408
- else:
409
- tool_text = current_text[tool_start_idx:tool_end_idx +
410
- len(self.tool_call_end_token)]
411
-
412
- # Looking for function header
413
- if not self.header_sent:
414
- if self.tool_call_prefix in tool_text:
415
- func_start = tool_text.find(self.tool_call_prefix) + len(
416
- self.tool_call_prefix)
417
- func_end = tool_text.find(">", func_start)
418
-
419
- if func_end != -1:
420
- # Found complete function name
421
- self.current_function_name = tool_text[func_start:func_end]
422
- self.current_tool_id = self._generate_tool_call_id()
423
- self.header_sent = True
424
- self.in_function = True
425
-
426
- # IMPORTANT: Add to prev_tool_call_arr immediately when we detect a tool call
427
- # This ensures finish_reason="tool_calls" even if parsing isn't complete
428
- already_added = any(
429
- tool.get("name") == self.current_function_name
430
- for tool in self.prev_tool_call_arr)
431
- if not already_added:
432
- self.prev_tool_call_arr.append({
433
- "name": self.current_function_name,
434
- "arguments":
435
- "{}", # Placeholder, will be updated later
436
- })
437
-
438
- # Send header with function info
439
- return DeltaMessage(tool_calls=[
440
- DeltaToolCall(
441
- index=self.current_tool_index,
442
- id=self.current_tool_id,
443
- function=DeltaFunctionCall(
444
- name=self.current_function_name, arguments=""),
445
- type="function",
446
- )
447
- ])
448
- return None
449
-
450
- # We've sent header, now handle function body
451
- if self.in_function:
452
- # Send opening brace if not sent yet
453
- if not self.json_started and self.parameter_prefix not in delta_text:
454
- self.json_started = True
455
- return DeltaMessage(tool_calls=[
456
- DeltaToolCall(
457
- index=self.current_tool_index,
458
- function=DeltaFunctionCall(arguments="{"),
459
- )
460
- ])
461
-
462
- # Make sure json_started is set if we're processing parameters
463
- if not self.json_started:
464
- self.json_started = True
465
-
466
- # Check for function end in accumulated text
467
- if not self.json_closed and self.function_end_token in tool_text:
468
- # Close JSON
469
- self.json_closed = True
470
-
471
- # Extract the complete tool call to update prev_tool_call_arr with final arguments
472
- # Find the function content
473
- func_start = tool_text.find(self.tool_call_prefix) + len(
474
- self.tool_call_prefix)
475
- func_content_end = tool_text.find(self.function_end_token,
476
- func_start)
477
- if func_content_end != -1:
478
- func_content = tool_text[func_start:func_content_end]
479
- # Parse to get the complete arguments
480
- try:
481
- parsed_tool = self._parse_xml_function_call(
482
- func_content, self.streaming_request.tools
483
- if self.streaming_request else None)
484
- if parsed_tool:
485
- # Update existing entry in prev_tool_call_arr with complete arguments
486
- for i, tool in enumerate(self.prev_tool_call_arr):
487
- if tool.get(
488
- "name") == parsed_tool.function.name:
489
- self.prev_tool_call_arr[i][
490
- "arguments"] = parsed_tool.function.arguments
491
- break
492
- except Exception:
493
- pass # Ignore parsing errors during streaming
494
-
495
- result = DeltaMessage(tool_calls=[
496
- DeltaToolCall(
497
- index=self.current_tool_index,
498
- function=DeltaFunctionCall(arguments="}"),
499
- )
500
- ])
501
-
502
- # Reset state for next tool
503
- self.in_function = False
504
- self.json_closed = True
505
- self.accumulated_params = {}
506
-
507
- return result
508
-
509
- # Look for parameters
510
- # Find all parameter starts
511
- param_starts = []
512
- idx = 0
513
- while True:
514
- idx = tool_text.find(self.parameter_prefix, idx)
515
- if idx == -1:
516
- break
517
- param_starts.append(idx)
518
- idx += len(self.parameter_prefix)
519
-
520
- # Check if we should start a new parameter
521
- if not self.in_param and self.param_count < len(param_starts):
522
-
523
- if len(param_starts) > self.param_count:
524
- # Process the next parameter
525
- param_idx = param_starts[self.param_count]
526
- param_start = param_idx + len(self.parameter_prefix)
527
- remaining = tool_text[param_start:]
528
-
529
- if ">" in remaining:
530
- # We have the complete parameter name
531
- name_end = remaining.find(">")
532
- self.current_param_name = remaining[:name_end]
533
-
534
- # Find the parameter value
535
- value_start = param_start + name_end + 1
536
- value_text = tool_text[value_start:]
537
- if value_text.startswith("\n"):
538
- value_text = value_text[1:]
539
-
540
- # Find where this parameter ends
541
- param_end_idx = value_text.find(
542
- self.parameter_end_token)
543
- if param_end_idx == -1:
544
- # No closing tag, look for next parameter or function end
545
- next_param_idx = value_text.find(
546
- self.parameter_prefix)
547
- func_end_idx = value_text.find(
548
- self.function_end_token)
549
-
550
- if next_param_idx != -1 and (func_end_idx == -1
551
- or next_param_idx
552
- < func_end_idx):
553
- param_end_idx = next_param_idx
554
- elif func_end_idx != -1:
555
- param_end_idx = func_end_idx
556
- else:
557
- # Neither found, check if tool call is complete
558
- if self.tool_call_end_token in tool_text:
559
- # Tool call is complete, so parameter must be complete too
560
- # Use all remaining text before function end as value
561
- param_end_idx = len(value_text)
562
- else:
563
- # Still streaming, wait for more content
564
- return None
565
-
566
- if param_end_idx != -1:
567
- # Complete parameter found
568
- param_value = value_text[:param_end_idx]
569
- if param_value.endswith("\n"):
570
- param_value = param_value[:-1]
571
-
572
- # Store raw value for later processing
573
- self.accumulated_params[
574
- self.current_param_name] = param_value
575
-
576
- # Get parameter configuration for type conversion
577
- param_config = self._get_arguments_config(
578
- self.current_function_name,
579
- self.streaming_request.tools
580
- if self.streaming_request else None)
581
-
582
- # Convert the parameter value to the appropriate type
583
- converted_value = self._convert_param_value(
584
- param_value, self.current_param_name,
585
- param_config, self.current_function_name)
586
-
587
- # Build JSON fragment based on the converted type
588
- # Use json.dumps to properly serialize the value
589
- serialized_value = json.dumps(converted_value,
590
- ensure_ascii=False)
591
-
592
- if self.param_count == 0:
593
- json_fragment = f'"{self.current_param_name}": {serialized_value}'
594
- else:
595
- json_fragment = f', "{self.current_param_name}": {serialized_value}'
596
-
597
- self.param_count += 1
598
-
599
- return DeltaMessage(tool_calls=[
600
- DeltaToolCall(
601
- index=self.current_tool_index,
602
- function=DeltaFunctionCall(
603
- arguments=json_fragment),
604
- )
605
- ])
606
-
607
- # Continue parameter value - Not used in the current implementation
608
- # since we process complete parameters above
609
- if self.in_param:
610
- if self.parameter_end_token in delta_text:
611
- # End of parameter
612
- end_idx = delta_text.find(self.parameter_end_token)
613
- value_chunk = delta_text[:end_idx]
614
-
615
- # Skip past > if at start
616
- if not self.current_param_value and ">" in value_chunk:
617
- gt_idx = value_chunk.find(">")
618
- value_chunk = value_chunk[gt_idx + 1:]
619
-
620
- if not self.current_param_value and value_chunk.startswith(
621
- "\n"):
622
- value_chunk = value_chunk[1:]
623
-
624
- # Store complete value
625
- full_value = self.current_param_value + value_chunk
626
- self.accumulated_params[
627
- self.current_param_name] = full_value
628
-
629
- # Get parameter configuration for type conversion
630
- param_config = self._get_arguments_config(
631
- self.current_function_name,
632
- self.streaming_request.tools
633
- if self.streaming_request else None)
634
-
635
- # Convert the parameter value to the appropriate type
636
- converted_value = self._convert_param_value(
637
- full_value, self.current_param_name, param_config,
638
- self.current_function_name)
639
-
640
- # Serialize the converted value
641
- serialized_value = json.dumps(converted_value,
642
- ensure_ascii=False)
643
-
644
- # Since we've been streaming the quoted version, we need to close it properly
645
- # This is complex - for now just complete the value
646
- self.in_param = False
647
- self.current_param_value = ""
648
-
649
- # Just close the current parameter string
650
- return DeltaMessage(tool_calls=[
651
- DeltaToolCall(
652
- index=self.current_tool_index,
653
- function=DeltaFunctionCall(
654
- arguments='"'), # Close the string quote
655
- )
656
- ])
657
- else:
658
- # Continue accumulating value
659
- value_chunk = delta_text
660
-
661
- # Handle first chunk after param name
662
- if not self.current_param_value and ">" in value_chunk:
663
- gt_idx = value_chunk.find(">")
664
- value_chunk = value_chunk[gt_idx + 1:]
665
-
666
- if not self.current_param_value and value_chunk.startswith(
667
- "\n"):
668
- value_chunk = value_chunk[1:]
669
-
670
- if value_chunk:
671
- # Stream the escaped delta
672
- prev_escaped = json.dumps(
673
- self.current_param_value, ensure_ascii=False
674
- )[1:-1] if self.current_param_value else ""
675
- self.current_param_value += value_chunk
676
- full_escaped = json.dumps(self.current_param_value,
677
- ensure_ascii=False)[1:-1]
678
- delta_escaped = full_escaped[len(prev_escaped):]
679
-
680
- if delta_escaped:
681
- return DeltaMessage(tool_calls=[
682
- DeltaToolCall(
683
- index=self.current_tool_index,
684
- function=DeltaFunctionCall(
685
- arguments=delta_escaped),
686
- )
687
- ])
688
-
689
- return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/special_tokens_map.json DELETED
@@ -1,31 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>",
5
- "<|object_ref_start|>",
6
- "<|object_ref_end|>",
7
- "<|box_start|>",
8
- "<|box_end|>",
9
- "<|quad_start|>",
10
- "<|quad_end|>",
11
- "<|vision_start|>",
12
- "<|vision_end|>",
13
- "<|vision_pad|>",
14
- "<|image_pad|>",
15
- "<|video_pad|>"
16
- ],
17
- "eos_token": {
18
- "content": "<|im_end|>",
19
- "lstrip": false,
20
- "normalized": false,
21
- "rstrip": false,
22
- "single_word": false
23
- },
24
- "pad_token": {
25
- "content": "<|endoftext|>",
26
- "lstrip": false,
27
- "normalized": false,
28
- "rstrip": false,
29
- "single_word": false
30
- }
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
- size 11422654
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/tokenizer_config.json DELETED
@@ -1,239 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_prefix_space": false,
4
- "added_tokens_decoder": {
5
- "151643": {
6
- "content": "<|endoftext|>",
7
- "lstrip": false,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false,
11
- "special": true
12
- },
13
- "151644": {
14
- "content": "<|im_start|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false,
19
- "special": true
20
- },
21
- "151645": {
22
- "content": "<|im_end|>",
23
- "lstrip": false,
24
- "normalized": false,
25
- "rstrip": false,
26
- "single_word": false,
27
- "special": true
28
- },
29
- "151646": {
30
- "content": "<|object_ref_start|>",
31
- "lstrip": false,
32
- "normalized": false,
33
- "rstrip": false,
34
- "single_word": false,
35
- "special": true
36
- },
37
- "151647": {
38
- "content": "<|object_ref_end|>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false,
43
- "special": true
44
- },
45
- "151648": {
46
- "content": "<|box_start|>",
47
- "lstrip": false,
48
- "normalized": false,
49
- "rstrip": false,
50
- "single_word": false,
51
- "special": true
52
- },
53
- "151649": {
54
- "content": "<|box_end|>",
55
- "lstrip": false,
56
- "normalized": false,
57
- "rstrip": false,
58
- "single_word": false,
59
- "special": true
60
- },
61
- "151650": {
62
- "content": "<|quad_start|>",
63
- "lstrip": false,
64
- "normalized": false,
65
- "rstrip": false,
66
- "single_word": false,
67
- "special": true
68
- },
69
- "151651": {
70
- "content": "<|quad_end|>",
71
- "lstrip": false,
72
- "normalized": false,
73
- "rstrip": false,
74
- "single_word": false,
75
- "special": true
76
- },
77
- "151652": {
78
- "content": "<|vision_start|>",
79
- "lstrip": false,
80
- "normalized": false,
81
- "rstrip": false,
82
- "single_word": false,
83
- "special": true
84
- },
85
- "151653": {
86
- "content": "<|vision_end|>",
87
- "lstrip": false,
88
- "normalized": false,
89
- "rstrip": false,
90
- "single_word": false,
91
- "special": true
92
- },
93
- "151654": {
94
- "content": "<|vision_pad|>",
95
- "lstrip": false,
96
- "normalized": false,
97
- "rstrip": false,
98
- "single_word": false,
99
- "special": true
100
- },
101
- "151655": {
102
- "content": "<|image_pad|>",
103
- "lstrip": false,
104
- "normalized": false,
105
- "rstrip": false,
106
- "single_word": false,
107
- "special": true
108
- },
109
- "151656": {
110
- "content": "<|video_pad|>",
111
- "lstrip": false,
112
- "normalized": false,
113
- "rstrip": false,
114
- "single_word": false,
115
- "special": true
116
- },
117
- "151657": {
118
- "content": "<tool_call>",
119
- "lstrip": false,
120
- "normalized": false,
121
- "rstrip": false,
122
- "single_word": false,
123
- "special": false
124
- },
125
- "151658": {
126
- "content": "</tool_call>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false,
131
- "special": false
132
- },
133
- "151659": {
134
- "content": "<|fim_prefix|>",
135
- "lstrip": false,
136
- "normalized": false,
137
- "rstrip": false,
138
- "single_word": false,
139
- "special": false
140
- },
141
- "151660": {
142
- "content": "<|fim_middle|>",
143
- "lstrip": false,
144
- "normalized": false,
145
- "rstrip": false,
146
- "single_word": false,
147
- "special": false
148
- },
149
- "151661": {
150
- "content": "<|fim_suffix|>",
151
- "lstrip": false,
152
- "normalized": false,
153
- "rstrip": false,
154
- "single_word": false,
155
- "special": false
156
- },
157
- "151662": {
158
- "content": "<|fim_pad|>",
159
- "lstrip": false,
160
- "normalized": false,
161
- "rstrip": false,
162
- "single_word": false,
163
- "special": false
164
- },
165
- "151663": {
166
- "content": "<|repo_name|>",
167
- "lstrip": false,
168
- "normalized": false,
169
- "rstrip": false,
170
- "single_word": false,
171
- "special": false
172
- },
173
- "151664": {
174
- "content": "<|file_sep|>",
175
- "lstrip": false,
176
- "normalized": false,
177
- "rstrip": false,
178
- "single_word": false,
179
- "special": false
180
- },
181
- "151665": {
182
- "content": "<tool_response>",
183
- "lstrip": false,
184
- "normalized": false,
185
- "rstrip": false,
186
- "single_word": false,
187
- "special": false
188
- },
189
- "151666": {
190
- "content": "</tool_response>",
191
- "lstrip": false,
192
- "normalized": false,
193
- "rstrip": false,
194
- "single_word": false,
195
- "special": false
196
- },
197
- "151667": {
198
- "content": "<think>",
199
- "lstrip": false,
200
- "normalized": false,
201
- "rstrip": false,
202
- "single_word": false,
203
- "special": false
204
- },
205
- "151668": {
206
- "content": "</think>",
207
- "lstrip": false,
208
- "normalized": false,
209
- "rstrip": false,
210
- "single_word": false,
211
- "special": false
212
- }
213
- },
214
- "additional_special_tokens": [
215
- "<|im_start|>",
216
- "<|im_end|>",
217
- "<|object_ref_start|>",
218
- "<|object_ref_end|>",
219
- "<|box_start|>",
220
- "<|box_end|>",
221
- "<|quad_start|>",
222
- "<|quad_end|>",
223
- "<|vision_start|>",
224
- "<|vision_end|>",
225
- "<|vision_pad|>",
226
- "<|image_pad|>",
227
- "<|video_pad|>"
228
- ],
229
- "bos_token": null,
230
- "clean_up_tokenization_spaces": false,
231
- "eos_token": "<|im_end|>",
232
- "errors": "replace",
233
- "extra_special_tokens": {},
234
- "model_max_length": 1048576,
235
- "pad_token": "<|endoftext|>",
236
- "split_special_tokens": false,
237
- "tokenizer_class": "Qwen2Tokenizer",
238
- "unk_token": null
239
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BasedBase-Qwen3-Coder-30B-A3B-Instruct-480B-Distill-V2-MLX-4bit/vocab.json DELETED
The diff for this file is too large to render. See raw diff