File size: 33,350 Bytes
261e7c3
 
2bb99c7
 
 
 
 
261e7c3
2bb99c7
 
261e7c3
 
 
 
2bb99c7
 
 
 
 
 
 
261e7c3
 
 
 
2bb99c7
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
261e7c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
2bb99c7
 
 
261e7c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
 
261e7c3
 
 
 
 
 
2bb99c7
 
 
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
2bb99c7
 
261e7c3
 
 
 
 
2bb99c7
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
261e7c3
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
 
261e7c3
 
 
 
 
 
 
 
 
 
 
 
2bb99c7
 
261e7c3
 
 
2bb99c7
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
2bb99c7
261e7c3
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
2bb99c7
 
261e7c3
2bb99c7
 
261e7c3
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
2bb99c7
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
2bb99c7
 
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
 
 
 
 
 
2bb99c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
261e7c3
 
 
2bb99c7
 
 
 
 
 
 
 
 
261e7c3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
import logging
from typing import Any, Callable, Optional, Union

import torch
from torch import nn

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.masking_utils import (
    create_causal_mask,
    create_sliding_window_causal_mask,
)
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
    GenericForQuestionAnswering,
    GenericForSequenceClassification,
    GenericForTokenClassification,
    GradientCheckpointingLayer,
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from transformers.utils.generic import check_model_inputs
from .configuration_ouro import OuroConfig


logger = logging.getLogger(__name__)


def needs_universal_cache(
    cache: Optional[Cache], max_cache_size: Optional[int]
) -> bool:
    if cache is None:
        return True
    if isinstance(cache, UniversalTransformerCache):
        return False
    if not isinstance(cache, Cache):
        return False
    can_grow = getattr(cache, "layer_class_to_replicate", None) is not None
    if can_grow:
        # Dynamic caches can extend to any index, so let them be
        return False
    cache_layers = getattr(cache, "layers", [])
    if max_cache_size is not None and len(cache_layers) < max_cache_size:
        try:
            cached_tokens = cache.get_seq_length()
        except Exception:
            cached_tokens = 0
        if cached_tokens > 0:
            raise ValueError(
                "The provided cache cannot store all Universal Transformer iterations. Please "
                "instantiate Ouro.modeling_ouro.UniversalTransformerCache and pass it as past_key_values."
            )
        return True
    return False


class OuroMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(
        batch, num_key_value_heads, n_rep, slen, head_dim
    )
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class UniversalTransformerCache(Cache):
    """Cache implementation that supports Ouro's multi-step Universal Transformer loops."""

    def __init__(self, max_cache_size: Optional[int] = None):
        # We intentionally don't call super().__init__ because the parent assumes static cache sizes.
        self.key_cache: list[Optional[torch.Tensor]] = []
        self.value_cache: list[Optional[torch.Tensor]] = []
        self.layers: list[Any] = []  # attribute expected by HF Cache utilities
        self._seen_tokens = 0
        self.max_cache_size = max_cache_size

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[dict] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if layer_idx < 0:
            raise ValueError(f"layer_idx must be non-negative, got {layer_idx}")

        if self.max_cache_size is not None and layer_idx >= self.max_cache_size:
            raise IndexError(
                f"Cache index {layer_idx} exceeds configured max_cache_size={self.max_cache_size}. "
                "Check total_ut_steps and num_hidden_layers."
            )

        # Expand cache storage so the requested index is available.
        while len(self.key_cache) <= layer_idx:
            self.key_cache.append(None)
            self.value_cache.append(None)

        cached_key = self.key_cache[layer_idx]
        cached_value = self.value_cache[layer_idx]

        if cached_key is None:
            self.key_cache[layer_idx] = key_states
            self.value_cache[layer_idx] = value_states
        else:
            if (
                key_states.shape[0] != cached_key.shape[0]
                or key_states.shape[1] != cached_key.shape[1]
                or key_states.shape[3] != cached_key.shape[3]
            ):
                raise ValueError(
                    "Cached and incoming key/value tensors must match on batch, head, and head_dim dimensions."
                )
            assert cached_value is not None
            self.key_cache[layer_idx] = torch.cat([cached_key, key_states], dim=2)
            self.value_cache[layer_idx] = torch.cat([cached_value, value_states], dim=2)

        result_key = self.key_cache[layer_idx]
        result_value = self.value_cache[layer_idx]
        assert result_key is not None and result_value is not None

        # Track sequence length using the first populated cache entry.
        self._seen_tokens = result_key.shape[2]
        return result_key, result_value

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        if layer_idx is None:
            layer_idx = 0
        if layer_idx < 0 or len(self.key_cache) <= layer_idx:
            return 0
        cached = self.key_cache[layer_idx]
        if cached is None:
            return 0
        return cached.shape[2]

    def get_max_length(self) -> Optional[int]:
        return None

    def get_usable_length(
        self, new_seq_length: int, layer_idx: Optional[int] = 0
    ) -> int:
        return self.get_seq_length(layer_idx)

    def reorder_cache(self, beam_idx: torch.LongTensor) -> None:
        for idx, (key_entry, value_entry) in enumerate(
            zip(self.key_cache, self.value_cache)
        ):
            if key_entry is None:
                continue
            assert value_entry is not None
            device = key_entry.device
            self.key_cache[idx] = key_entry.index_select(0, beam_idx.to(device))
            self.value_cache[idx] = value_entry.index_select(0, beam_idx.to(device))

    @property
    def is_compileable(self) -> bool:
        return False

    def clear(self) -> None:
        logger.debug("Clearing UniversalTransformerCache")
        self.key_cache = []
        self.value_cache = []
        self._seen_tokens = 0


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs: Unpack[TransformersKwargs],
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
        query.dtype
    )
    attn_weights = nn.functional.dropout(
        attn_weights, p=dropout, training=module.training
    )
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


class OuroAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: OuroConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(
            config, "head_dim", config.hidden_size // config.num_attention_heads
        )
        self.num_key_value_groups = (
            config.num_attention_heads // config.num_key_value_heads
        )
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True
        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=False
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=False
        )
        self.sliding_window = (
            config.sliding_window
            if config.layer_types[layer_idx] == "sliding_attention"
            else None
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        current_ut: int = 0,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(
            query_states, key_states, cos, sin
        )

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(
                key_states,
                value_states,
                current_ut * self.config.num_hidden_layers + self.layer_idx,
                cache_kwargs,
            )

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[
                self.config._attn_implementation
            ]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            sliding_window=self.sliding_window,  # main diff with Llama
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights


@use_kernel_forward_from_hub("RMSNorm")
class OuroRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        OuroRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class OuroDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: OuroConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = OuroAttention(config=config, layer_idx=layer_idx)

        self.mlp = OuroMLP(config)
        self.input_layernorm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.input_layernorm_2 = OuroRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )
        self.post_attention_layernorm = OuroRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )
        self.post_attention_layernorm_2 = OuroRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )
        self.attention_type = config.layer_types[layer_idx]

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[
            tuple[torch.Tensor, torch.Tensor]
        ] = None,  # necessary, but kept here for BC
        **kwargs: Unpack[TransformersKwargs],
    ) -> tuple[torch.Tensor]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        # Self Attention
        hidden_states, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = self.input_layernorm_2(hidden_states)
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = self.post_attention_layernorm_2(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states


@auto_docstring
class OuroPreTrainedModel(PreTrainedModel):
    config: OuroConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["OuroDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn = True
    _supports_sdpa = True
    _supports_flex_attn = True

    _can_compile_fullgraph = True
    _supports_attention_backend = True
    _can_record_outputs = {
        "hidden_states": OuroDecoderLayer,
        "attentions": OuroAttention,
    }


class OuroRotaryEmbedding(nn.Module):
    def __init__(self, config: OuroConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
            self.rope_type = config.rope_scaling.get(
                "rope_type", config.rope_scaling.get("type")
            )
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = (
            self.inv_freq[None, :, None]
            .float()
            .expand(position_ids.shape[0], -1, 1)
            .to(x.device)
        )
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = (
            x.device.type
            if isinstance(x.device.type, str) and x.device.type != "mps"
            else "cpu"
        )
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (
                inv_freq_expanded.float() @ position_ids_expanded.float()
            ).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


@auto_docstring
class OuroModel(OuroPreTrainedModel):
    def __init__(self, config: OuroConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx
        )
        self.layers = nn.ModuleList(
            [
                OuroDecoderLayer(config, layer_idx)
                for layer_idx in range(config.num_hidden_layers)
            ]
        )
        self.norm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = OuroRotaryEmbedding(config=config)
        self.gradient_checkpointing = False
        self.has_sliding_layers = "sliding_attention" in self.config.layer_types
        self.total_ut_steps = getattr(self.config, "total_ut_steps", 4)
        self.early_exit_gate = nn.Linear(config.hidden_size, 1)
        # Initialize weights and apply final processing
        self.post_init()

    @check_model_inputs
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> BaseModelOutputWithPast:
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You must specify exactly one of input_ids or inputs_embeds"
            )

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache is None:
            use_cache = self.config.use_cache

        max_cache_size: Optional[int] = None
        if use_cache:
            total_ut_steps = getattr(self.config, "total_ut_steps", 1) or 1
            total_layers = getattr(self.config, "num_hidden_layers", None)
            if total_layers is not None:
                max_cache_size = total_layers * total_ut_steps

            if needs_universal_cache(past_key_values, max_cache_size):
                past_key_values = UniversalTransformerCache(max_cache_size)

        if cache_position is None:
            past_seen_tokens = (
                past_key_values.get_seq_length() if past_key_values is not None else 0
            )
            cache_position = torch.arange(
                past_seen_tokens,
                past_seen_tokens + inputs_embeds.shape[1],
                device=inputs_embeds.device,
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # It may already have been prepared by e.g. `generate`
        if not isinstance(causal_mask_mapping := attention_mask, dict):
            # Prepare mask arguments
            mask_kwargs = {
                "config": self.config,
                "input_embeds": inputs_embeds,
                "attention_mask": attention_mask,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "position_ids": position_ids,
            }
            # Create the masks
            causal_mask_mapping = {
                "full_attention": create_causal_mask(**mask_kwargs),
            }
            # The sliding window alternating layers are not always activated depending on the config
            if self.has_sliding_layers:
                causal_mask_mapping["sliding_attention"] = (
                    create_sliding_window_causal_mask(**mask_kwargs)
                )

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)
        hidden_states_list = []
        gate_list = []

        for current_ut in range(self.total_ut_steps):
            for decoder_layer in self.layers[: self.config.num_hidden_layers]:
                hidden_states = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask_mapping[decoder_layer.attention_type],
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                    current_ut=current_ut,
                    **kwargs,
                )

            hidden_states = self.norm(hidden_states)
            hidden_states_list.append(hidden_states)
            gate_list.append(self.early_exit_gate(hidden_states))

        return (
            BaseModelOutputWithPast(
                last_hidden_state=hidden_states,
                past_key_values=past_key_values if use_cache else None,
            ),
            hidden_states_list,
            gate_list,
        )


@auto_docstring
class OuroForCausalLM(OuroPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

    def __init__(self, config):
        super().__init__(config)
        self.model = OuroModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # 分块大小配置
        self.chunk_size = getattr(config, "chunk_size", 2)  # 默认分块大小为2
        self.early_exit_step = getattr(config, "early_exit_step", None)
        self.early_exit_threshold = getattr(config, "early_exit_threshold", None)

        # Initialize weights and apply final processing
        self.post_init()

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        use_weighted_exit: Optional[bool] = False,  # 控制是否使用加权 early exit
        exit_at_step: Optional[int] = None,
        exit_threshold: Optional[float] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> CausalLMOutputWithPast:
        r"""
        Args:
            use_weighted_exit (`bool`, *optional*, defaults to `False`):
                Whether to use weighted early exit. If `True`, the logits from all UT steps will be
                averaged according to the exit probability distribution.
            exit_at_step (`int`, *optional*):
                Specifies which UT step to exit at. If set, the model will directly use the hidden states
                from this step to generate logits, ignoring other exit strategies.
            exit_threshold (`float`, *optional*):
                The cumulative probability threshold for early exit. When the cumulative exit probability
                reaches this threshold, the model will exit at that step.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, OuroForCausalLM

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        exit_at_step = (
            exit_at_step if exit_at_step is not None else self.early_exit_step
        )
        exit_threshold = (
            exit_threshold if exit_threshold is not None else self.early_exit_threshold
        )

        outputs, hidden_states_list, gate_list = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        slice_indices = (
            slice(-logits_to_keep, None)
            if isinstance(logits_to_keep, int)
            else logits_to_keep
        )

        def _select_token_positions(tensor: torch.Tensor) -> torch.Tensor:
            if isinstance(slice_indices, slice):
                return tensor[:, slice_indices, ...]
            if isinstance(slice_indices, torch.Tensor):
                return tensor.index_select(1, slice_indices.to(tensor.device))
            raise TypeError(
                f"Unsupported index type for logits_to_keep: {type(slice_indices)}"
            )

        stacked_exit_pdf = None
        if gate_list:
            pdf_list = []
            remaining_prob = torch.ones_like(gate_list[0].squeeze(-1))
            for idx, gate_tensor in enumerate(gate_list):
                lambda_i = torch.sigmoid(gate_tensor.squeeze(-1))
                if idx < len(gate_list) - 1:
                    p_i = lambda_i * remaining_prob
                    remaining_prob = remaining_prob * (1.0 - lambda_i)
                else:
                    p_i = remaining_prob
                pdf_list.append(p_i)
            stacked_exit_pdf = torch.stack(pdf_list, dim=2)

        expected_logits_cache: Optional[torch.Tensor] = None

        def compute_expected_logits() -> Optional[torch.Tensor]:
            nonlocal expected_logits_cache
            if expected_logits_cache is not None:
                return expected_logits_cache
            if stacked_exit_pdf is None or not hidden_states_list:
                return None
            token_exit_pdf = _select_token_positions(stacked_exit_pdf)
            expected_logits = None
            for step_idx, hidden in enumerate(hidden_states_list):
                step_hidden = _select_token_positions(hidden)
                step_logits = self.lm_head(step_hidden)
                weight = (
                    token_exit_pdf[..., step_idx].unsqueeze(-1).to(step_logits.dtype)
                )
                expected_logits = (
                    step_logits * weight
                    if expected_logits is None
                    else expected_logits + step_logits * weight
                )
            expected_logits_cache = expected_logits
            return expected_logits_cache

        logits: Optional[torch.Tensor] = None
        loss: Optional[torch.Tensor] = None

        if labels is not None:
            logits = compute_expected_logits()
            if logits is None:
                hidden_states = outputs.last_hidden_state
                logits = self.lm_head(_select_token_positions(hidden_states))
            loss = self.loss_function(
                logits=logits,
                labels=labels,
                vocab_size=self.config.vocab_size,
                **kwargs,
            )
        else:
            if stacked_exit_pdf is not None and hidden_states_list:
                if exit_at_step is not None and 0 <= exit_at_step < len(
                    hidden_states_list
                ):
                    selected_hidden = hidden_states_list[exit_at_step]
                    logits = self.lm_head(_select_token_positions(selected_hidden))
                elif exit_threshold is not None:
                    cumulative_probs = torch.cumsum(stacked_exit_pdf, dim=2)
                    threshold_value = exit_threshold
                    if isinstance(threshold_value, torch.Tensor):
                        threshold_value = threshold_value.to(cumulative_probs.device)
                    threshold_mask = cumulative_probs >= threshold_value
                    exit_steps = torch.argmax(threshold_mask.float(), dim=2)
                    last_step_idx = stacked_exit_pdf.shape[2] - 1
                    if last_step_idx >= 0:
                        never_exceeded = ~threshold_mask.any(dim=2)
                        exit_steps[never_exceeded] = last_step_idx
                    stacked_hidden = torch.stack(hidden_states_list, dim=2)
                    gather_index = (
                        exit_steps.unsqueeze(-1)
                        .unsqueeze(-1)
                        .expand(-1, -1, 1, stacked_hidden.size(-1))
                    )
                    final_hidden_states = torch.gather(
                        stacked_hidden, 2, gather_index
                    ).squeeze(2)
                    logits = self.lm_head(_select_token_positions(final_hidden_states))
                elif use_weighted_exit:
                    logits = compute_expected_logits()

            if logits is None:
                hidden_states = outputs.last_hidden_state
                logits = self.lm_head(_select_token_positions(hidden_states))

        result = CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

        return result


class OuroForSequenceClassification(
    GenericForSequenceClassification, OuroPreTrainedModel
):
    pass


class OuroForTokenClassification(GenericForTokenClassification, OuroPreTrainedModel):
    pass


class OuroForQuestionAnswering(GenericForQuestionAnswering, OuroPreTrainedModel):
    base_model_prefix = (
        "transformer"  # For BC, where `transformer` was used instead of `model`
    )


__all__ = [
    "OuroPreTrainedModel",
    "OuroModel",
    "OuroForCausalLM",
    "OuroForSequenceClassification",
    "OuroForTokenClassification",
    "OuroForQuestionAnswering",
    "UniversalTransformerCache",
]