File size: 4,387 Bytes
5e90249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import abc

import torch
import torch.nn as nn

torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)

def get_noise(config, dtype=torch.float32):
	if config.noise.type == 'geometric':
		return GeometricNoise(config.noise.sigma_min, config.noise.sigma_max)
	elif config.noise.type  == 'loglinear':
		return LogLinearNoise()
	elif config.noise.type  == 'cosine':
		return CosineNoise()
	elif config.noise.type  == 'cosinesqr':
		return CosineSqrNoise()
	elif config.noise.type  == 'linear':
		return Linear(config.noise.sigma_min, config.noise.sigma_max, dtype)
	else:
		raise ValueError(f'{config.noise.type} is not a valid noise')


def binary_discretization(z):
	z_hard = torch.sign(z)
	z_soft = z / torch.norm(z, dim=-1, keepdim=True)
	return z_soft + (z_hard - z_soft).detach()


class Noise(abc.ABC, nn.Module):
	"""
	Baseline forward method to get the total + rate of noise at a timestep
	"""
	def forward(self, t):
		# Assume time goes from 0 to 1
		return self.total_noise(t), self.rate_noise(t)


class CosineNoise(Noise):
	def __init__(self, eps=1e-3):
		super().__init__()
		self.eps = eps

	def rate_noise(self, t):
		cos = (1 - self.eps) * torch.cos(t * torch.pi / 2)
		sin = (1 - self.eps) * torch.sin(t * torch.pi / 2)
		scale = torch.pi / 2
		return scale * sin / (cos + self.eps)

	def total_noise(self, t):
		cos = torch.cos(t * torch.pi / 2)
		return - torch.log(self.eps + (1 - self.eps) * cos)


class CosineSqrNoise(Noise):
	def __init__(self, eps=1e-3):
		super().__init__()
		self.eps = eps

	def rate_noise(self, t):
		cos = (1 - self.eps) * (
			torch.cos(t * torch.pi / 2) ** 2)
		sin = (1 - self.eps) * torch.sin(t * torch.pi)
		scale = torch.pi / 2
		return scale * sin / (cos + self.eps)

	def total_noise(self, t):
		cos = torch.cos(t * torch.pi / 2) ** 2
		return - torch.log(self.eps + (1 - self.eps) * cos)


class Linear(Noise):
	def __init__(self, sigma_min=0, sigma_max=10, dtype=torch.float32):
		super().__init__()
		self.sigma_min = torch.tensor(sigma_min, dtype=dtype)
		self.sigma_max = torch.tensor(sigma_max, dtype=dtype)

	def rate_noise(self):
		return self.sigma_max - self.sigma_min

	def total_noise(self, t):
		return self.sigma_min + t * (self.sigma_max - self.sigma_min)

	def importance_sampling_transformation(self, t):
		f_T = torch.log1p(- torch.exp(- self.sigma_max))
		f_0 = torch.log1p(- torch.exp(- self.sigma_min))
		sigma_t = - torch.log1p(- torch.exp(t * f_T + (1 - t) * f_0))
		return (sigma_t - self.sigma_min) / (
			self.sigma_max - self.sigma_min)


class GeometricNoise(Noise):
	def __init__(self, sigma_min=1e-3, sigma_max=1):
		super().__init__()
		self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max])

	def rate_noise(self, t):
		return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (
			self.sigmas[1].log() - self.sigmas[0].log())

	def total_noise(self, t):
		return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t


class LogLinearNoise(Noise):
	"""Log Linear noise schedule.
	
	Built such that 1 - 1/e^(n(t)) interpolates between 0 and
	~1 when t varies from 0 to 1. Total noise is
	-log(1 - (1 - eps) * t), so the sigma will be
	(1 - eps) * t.
	"""
	def __init__(self, eps=1e-3):
		super().__init__()
		self.eps = eps
		self.sigma_max = self.total_noise(torch.tensor(1.0))
		self.sigma_min = self.eps + self.total_noise(torch.tensor(0.0))

	def rate_noise(self, t):
		return (1 - self.eps) / (1 - (1 - self.eps) * t)

	def total_noise(self, t):
		return -torch.log1p(-(1 - self.eps) * t)

	def importance_sampling_transformation(self, t):
		f_T = torch.log1p(- torch.exp(- self.sigma_max))
		f_0 = torch.log1p(- torch.exp(- self.sigma_min))
		sigma_t = - torch.log1p(- torch.exp(t * f_T + (1 - t) * f_0))
		t = - torch.expm1(- sigma_t) / (1 - self.eps)
		return t

class LogPolyNoise(Noise):
	"""
 	Log Polynomial noise schedule for slower masking of peptide bond tokens
	"""
	def __init__(self, eps=1e-3):
		super().__init__()
		self.eps = eps
		self.sigma_max = self.total_noise(torch.tensor(1.0))
		self.sigma_min = self.eps + self.total_noise(torch.tensor(0.0))

	def rate_noise(self, t):
		# derivative of -log(1-t^w)
		return ((3 * (t**2)) - self.eps) / (1 - (1 - self.eps) * (t**3))

	def total_noise(self, t):
		# -log(1-t^w)
		return -torch.log1p(-(1 - self.eps) * (t**3))