#!/usr/bin/env python3 """ Batch evaluation script for multiple runs with checkpoints. This script: 1. Scans a folder containing different runs 2. For each run, finds checkpoints and selects the one with largest epoch number 3. Evaluates that checkpoint and saves results indexed by run folder name """ import os import re import glob import argparse from pathlib import Path from diffusion import Diffusion import dataloader_gosai import matplotlib.pyplot as plt import numpy as np import pandas as pd import oracle from scipy.stats import pearsonr import torch from tqdm import tqdm from eval_utils import get_eval_matrics from hydra import initialize, compose from hydra.core.global_hydra import GlobalHydra from dataclasses import dataclass from datetime import datetime import json @dataclass class Args: total_num_steps: int batch_size: int num_seeds: int total_samples: int seq_length: int def find_latest_checkpoint(run_dir): """ Find the checkpoint with the largest epoch/step number in a run directory. Args: run_dir (str): Path to the run directory Returns: str or None: Path to the latest checkpoint, or None if no checkpoints found """ ckpt_pattern = os.path.join(run_dir, "model_*.ckpt") ckpt_files = glob.glob(ckpt_pattern) if not ckpt_files: return None # Extract step numbers from checkpoint filenames step_numbers = [] for ckpt_file in ckpt_files: filename = os.path.basename(ckpt_file) match = re.search(r'model_(\d+)\.ckpt', filename) if match: step_numbers.append((int(match.group(1)), ckpt_file)) if not step_numbers: return None # Return checkpoint with largest step number step_numbers.sort(key=lambda x: x[0], reverse=True) return step_numbers[0][1] def evaluate_checkpoint(checkpoint_path, args, cfg, pretrained_model, gosai_oracle, cal_atac_pred_new_mdl, highexp_kmers_999, n_highexp_kmers_999, device): """ Evaluate a single checkpoint. Args: checkpoint_path (str): Path to the checkpoint file args: Evaluation arguments cfg: Configuration object pretrained_model: Pretrained reference model gosai_oracle: GOSAI oracle model cal_atac_pred_new_mdl: ATAC prediction model highexp_kmers_999: High expression k-mers n_highexp_kmers_999: Number of high expression k-mers device: Device to run evaluation on Returns: tuple: (eval_metrics_agg, total_rewards_agg) containing aggregated results """ # Load the policy model from checkpoint policy_model = Diffusion(cfg).to(device) policy_model.load_state_dict(torch.load(checkpoint_path, map_location=device)) policy_model.eval() total_rewards_all = [] eval_metrics_all = [] print(f"Evaluating checkpoint: {os.path.basename(checkpoint_path)}") for i in range(args.num_seeds): iter_times = args.total_samples // args.batch_size total_samples = [] total_rewards = [] range_bar = tqdm(range(iter_times), desc=f"Seed {i+1}", leave=False) for j in range_bar: x_eval, mean_reward_eval = policy_model.sample_finetuned(args, gosai_oracle) total_samples.append(x_eval) total_rewards.append(mean_reward_eval.item() * args.batch_size) total_samples = torch.concat(total_samples) eval_metrics = get_eval_matrics(samples=total_samples, ref_model=pretrained_model, gosai_oracle=gosai_oracle, cal_atac_pred_new_mdl=cal_atac_pred_new_mdl, highexp_kmers_999=highexp_kmers_999, n_highexp_kmers_999=n_highexp_kmers_999) eval_metrics_all.append(eval_metrics) total_rewards_all.append(np.sum(total_rewards) / args.total_samples) # Aggregate results eval_metrics_agg = {k: (np.mean([eval_metrics[k] for eval_metrics in eval_metrics_all]), np.std([eval_metrics[k] for eval_metrics in eval_metrics_all])) for k in eval_metrics_all[0].keys()} total_rewards_agg = (np.mean(total_rewards_all), np.std(total_rewards_all)) return eval_metrics_agg, total_rewards_agg def save_results(results, output_file): """ Save evaluation results to a text file. Args: results (dict): Dictionary containing results for each run output_file (str): Path to output file """ with open(output_file, 'w') as f: f.write("="*80 + "\n") f.write("BATCH EVALUATION RESULTS\n") f.write("="*80 + "\n") f.write(f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") f.write(f"Total runs evaluated: {len(results)}\n\n") for run_name, result in results.items(): if result is None: f.write(f"RUN: {run_name}\n") f.write("-" * 60 + "\n") f.write("Status: No checkpoints found or evaluation failed\n\n") continue eval_metrics_agg, total_rewards_agg, checkpoint_path = result f.write(f"RUN: {run_name}\n") f.write("-" * 60 + "\n") f.write(f"Checkpoint: {os.path.basename(checkpoint_path)}\n") f.write(f"Full path: {checkpoint_path}\n\n") f.write("šŸ“Š EVALUATION METRICS:\n") for metric_name in eval_metrics_agg.keys(): mean_val = eval_metrics_agg[metric_name][0] std_val = eval_metrics_agg[metric_name][1] f.write(f" {metric_name:<20}: {mean_val:8.4f} ± {std_val:6.4f}\n") f.write(f"\nšŸŽÆ TOTAL REWARDS:\n") f.write(f" {'Mean':<20}: {total_rewards_agg[0]:8.4f}\n") f.write(f" {'Std':<20}: {total_rewards_agg[1]:8.4f}\n") f.write("\n") print(f"Results saved to: {output_file}") def append_single_result(run_name, result, output_file, is_first_run=False): """ Append a single successful run result to the output file. Args: run_name (str): Name of the run result: Result tuple (eval_metrics_agg, total_rewards_agg, checkpoint_path) output_file (str): Path to output file is_first_run (bool): Whether this is the first successful run (write header) """ mode = 'w' if is_first_run else 'a' with open(output_file, mode) as f: if is_first_run: f.write("="*80 + "\n") f.write("BATCH EVALUATION RESULTS\n") f.write("="*80 + "\n") f.write(f"Started on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") f.write("Results are saved incrementally as each run completes.\n") f.write("Only successful evaluations are included.\n\n") eval_metrics_agg, total_rewards_agg, checkpoint_path = result f.write(f"RUN: {run_name}\n") f.write("-" * 60 + "\n") f.write(f"Checkpoint: {os.path.basename(checkpoint_path)}\n") f.write(f"Full path: {checkpoint_path}\n") f.write(f"Completed at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n") f.write("šŸ“Š EVALUATION METRICS:\n") for metric_name in eval_metrics_agg.keys(): mean_val = eval_metrics_agg[metric_name][0] std_val = eval_metrics_agg[metric_name][1] f.write(f" {metric_name:<20}: {mean_val:8.4f} ± {std_val:6.4f}\n") f.write(f"\nšŸŽÆ TOTAL REWARDS:\n") f.write(f" {'Mean':<20}: {total_rewards_agg[0]:8.4f}\n") f.write(f" {'Std':<20}: {total_rewards_agg[1]:8.4f}\n") f.write("\n" + "="*80 + "\n\n") # Add separator line and extra spacing def main(): parser = argparse.ArgumentParser(description="Batch evaluation of multiple runs") parser.add_argument("--runs_dir", type=str, required=True, help="Directory containing run folders with checkpoints") parser.add_argument("--output_file", type=str, default="batch_eval_results.txt", help="Output file to save results") parser.add_argument("--device", type=str, default="cuda:0", help="Device to run evaluation on") parser.add_argument("--total_num_steps", type=int, default=128, help="Total number of diffusion steps") parser.add_argument("--batch_size", type=int, default=128, help="Batch size for evaluation") parser.add_argument("--num_seeds", type=int, default=3, help="Number of random seeds for evaluation") parser.add_argument("--total_samples", type=int, default=640, help="Total number of samples to generate") parser.add_argument("--seq_length", type=int, default=200, help="Sequence length") parser.add_argument("--pretrained_path", type=str, default=None, help="Path to pretrained model checkpoint") args = parser.parse_args() # Setup evaluation arguments eval_args = Args( total_num_steps=args.total_num_steps, batch_size=args.batch_size, num_seeds=args.num_seeds, total_samples=args.total_samples, seq_length=args.seq_length ) device = args.device # Initialize Hydra configuration if GlobalHydra().is_initialized(): GlobalHydra.instance().clear() initialize(config_path="configs_gosai", job_name="batch_eval") cfg = compose(config_name="config_gosai.yaml") print("Loading pretrained model and oracles...") # Load pretrained model pretrained_model = Diffusion.load_from_checkpoint(args.pretrained_path, config=cfg, map_location=device) pretrained_model.eval() # Load oracles _, _, highexp_kmers_999, n_highexp_kmers_999, _, _, _ = oracle.cal_highexp_kmers(return_clss=True) cal_atac_pred_new_mdl = oracle.get_cal_atac_orale(device=device) cal_atac_pred_new_mdl.eval() gosai_oracle = oracle.get_gosai_oracle(mode='eval', device=device) gosai_oracle.eval() print("Scanning for runs...") # Find all run directories runs_dir = Path(args.runs_dir) if not runs_dir.exists(): print(f"Error: Directory {args.runs_dir} does not exist") return run_dirs = [d for d in runs_dir.iterdir() if d.is_dir()] run_dirs.sort() # Sort for consistent ordering print(f"Found {len(run_dirs)} run directories") results = {} successful_runs = 0 failed_runs = 0 # Process each run for i, run_dir in enumerate(tqdm(run_dirs, desc="Processing runs")): run_name = run_dir.name print(f"\nProcessing run {i+1}/{len(run_dirs)}: {run_name}") # Find latest checkpoint latest_ckpt = find_latest_checkpoint(str(run_dir)) if latest_ckpt is None: print(f" No checkpoints found in {run_name} - skipping") failed_runs += 1 continue # Skip this run entirely, don't save anything to file print(f" Found latest checkpoint: {os.path.basename(latest_ckpt)}") try: # Evaluate checkpoint eval_metrics_agg, total_rewards_agg = evaluate_checkpoint( latest_ckpt, eval_args, cfg, pretrained_model, gosai_oracle, cal_atac_pred_new_mdl, highexp_kmers_999, n_highexp_kmers_999, device ) result = (eval_metrics_agg, total_rewards_agg, latest_ckpt) results[run_name] = result successful_runs += 1 print(f" āœ“ Evaluation completed successfully") # Save result incrementally (only for successful evaluations) is_first_run = (len(results) == 1) # First successful run append_single_result(run_name, result, args.output_file, is_first_run=is_first_run) print(f" Result saved to {args.output_file}") except Exception as e: print(f" āœ— Evaluation failed: {str(e)}") failed_runs += 1 # Don't save failed evaluations to file either # Add final summary to the file (only if there were successful runs) if successful_runs > 0: with open(args.output_file, 'a') as f: f.write("="*80 + "\n") f.write("FINAL SUMMARY\n") f.write("="*80 + "\n") f.write(f"Completed on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") f.write(f"Total runs processed: {len(run_dirs)}\n") f.write(f"Successful evaluations: {successful_runs}\n") f.write(f"Failed/skipped runs: {failed_runs}\n") else: print(f"No successful evaluations - output file {args.output_file} not created") # Print summary print(f"\nFinal Summary:") print(f" Total runs processed: {len(run_dirs)}") print(f" Successful evaluations: {successful_runs}") print(f" Failed/skipped runs: {failed_runs}") if successful_runs > 0: print(f" Results saved to: {args.output_file}") else: print(f" No output file created (no successful evaluations)") if __name__ == "__main__": main()