|
|
|
|
|
from diffusion import Diffusion |
|
|
from hydra import initialize, compose |
|
|
from hydra.core.global_hydra import GlobalHydra |
|
|
import numpy as np |
|
|
from scipy.stats import pearsonr |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import argparse |
|
|
import wandb |
|
|
import os |
|
|
import datetime |
|
|
from finetune_peptides import finetune |
|
|
from peptide_mcts import MCTS |
|
|
from utils.utils import str2bool, set_seed |
|
|
from scoring.scoring_functions import ScoringFunctions |
|
|
|
|
|
|
|
|
argparser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
|
argparser.add_argument('--base_path', type=str, default='') |
|
|
argparser.add_argument('--learning_rate', type=float, default=1e-4) |
|
|
argparser.add_argument('--num_epochs', type=int, default=100) |
|
|
argparser.add_argument('--num_accum_steps', type=int, default=4) |
|
|
argparser.add_argument('--truncate_steps', type=int, default=50) |
|
|
argparser.add_argument("--truncate_kl", type=str2bool, default=False) |
|
|
argparser.add_argument('--gumbel_temp', type=float, default=1.0) |
|
|
argparser.add_argument('--gradnorm_clip', type=float, default=1.0) |
|
|
argparser.add_argument('--batch_size', type=int, default=32) |
|
|
argparser.add_argument('--name', type=str, default='debug') |
|
|
argparser.add_argument('--total_num_steps', type=int, default=128) |
|
|
argparser.add_argument('--copy_flag_temp', type=float, default=None) |
|
|
argparser.add_argument('--save_every_n_epochs', type=int, default=10) |
|
|
argparser.add_argument('--alpha_schedule_warmup', type=int, default=0) |
|
|
argparser.add_argument("--seed", type=int, default=0) |
|
|
|
|
|
argparser.add_argument('--run_name', type=str, default='peptides') |
|
|
argparser.add_argument("--device", default="cuda:0", type=str) |
|
|
argparser.add_argument("--save_path_dir", default="/scratch/pranamlab/sophtang/home/tr2d2/peptides/checkpoints/", type=str) |
|
|
|
|
|
argparser.add_argument('--num_sequences', type=int, default=10) |
|
|
argparser.add_argument('--num_children', type=int, default=50) |
|
|
argparser.add_argument('--num_iter', type=int, default=30) |
|
|
argparser.add_argument('--seq_length', type=int, default=200) |
|
|
argparser.add_argument('--time_conditioning', action='store_true', default=False) |
|
|
argparser.add_argument('--mcts_sampling', type=int, default=0) |
|
|
argparser.add_argument('--buffer_size', type=int, default=100) |
|
|
argparser.add_argument('--wdce_num_replicates', type=int, default=16) |
|
|
argparser.add_argument('--noise_removal', action='store_true', default=False) |
|
|
argparser.add_argument('--grad_clip', action='store_true', default=False) |
|
|
argparser.add_argument('--resample_every_n_step', type=int, default=10) |
|
|
argparser.add_argument('--exploration', type=float, default=0.1) |
|
|
argparser.add_argument('--reset_every_n_step', type=int, default=100) |
|
|
argparser.add_argument('--alpha', type=float, default=0.01) |
|
|
argparser.add_argument('--scalarization', type=str, default='sum') |
|
|
argparser.add_argument('--no_mcts', action='store_true', default=False) |
|
|
argparser.add_argument("--centering", action='store_true', default=False) |
|
|
|
|
|
|
|
|
argparser.add_argument('--num_obj', type=int, default=5) |
|
|
argparser.add_argument('--prot_seq', type=str, default=None) |
|
|
argparser.add_argument('--prot_name', type=str, default=None) |
|
|
|
|
|
args = argparser.parse_args() |
|
|
print(args) |
|
|
|
|
|
|
|
|
ckpt_path = f'{args.base_path}/TR2-D2/tr2d2-pep/pretrained/peptune-pretrained.ckpt' |
|
|
|
|
|
|
|
|
GlobalHydra.instance().clear() |
|
|
|
|
|
|
|
|
initialize(config_path="configs", job_name="load_model") |
|
|
cfg = compose(config_name="peptune_config.yaml") |
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
|
|
|
|
|
|
|
amhr = 'MLGSLGLWALLPTAVEAPPNRRTCVFFEAPGVRGSTKTLGELLDTGTELPRAIRCLYSRCCFGIWNLTQDRAQVEMQGCRDSDEPGCESLHCDPSPRAHPSPGSTLFTCSCGTDFCNANYSHLPPPGSPGTPGSQGPQAAPGESIWMALVLLGLFLLLLLLLGSIILALLQRKNYRVRGEPVPEPRPDSGRDWSVELQELPELCFSQVIREGGHAVVWAGQLQGKLVAIKAFPPRSVAQFQAERALYELPGLQHDHIVRFITASRGGPGRLLSGPLLVLELHPKGSLCHYLTQYTSDWGSSLRMALSLAQGLAFLHEERWQNGQYKPGIAHRDLSSQNVLIREDGSCAIGDLGLALVLPGLTQPPAWTPTQPQGPAAIMEAGTQRYMAPELLDKTLDLQDWGMALRRADIYSLALLLWEILSRCPDLRPDSSPPPFQLAYEAELGNTPTSDELWALAVQERRRPYIPSTWRCFATDPDGLRELLEDCWDADPEARLTAECVQQRLAALAHPQESHPFPESCPRGCPPLCPEDCTSIPAPTILPCRPQRSACHFSVQQGPCSRNPQPACTLSPV' |
|
|
tfr = 'MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNTKANVTKPKRCSGSICYGTIAVIVFFLIGFMIGYLGYCKGVEPKTECERLAGTESPVREEPGEDFPAARRLYWDDLKRKLSEKLDSTDFTGTIKLLNENSYVPREAGSQKDENLALYVENQFREFKLSKVWRDQHFVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFEDLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLGTGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTDSTCRMVTSESKNVKLTVSNVLKEIKILNIFGVIKGFVEPDHYVVVGAQRDAWGPGAAKSGVGTALLLKLAQMFSDMVLKDGFQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFKVSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDNAAFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNKVARAAAEVAGQFVIKLTHDVELNLDYERYNSQLLSFVRDLNQYRADIKEMGLSLQWLYSARGDFFRATSRLTTDFGNAEKTDRFVMKKLNDRVMRVEYHFLSPYVSPKESPFRHVFWGSGSHTLPALLENLKLRKQNNGAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF' |
|
|
gfap = 'MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM' |
|
|
glp1 = 'MAGAPGPLRLALLLLGMVGRAGPRPQGATVSLWETVQKWREYRRQCQRSLTEDPPPATDLFCNRTFDEYACWPDGEPGSFVNVSCPWYLPWASSVPQGHVYRFCTAEGLWLQKDNSSLPWRDLSECEESKRGERSSPEEQLLFLYIIYTVGYALSFSALVIASAILLGFRHLHCTRNYIHLNLFASFILRALSVFIKDAALKWMYSTAAQQHQWDGLLSYQDSLSCRLVFLLMQYCVAANYYWLLVEGVYLYTLLAFSVLSEQWIFRLYVSIGWGVPLLFVVPWGIVKYLYEDEGCWTRNSNMNYWLIIRLPILFAIGVNFLIFVRVICIVVSKLKANLMCKTDIKCRLAKSTLTLIPLLGTHEVIFAFVMDEHARGTLRFIKLFTELSFTSFQGLMVAILYCFVNNEVQLEFRKSWERWRLEHLHIQRDSSMKPLKCPTSSLSSGATAGSSMYTATCQASCS' |
|
|
glast = 'MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLLTVTAVIVGTILGFTLRPYRMSYREVKYFSFPGELLMRMLQMLVLPLIISSLVTGMAALDSKASGKMGMRAVVYYMTTTIIAVVIGIIIVIIIHPGKGTKENMHREGKIVRVTAADAFLDLIRNMFPPNLVEACFKQFKTNYEKRSFKVPIQANETLVGAVINNVSEAMETLTRITEELVPVPGSVNGVNALGLVVFSMCFGFVIGNMKEQGQALREFFDSLNEAIMRLVAVIMWYAPVGILFLIAGKIVEMEDMGVIGGQLAMYTVTVIVGLLIHAVIVLPLLYFLVTRKNPWVFIGGLLQALITALGTSSSSATLPITFKCLEENNGVDKRVTRFVLPVGATINMDGTALYEALAAIFIAQVNNFELNFGQIITISITATAASIGAAGIPQAGLVTMVIVLTSVGLPTDDITLIIAVDWFLDRLRTTTNVLGDSLGAGIVEHLSRHELKNRDVEMGNSVIEENEMKKPYQLIAQDNETEKPIDSETKM' |
|
|
ncam = 'LQTKDLIWTLFFLGTAVSLQVDIVPSQGEISVGESKFFLCQVAGDAKDKDISWFSPNGEKLTPNQQRISVVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDGSESEATVNVKIFQKLMFKNAPTPQEFREGEDAVIVCDVVSSLPPTIIWKHKGRDVILKKDVRFIVLSNNYLQIRGIKKTDEGTYRCEGRILARGEINFKDIQVIVNVPPTIQARQNIVNATANLGQSVTLVCDAEGFPEPTMSWTKDGEQIEQEEDDEKYIFSDDSSQLTIKKVDKNDEAEYICIAENKAGEQDATIHLKVFAKPKITYVENQTAMELEEQVTLTCEASGDPIPSITWRTSTRNISSEEKASWTRPEKQETLDGHMVVRSHARVSSLTLKSIQYTDAGEYICTASNTIGQDSQSMYLEVQYAPKLQGPVAVYTWEGNQVNITCEVFAYPSATISWFRDGQLLPSSNYSNIKIYNTPSASYLEVTPDSENDFGNYNCTAVNRIGQESLEFILVQADTPSSPSIDQVEPYSSTAQVQFDEPEATGGVPILKYKAEWRAVGEEVWHSKWYDAKEASMEGIVTIVGLKPETTYAVRLAALNGKGLGEISAASEF' |
|
|
cereblon = 'MAGEGDQQDAAHNMGNHLPLLPAESEEEDEMEVEDQDSKEAKKPNIINFDTSLPTSHTYLGADMEEFHGRTLHDDDSCQVIPVLPQVMMILIPGQTLPLQLFHPQEVSMVRNLIQKDRTFAVLAYSNVQEREAQFGTTAEIYAYREEQDFGIEIVKVKAIGRQRFKVLELRTQSDGIQQAKVQILPECVLPSTMSAVQLESLNKCQIFPSKPVSREDQCSYKWWQKYQKRKFHCANLTSWPRWLYSLYDAETLMDRIKKQLREWDENLKDDSLPSNPIDFSYRVAACLPIDDVLRIQLLKIGSAIQRLRCELDIMNKCTSLCCKQCQETEITTKNEIFSLSLCGPMAAYVNPHGYVHETLTVYKACNLNLIGRPSTEHSWFPGYAWTVAQCKICASHIGWKFTATKKDMSPQKFWGLTRSALLPTIPDTEDEISPDKVILCL' |
|
|
ligase = 'MASQPPEDTAESQASDELECKICYNRYNLKQRKPKVLECCHRVCAKCLYKIIDFGDSPQGVIVCPFCRFETCLPDDEVSSLPDDNNILVNLTCGGKGKKCLPENPTELLLTPKRLASLVSPSHTSSNCLVITIMEVQRESSPSLSSTPVVEFYRPASFDSVTTVSHNWTVWNCTSLLFQTSIRVLVWLLGLLYFSSLPLGIYLLVSKKVTLGVVFVSLVPSSLVILMVYGFCQCVCHEFLDCMAPPS' |
|
|
skp2 = 'MHRKHLQEIPDLSSNVATSFTWGWDSSKTSELLSGMGVSALEKEEPDSENIPQELLSNLGHPESPPRKRLKSKGSDKDFVIVRRPKLNRENFPGVSWDSLPDELLLGIFSCLCLPELLKVSGVCKRWYRLASDESLWQTLDLTGKNLHPDVTGRLLSQGVIAFRCPRSFMDQPLAEHFSPFRVQHMDLSNSVIEVSTLHGILSQCSKLQNLSLEGLRLSDPIVNTLAKNSNLVRLNLSGCSGFSEFALQTLLSSCSRLDELNLSWCFDFTEKHVQVAVAHVSETITQLNLSGYRKNLQKSDLSTLVRRCPNLVHLDLSDSVMLKNDCFQEFFQLNYLQHLSLSRCYDIIPETLLELGEIPTLKTLQVFGIVPDGTLQLLKEALPHLQINCSHFTTIARPTIGNKKNQEIWGIKCRLTLQKPSCL' |
|
|
|
|
|
if args.prot_seq is not None: |
|
|
prot = args.prot_seq |
|
|
prot_name = args.prot_name |
|
|
filename = args.prot_name |
|
|
else: |
|
|
prot = tfr |
|
|
prot_name = "tfr" |
|
|
filename = "tfr" |
|
|
|
|
|
if args.no_mcts: |
|
|
args.run_name = f'{prot_name}_resample{args.resample_every_n_step}_no-mcts' |
|
|
else: |
|
|
args.run_name = f'{prot_name}_resample{args.resample_every_n_step}_buffer{args.buffer_size}_numiter{args.num_iter}_children{args.num_children}_{curr_time}' |
|
|
|
|
|
args.save_path = os.path.join(args.save_path_dir, args.run_name) |
|
|
os.makedirs(args.save_path, exist_ok=True) |
|
|
|
|
|
wandb.init(project='tree-multi', name=args.run_name, config=args, dir=args.save_path) |
|
|
|
|
|
log_path = os.path.join(args.save_path, 'log.txt') |
|
|
|
|
|
set_seed(args.seed, use_cuda=True) |
|
|
|
|
|
|
|
|
policy_model = Diffusion.load_from_checkpoint(ckpt_path, |
|
|
config=cfg, |
|
|
mode="train", |
|
|
device=args.device, |
|
|
map_location=args.device) |
|
|
pretrained = Diffusion.load_from_checkpoint(ckpt_path, |
|
|
config=cfg, |
|
|
mode="eval", |
|
|
device=args.device, |
|
|
map_location=args.device) |
|
|
|
|
|
|
|
|
score_func_names = ['binding_affinity1', 'solubility', 'hemolysis', 'nonfouling', 'permeability'] |
|
|
|
|
|
mcts = MCTS(args, cfg, policy_model, pretrained, score_func_names, prot_seqs=[prot]) |
|
|
|
|
|
if args.no_mcts: |
|
|
reward_model = ScoringFunctions(score_func_names, prot_seqs=[prot], device=args.device) |
|
|
finetune(args, cfg, policy_model, reward_model=reward_model, mcts=None, pretrained=pretrained, filename=filename, prot_name=prot_name) |
|
|
else: |
|
|
mcts = MCTS(args, cfg, policy_model, pretrained, score_func_names, prot_seqs=[prot]) |
|
|
finetune(args, cfg, policy_model, reward_model=mcts.rewardFunc, mcts=mcts, pretrained=None, filename=filename, prot_name=prot_name) |