--- tags: - ColBERT - PyLate - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:256886 - loss:Contrastive base_model: jinaai/jina-colbert-v2 pipeline_tag: sentence-similarity library_name: PyLate --- # PyLate model based on jinaai/jina-colbert-v2 This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [jinaai/jina-colbert-v2](https://huggingface.co/jinaai/jina-colbert-v2). It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. ## Model Details ### Model Description - **Model Type:** PyLate model - **Base model:** [jinaai/jina-colbert-v2](https://huggingface.co/jinaai/jina-colbert-v2) - **Document Length:** 300 tokens - **Query Length:** 32 tokens - **Output Dimensionality:** 128 tokens - **Similarity Function:** MaxSim ### Model Sources - **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/) - **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate) - **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate) ### Full Model Architecture ``` ColBERT( (0): Transformer({'max_seq_length': 299, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) (1): Dense({'in_features': 1024, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False}) ) ``` ## Usage First install the PyLate library: ```bash pip install -U pylate ``` ### Retrieval Use this model with PyLate to index and retrieve documents. The index uses [FastPLAID](https://github.com/lightonai/fast-plaid) for efficient similarity search. #### Indexing documents Load the ColBERT model and initialize the PLAID index, then encode and index your documents: ```python from pylate import indexes, models, retrieve # Step 1: Load the ColBERT model model = models.ColBERT( model_name_or_path="pylate_model_id", ) # Step 2: Initialize the PLAID index index = indexes.PLAID( index_folder="pylate-index", index_name="index", override=True, # This overwrites the existing index if any ) # Step 3: Encode the documents documents_ids = ["1", "2", "3"] documents = ["document 1 text", "document 2 text", "document 3 text"] documents_embeddings = model.encode( documents, batch_size=32, is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries show_progress_bar=True, ) # Step 4: Add document embeddings to the index by providing embeddings and corresponding ids index.add_documents( documents_ids=documents_ids, documents_embeddings=documents_embeddings, ) ``` Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it: ```python # To load an index, simply instantiate it with the correct folder/name and without overriding it index = indexes.PLAID( index_folder="pylate-index", index_name="index", ) ``` #### Retrieving top-k documents for queries Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores: ```python # Step 1: Initialize the ColBERT retriever retriever = retrieve.ColBERT(index=index) # Step 2: Encode the queries queries_embeddings = model.encode( ["query for document 3", "query for document 1"], batch_size=32, is_query=True, # # Ensure that it is set to False to indicate that these are queries show_progress_bar=True, ) # Step 3: Retrieve top-k documents scores = retriever.retrieve( queries_embeddings=queries_embeddings, k=10, # Retrieve the top 10 matches for each query ) ``` ### Reranking If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank: ```python from pylate import rank, models queries = [ "query A", "query B", ] documents = [ ["document A", "document B"], ["document 1", "document C", "document B"], ] documents_ids = [ [1, 2], [1, 3, 2], ] model = models.ColBERT( model_name_or_path="pylate_model_id", ) queries_embeddings = model.encode( queries, is_query=True, ) documents_embeddings = model.encode( documents, is_query=False, ) reranked_documents = rank.rerank( documents_ids=documents_ids, queries_embeddings=queries_embeddings, documents_embeddings=documents_embeddings, ) ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 256,886 training samples * Columns: query, positive, and negative * Approximate statistics based on the first 1000 samples: | | query | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | query | positive | negative | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | There was no Mughal tradition of primogeniture, the systematic passing of rule, upon an emperor's death, to his eldest son. | Sanskrit: चक्रवर्तिनः मृत्योः अनन्तरं तस्य शासनस्य व्यवस्थितरूपेण सङ्क्रमणस्य, मुघलपरम्परायाः ज्येष्ठपुत्राधिकारपद्धतिः नासीत्।
English: There was no Mughal tradition of primogeniture, the systematic passing of rule, upon an emperor's death, to his eldest son.
| Sanskrit: येऽरक्ष्यमाणा हीयन्ते दैवेनाभ्याहता नृप। तस्करैश्चापि हीयन्ते सर्वं तद् राजकिल्बिषम्॥
English: If the subjects of a king, O monarch, die from want of protection and are afflicted by the gods and oppressed by robbers, the sin of all this affects the king himself.
| | The four sons of Shah Jahan all held governorships during their father's reign. | Sanskrit: शाह्-जहाँ-नामकस्य चत्वारः पुत्राः, सर्वे पितुः शासनकाले शासकपदम् अधारयन्।
English: The four sons of Shah Jahan all held governorships during their father's reign.
| Sanskrit: आयेन वासव्ययस्य तुलने कृते सति वासः व्यययोग्यः न वेति ज्ञायते।
English: Comparing the price of housing to income tells if housing is affordable.
| | In this regard he discusses the correlation between social opportunities of education and health and how both of these complement economic and political freedoms as a healthy and well-educated person is better suited to make informed economic decisions and be involved in fruitful political demonstrations etc. | Sanskrit: अस्मिन् विषये सः शिक्षणस्य स्वास्थ्यस्य च सामाजिकावकाशानाम् अन्योन्य-सम्बन्धस्य, तथा च एतद्द्वयम् अपि आर्थिक-राजनैतिक-स्वातन्त्र्ययोः कथं पूरकं भवतः इति च चर्चां करोति, यतोहि स्वस्था सुशिक्षिता च व्यक्तिः ज्ञानपूर्वम् आर्थिकविषयान् निर्णेतुं तथा फलप्रदेषु राजनैतिकेषु प्रतिपादनादिषु संलग्नः भवितुं च अधिकारी भवति इति।
English: In this regard he discusses the correlation between social opportunities of education and health and how both of these complement economic and political freedoms as a healthy and well-educated person is better suited to make informed economic decisions and be involved in fruitful political demonstrations etc.
| Sanskrit: स्पर्धायां दलानां विश्रामस्थानत्रयेषु अन्तिमम् अस्ति वैट्-मौण्टन्।
English: White Mountain is the last of three rest stops for teams in the race.
| * Loss: pylate.losses.contrastive.Contrastive ### Evaluation Dataset #### Unnamed Dataset * Size: 2,000 evaluation samples * Columns: query, positive, and negative * Approximate statistics based on the first 1000 samples: | | query | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | query | positive | negative | |:-----------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | You two were eloquent speakers. | Sanskrit: युवां वाक्पटू आस्तम् ।
English: You two were eloquent speakers.
| Sanskrit: एतत् 'URL' इन्स्टलेषन् काले दत्तं 'पोर्ट् नम्बर्' तथा 'डोमैन्' नाम आधारीकृत्य वर्तते ।
English: This URL is based on- the port number and domain name given at the time of installation.
| | """And James the son of Zebedee, and John the brother of James; and he surnamed them Boanerges, which is, The sons of thunder:""" | Sanskrit: """याकूब् तस्य भ्राता योहन् च आन्द्रियः फिलिपो बर्थलमयः,"""
English: """And James the son of Zebedee, and John the brother of James; and he surnamed them Boanerges, which is, The sons of thunder:"""
| Sanskrit: "पश्यामः यत्, Animal interface इत्यस्य सर्वाणि मेथड्स्, नाम - talk(), see() अपि च move() इतीमानि क्लास् मध्ये इम्प्लिमेण्ट् जातानि ।"
English: "We can see that all the methods of the Animal interface- talk(), see() and move() are implemented inside this class."
| | The heart of a healthy adult person beats 60-80 times per minute | Sanskrit: स्वस्थस्य कस्यचन प्रौढस्य प्रति मिनट्-काले षष्टिवारात अधिकाधिकतया अशीतिवारं कम्पते।
English: The heart of a healthy adult person beats 60-80 times per minute
| Sanskrit: यतस्तेन बहवो यिहूदीया गत्वा यीशौ व्यश्वसन्।
English: """Because that by reason of him many of the Jews went away, and believed on Jesus."""
| * Loss: pylate.losses.contrastive.Contrastive ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 2 - `num_train_epochs`: 2 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0156 | 500 | 0.0421 | | 0.0311 | 1000 | 0.0622 | | 0.0467 | 1500 | 0.0062 | | 0.0623 | 2000 | 0.0024 | | 0.0779 | 2500 | 0.0002 | ### Framework Versions - Python: 3.10.18 - Sentence Transformers: 5.1.1 - PyLate: 1.3.4 - Transformers: 4.51.3 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.1 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084" } ``` #### PyLate ```bibtex @misc{PyLate, title={PyLate: Flexible Training and Retrieval for Late Interaction Models}, author={Chaffin, Antoine and Sourty, Raphaël}, url={https://github.com/lightonai/pylate}, year={2024} } ```