# direct reward backpropagation from diffusion import Diffusion from hydra import initialize, compose from hydra.core.global_hydra import GlobalHydra import numpy as np from scipy.stats import pearsonr import torch import torch.nn.functional as F import argparse import wandb import os import datetime from finetune_peptides import finetune from peptide_mcts import MCTS from utils.utils import str2bool, set_seed from scoring.scoring_functions import ScoringFunctions argparser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) argparser.add_argument('--base_path', type=str, default='') argparser.add_argument('--learning_rate', type=float, default=1e-4) argparser.add_argument('--num_epochs', type=int, default=100) argparser.add_argument('--num_accum_steps', type=int, default=4) argparser.add_argument('--truncate_steps', type=int, default=50) argparser.add_argument("--truncate_kl", type=str2bool, default=False) argparser.add_argument('--gumbel_temp', type=float, default=1.0) argparser.add_argument('--gradnorm_clip', type=float, default=1.0) argparser.add_argument('--batch_size', type=int, default=32) argparser.add_argument('--name', type=str, default='debug') argparser.add_argument('--total_num_steps', type=int, default=128) argparser.add_argument('--copy_flag_temp', type=float, default=None) argparser.add_argument('--save_every_n_epochs', type=int, default=10) argparser.add_argument('--alpha_schedule_warmup', type=int, default=0) argparser.add_argument("--seed", type=int, default=0) # new argparser.add_argument('--run_name', type=str, default='peptides') argparser.add_argument("--device", default="cuda:0", type=str) argparser.add_argument("--save_path_dir", default="/scratch/pranamlab/sophtang/home/tr2d2/peptides/checkpoints/", type=str) # mcts argparser.add_argument('--num_sequences', type=int, default=10) argparser.add_argument('--num_children', type=int, default=50) argparser.add_argument('--num_iter', type=int, default=30) # iterations of mcts argparser.add_argument('--seq_length', type=int, default=200) argparser.add_argument('--time_conditioning', action='store_true', default=False) argparser.add_argument('--mcts_sampling', type=int, default=0) # for batched categorical sampling: '0' means gumbel noise argparser.add_argument('--buffer_size', type=int, default=100) argparser.add_argument('--wdce_num_replicates', type=int, default=16) argparser.add_argument('--noise_removal', action='store_true', default=False) argparser.add_argument('--grad_clip', action='store_true', default=False) argparser.add_argument('--resample_every_n_step', type=int, default=10) argparser.add_argument('--exploration', type=float, default=0.1) argparser.add_argument('--reset_every_n_step', type=int, default=100) argparser.add_argument('--alpha', type=float, default=0.01) argparser.add_argument('--scalarization', type=str, default='sum') argparser.add_argument('--no_mcts', action='store_true', default=False) argparser.add_argument("--centering", action='store_true', default=False) # objectives argparser.add_argument('--num_obj', type=int, default=5) argparser.add_argument('--prot_seq', type=str, default=None) argparser.add_argument('--prot_name', type=str, default=None) args = argparser.parse_args() print(args) # pretrained model path ckpt_path = f'{args.base_path}/TR2-D2/tr2d2-pep/pretrained/peptune-pretrained.ckpt' # reinitialize Hydra GlobalHydra.instance().clear() # Initialize Hydra and compose the configuration initialize(config_path="configs", job_name="load_model") cfg = compose(config_name="peptune_config.yaml") curr_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") # proteins amhr = 'MLGSLGLWALLPTAVEAPPNRRTCVFFEAPGVRGSTKTLGELLDTGTELPRAIRCLYSRCCFGIWNLTQDRAQVEMQGCRDSDEPGCESLHCDPSPRAHPSPGSTLFTCSCGTDFCNANYSHLPPPGSPGTPGSQGPQAAPGESIWMALVLLGLFLLLLLLLGSIILALLQRKNYRVRGEPVPEPRPDSGRDWSVELQELPELCFSQVIREGGHAVVWAGQLQGKLVAIKAFPPRSVAQFQAERALYELPGLQHDHIVRFITASRGGPGRLLSGPLLVLELHPKGSLCHYLTQYTSDWGSSLRMALSLAQGLAFLHEERWQNGQYKPGIAHRDLSSQNVLIREDGSCAIGDLGLALVLPGLTQPPAWTPTQPQGPAAIMEAGTQRYMAPELLDKTLDLQDWGMALRRADIYSLALLLWEILSRCPDLRPDSSPPPFQLAYEAELGNTPTSDELWALAVQERRRPYIPSTWRCFATDPDGLRELLEDCWDADPEARLTAECVQQRLAALAHPQESHPFPESCPRGCPPLCPEDCTSIPAPTILPCRPQRSACHFSVQQGPCSRNPQPACTLSPV' tfr = 'MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNTKANVTKPKRCSGSICYGTIAVIVFFLIGFMIGYLGYCKGVEPKTECERLAGTESPVREEPGEDFPAARRLYWDDLKRKLSEKLDSTDFTGTIKLLNENSYVPREAGSQKDENLALYVENQFREFKLSKVWRDQHFVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFEDLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLGTGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTDSTCRMVTSESKNVKLTVSNVLKEIKILNIFGVIKGFVEPDHYVVVGAQRDAWGPGAAKSGVGTALLLKLAQMFSDMVLKDGFQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFKVSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDNAAFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNKVARAAAEVAGQFVIKLTHDVELNLDYERYNSQLLSFVRDLNQYRADIKEMGLSLQWLYSARGDFFRATSRLTTDFGNAEKTDRFVMKKLNDRVMRVEYHFLSPYVSPKESPFRHVFWGSGSHTLPALLENLKLRKQNNGAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF' gfap = 'MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM' glp1 = 'MAGAPGPLRLALLLLGMVGRAGPRPQGATVSLWETVQKWREYRRQCQRSLTEDPPPATDLFCNRTFDEYACWPDGEPGSFVNVSCPWYLPWASSVPQGHVYRFCTAEGLWLQKDNSSLPWRDLSECEESKRGERSSPEEQLLFLYIIYTVGYALSFSALVIASAILLGFRHLHCTRNYIHLNLFASFILRALSVFIKDAALKWMYSTAAQQHQWDGLLSYQDSLSCRLVFLLMQYCVAANYYWLLVEGVYLYTLLAFSVLSEQWIFRLYVSIGWGVPLLFVVPWGIVKYLYEDEGCWTRNSNMNYWLIIRLPILFAIGVNFLIFVRVICIVVSKLKANLMCKTDIKCRLAKSTLTLIPLLGTHEVIFAFVMDEHARGTLRFIKLFTELSFTSFQGLMVAILYCFVNNEVQLEFRKSWERWRLEHLHIQRDSSMKPLKCPTSSLSSGATAGSSMYTATCQASCS' glast = 'MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLLTVTAVIVGTILGFTLRPYRMSYREVKYFSFPGELLMRMLQMLVLPLIISSLVTGMAALDSKASGKMGMRAVVYYMTTTIIAVVIGIIIVIIIHPGKGTKENMHREGKIVRVTAADAFLDLIRNMFPPNLVEACFKQFKTNYEKRSFKVPIQANETLVGAVINNVSEAMETLTRITEELVPVPGSVNGVNALGLVVFSMCFGFVIGNMKEQGQALREFFDSLNEAIMRLVAVIMWYAPVGILFLIAGKIVEMEDMGVIGGQLAMYTVTVIVGLLIHAVIVLPLLYFLVTRKNPWVFIGGLLQALITALGTSSSSATLPITFKCLEENNGVDKRVTRFVLPVGATINMDGTALYEALAAIFIAQVNNFELNFGQIITISITATAASIGAAGIPQAGLVTMVIVLTSVGLPTDDITLIIAVDWFLDRLRTTTNVLGDSLGAGIVEHLSRHELKNRDVEMGNSVIEENEMKKPYQLIAQDNETEKPIDSETKM' ncam = 'LQTKDLIWTLFFLGTAVSLQVDIVPSQGEISVGESKFFLCQVAGDAKDKDISWFSPNGEKLTPNQQRISVVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDGSESEATVNVKIFQKLMFKNAPTPQEFREGEDAVIVCDVVSSLPPTIIWKHKGRDVILKKDVRFIVLSNNYLQIRGIKKTDEGTYRCEGRILARGEINFKDIQVIVNVPPTIQARQNIVNATANLGQSVTLVCDAEGFPEPTMSWTKDGEQIEQEEDDEKYIFSDDSSQLTIKKVDKNDEAEYICIAENKAGEQDATIHLKVFAKPKITYVENQTAMELEEQVTLTCEASGDPIPSITWRTSTRNISSEEKASWTRPEKQETLDGHMVVRSHARVSSLTLKSIQYTDAGEYICTASNTIGQDSQSMYLEVQYAPKLQGPVAVYTWEGNQVNITCEVFAYPSATISWFRDGQLLPSSNYSNIKIYNTPSASYLEVTPDSENDFGNYNCTAVNRIGQESLEFILVQADTPSSPSIDQVEPYSSTAQVQFDEPEATGGVPILKYKAEWRAVGEEVWHSKWYDAKEASMEGIVTIVGLKPETTYAVRLAALNGKGLGEISAASEF' cereblon = 'MAGEGDQQDAAHNMGNHLPLLPAESEEEDEMEVEDQDSKEAKKPNIINFDTSLPTSHTYLGADMEEFHGRTLHDDDSCQVIPVLPQVMMILIPGQTLPLQLFHPQEVSMVRNLIQKDRTFAVLAYSNVQEREAQFGTTAEIYAYREEQDFGIEIVKVKAIGRQRFKVLELRTQSDGIQQAKVQILPECVLPSTMSAVQLESLNKCQIFPSKPVSREDQCSYKWWQKYQKRKFHCANLTSWPRWLYSLYDAETLMDRIKKQLREWDENLKDDSLPSNPIDFSYRVAACLPIDDVLRIQLLKIGSAIQRLRCELDIMNKCTSLCCKQCQETEITTKNEIFSLSLCGPMAAYVNPHGYVHETLTVYKACNLNLIGRPSTEHSWFPGYAWTVAQCKICASHIGWKFTATKKDMSPQKFWGLTRSALLPTIPDTEDEISPDKVILCL' ligase = 'MASQPPEDTAESQASDELECKICYNRYNLKQRKPKVLECCHRVCAKCLYKIIDFGDSPQGVIVCPFCRFETCLPDDEVSSLPDDNNILVNLTCGGKGKKCLPENPTELLLTPKRLASLVSPSHTSSNCLVITIMEVQRESSPSLSSTPVVEFYRPASFDSVTTVSHNWTVWNCTSLLFQTSIRVLVWLLGLLYFSSLPLGIYLLVSKKVTLGVVFVSLVPSSLVILMVYGFCQCVCHEFLDCMAPPS' skp2 = 'MHRKHLQEIPDLSSNVATSFTWGWDSSKTSELLSGMGVSALEKEEPDSENIPQELLSNLGHPESPPRKRLKSKGSDKDFVIVRRPKLNRENFPGVSWDSLPDELLLGIFSCLCLPELLKVSGVCKRWYRLASDESLWQTLDLTGKNLHPDVTGRLLSQGVIAFRCPRSFMDQPLAEHFSPFRVQHMDLSNSVIEVSTLHGILSQCSKLQNLSLEGLRLSDPIVNTLAKNSNLVRLNLSGCSGFSEFALQTLLSSCSRLDELNLSWCFDFTEKHVQVAVAHVSETITQLNLSGYRKNLQKSDLSTLVRRCPNLVHLDLSDSVMLKNDCFQEFFQLNYLQHLSLSRCYDIIPETLLELGEIPTLKTLQVFGIVPDGTLQLLKEALPHLQINCSHFTTIARPTIGNKKNQEIWGIKCRLTLQKPSCL' if args.prot_seq is not None: prot = args.prot_seq prot_name = args.prot_name filename = args.prot_name else: prot = tfr prot_name = "tfr" filename = "tfr" if args.no_mcts: args.run_name = f'{prot_name}_resample{args.resample_every_n_step}_no-mcts' else: args.run_name = f'{prot_name}_resample{args.resample_every_n_step}_buffer{args.buffer_size}_numiter{args.num_iter}_children{args.num_children}_{curr_time}' args.save_path = os.path.join(args.save_path_dir, args.run_name) os.makedirs(args.save_path, exist_ok=True) # wandb init wandb.init(project='tree-multi', name=args.run_name, config=args, dir=args.save_path) log_path = os.path.join(args.save_path, 'log.txt') set_seed(args.seed, use_cuda=True) # Initialize the model policy_model = Diffusion.load_from_checkpoint(ckpt_path, config=cfg, mode="train", device=args.device, map_location=args.device) pretrained = Diffusion.load_from_checkpoint(ckpt_path, config=cfg, mode="eval", device=args.device, map_location=args.device) # define mcts score_func_names = ['binding_affinity1', 'solubility', 'hemolysis', 'nonfouling', 'permeability'] mcts = MCTS(args, cfg, policy_model, pretrained, score_func_names, prot_seqs=[prot]) if args.no_mcts: reward_model = ScoringFunctions(score_func_names, prot_seqs=[prot], device=args.device) finetune(args, cfg, policy_model, reward_model=reward_model, mcts=None, pretrained=pretrained, filename=filename, prot_name=prot_name) else: mcts = MCTS(args, cfg, policy_model, pretrained, score_func_names, prot_seqs=[prot]) finetune(args, cfg, policy_model, reward_model=mcts.rewardFunc, mcts=mcts, pretrained=None, filename=filename, prot_name=prot_name)