---
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:256886
- loss:Contrastive
base_model: jinaai/jina-colbert-v2
pipeline_tag: sentence-similarity
library_name: PyLate
---
# PyLate model based on jinaai/jina-colbert-v2
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [jinaai/jina-colbert-v2](https://huggingface.co/jinaai/jina-colbert-v2). It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
## Model Details
### Model Description
- **Model Type:** PyLate model
- **Base model:** [jinaai/jina-colbert-v2](https://huggingface.co/jinaai/jina-colbert-v2)
- **Document Length:** 300 tokens
- **Query Length:** 32 tokens
- **Output Dimensionality:** 128 tokens
- **Similarity Function:** MaxSim
### Model Sources
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
### Full Model Architecture
```
ColBERT(
(0): Transformer({'max_seq_length': 299, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Dense({'in_features': 1024, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False})
)
```
## Usage
First install the PyLate library:
```bash
pip install -U pylate
```
### Retrieval
Use this model with PyLate to index and retrieve documents. The index uses [FastPLAID](https://github.com/lightonai/fast-plaid) for efficient similarity search.
#### Indexing documents
Load the ColBERT model and initialize the PLAID index, then encode and index your documents:
```python
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path="pylate_model_id",
)
# Step 2: Initialize the PLAID index
index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
```
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
)
```
#### Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
```
### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
```python
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path="pylate_model_id",
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 256,886 training samples
* Columns: query, positive, and negative
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
There was no Mughal tradition of primogeniture, the systematic passing of rule, upon an emperor's death, to his eldest son. | Sanskrit: चक्रवर्तिनः मृत्योः अनन्तरं तस्य शासनस्य व्यवस्थितरूपेण सङ्क्रमणस्य, मुघलपरम्परायाः ज्येष्ठपुत्राधिकारपद्धतिः नासीत्।
English: There was no Mughal tradition of primogeniture, the systematic passing of rule, upon an emperor's death, to his eldest son. | Sanskrit: येऽरक्ष्यमाणा हीयन्ते दैवेनाभ्याहता नृप। तस्करैश्चापि हीयन्ते सर्वं तद् राजकिल्बिषम्॥
English: If the subjects of a king, O monarch, die from want of protection and are afflicted by the gods and oppressed by robbers, the sin of all this affects the king himself. |
| The four sons of Shah Jahan all held governorships during their father's reign. | Sanskrit: शाह्-जहाँ-नामकस्य चत्वारः पुत्राः, सर्वे पितुः शासनकाले शासकपदम् अधारयन्।
English: The four sons of Shah Jahan all held governorships during their father's reign. | Sanskrit: आयेन वासव्ययस्य तुलने कृते सति वासः व्यययोग्यः न वेति ज्ञायते।
English: Comparing the price of housing to income tells if housing is affordable. |
| In this regard he discusses the correlation between social opportunities of education and health and how both of these complement economic and political freedoms as a healthy and well-educated person is better suited to make informed economic decisions and be involved in fruitful political demonstrations etc. | Sanskrit: अस्मिन् विषये सः शिक्षणस्य स्वास्थ्यस्य च सामाजिकावकाशानाम् अन्योन्य-सम्बन्धस्य, तथा च एतद्द्वयम् अपि आर्थिक-राजनैतिक-स्वातन्त्र्ययोः कथं पूरकं भवतः इति च चर्चां करोति, यतोहि स्वस्था सुशिक्षिता च व्यक्तिः ज्ञानपूर्वम् आर्थिकविषयान् निर्णेतुं तथा फलप्रदेषु राजनैतिकेषु प्रतिपादनादिषु संलग्नः भवितुं च अधिकारी भवति इति।
English: In this regard he discusses the correlation between social opportunities of education and health and how both of these complement economic and political freedoms as a healthy and well-educated person is better suited to make informed economic decisions and be involved in fruitful political demonstrations etc. | Sanskrit: स्पर्धायां दलानां विश्रामस्थानत्रयेषु अन्तिमम् अस्ति वैट्-मौण्टन्।
English: White Mountain is the last of three rest stops for teams in the race. |
* Loss: pylate.losses.contrastive.Contrastive
### Evaluation Dataset
#### Unnamed Dataset
* Size: 2,000 evaluation samples
* Columns: query, positive, and negative
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | You two were eloquent speakers. | Sanskrit: युवां वाक्पटू आस्तम् ।
English: You two were eloquent speakers. | Sanskrit: एतत् 'URL' इन्स्टलेषन् काले दत्तं 'पोर्ट् नम्बर्' तथा 'डोमैन्' नाम आधारीकृत्य वर्तते ।
English: This URL is based on- the port number and domain name given at the time of installation. |
| """And James the son of Zebedee, and John the brother of James; and he surnamed them Boanerges, which is, The sons of thunder:""" | Sanskrit: """याकूब् तस्य भ्राता योहन् च आन्द्रियः फिलिपो बर्थलमयः,"""
English: """And James the son of Zebedee, and John the brother of James; and he surnamed them Boanerges, which is, The sons of thunder:""" | Sanskrit: "पश्यामः यत्, Animal interface इत्यस्य सर्वाणि मेथड्स्, नाम - talk(), see() अपि च move() इतीमानि क्लास् मध्ये इम्प्लिमेण्ट् जातानि ।"
English: "We can see that all the methods of the Animal interface- talk(), see() and move() are implemented inside this class." |
| The heart of a healthy adult person beats 60-80 times per minute | Sanskrit: स्वस्थस्य कस्यचन प्रौढस्य प्रति मिनट्-काले षष्टिवारात अधिकाधिकतया अशीतिवारं कम्पते।
English: The heart of a healthy adult person beats 60-80 times per minute | Sanskrit: यतस्तेन बहवो यिहूदीया गत्वा यीशौ व्यश्वसन्।
English: """Because that by reason of him many of the Jews went away, and believed on Jesus.""" |
* Loss: pylate.losses.contrastive.Contrastive
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 2
- `num_train_epochs`: 2
- `fp16`: True
#### All Hyperparameters