--- tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:82796 - loss:CrossEntropyLoss base_model: deepvk/USER-bge-m3 pipeline_tag: text-classification library_name: sentence-transformers metrics: - f1_macro - f1_micro - f1_weighted model-index: - name: CrossEncoder based on deepvk/USER-bge-m3 results: - task: type: cross-encoder-softmax-accuracy name: Cross Encoder Softmax Accuracy dataset: name: softmax accuracy eval type: softmax_accuracy_eval metrics: - type: f1_macro value: 0.9771728083627488 name: F1 Macro - type: f1_micro value: 0.9771739130434782 name: F1 Micro - type: f1_weighted value: 0.9771740511285696 name: F1 Weighted --- # CrossEncoder based on deepvk/USER-bge-m3 This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text pair classification. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Number of Output Labels:** 2 labels ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("Chimalpopoka/CrossEncoderRanker") # Get scores for pairs of texts pairs = [ ['Панель №6 IgE (Сазан, карп, щука, судак, кефаль, ледяная рыба, пикша, осетр)', 'Сазан, (Cyprinus carpio), IgE, аллерген - e82. Метод: ИФА'], ['Определение антител класса M (IgM) к цитомегаловирусу (CytomegАlovirus) в крови', 'Бактериологическое исследование гнойного отделяемого: На аэробные и факультативно-анаэробные микроорганизмы. Метод: культуральный'], ['Исследования уровня бетта-изомеризованного C-концевого телопептида коллагена 1 типа (Beta-Cross laps) в крови', 'Глюкоза, в венозной крови'], ['Посев кала на диарогенные эшерихиозы (E. coli), закл., Кал', 'Коклюш (Bordetella pertussis): Антитела: IgG, (количественно). Метод: ИФА'], ['Ультразвуковое исследование поджелудочной железы (детям)', 'УЗИ поджелудочной железы, для детей'], ] scores = model.predict(pairs) print(scores.shape) # (5, 2) ``` ## Evaluation ### Metrics #### Cross Encoder Softmax Accuracy * Dataset: `softmax_accuracy_eval` * Evaluated with [CESoftmaxAccuracyEvaluator](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CESoftmaxAccuracyEvaluator) | Metric | Value | |:-------------|:-----------| | **f1_macro** | **0.9772** | | f1_micro | 0.9772 | | f1_weighted | 0.9772 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 82,796 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:---------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | Панель №6 IgE (Сазан, карп, щука, судак, кефаль, ледяная рыба, пикша, осетр) | Сазан, (Cyprinus carpio), IgE, аллерген - e82. Метод: ИФА | 1 | | Определение антител класса M (IgM) к цитомегаловирусу (CytomegАlovirus) в крови | Бактериологическое исследование гнойного отделяемого: На аэробные и факультативно-анаэробные микроорганизмы. Метод: культуральный | 0 | | Исследования уровня бетта-изомеризованного C-концевого телопептида коллагена 1 типа (Beta-Cross laps) в крови | Глюкоза, в венозной крови | 0 | * Loss: [CrossEntropyLoss](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `num_train_epochs`: 1 #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | softmax_accuracy_eval_f1_macro | |:------:|:-----:|:-------------:|:------------------------------:| | 0.0483 | 500 | 0.5573 | - | | 0.0966 | 1000 | 0.2189 | - | | 0.1449 | 1500 | 0.2144 | - | | 0.1932 | 2000 | 0.1876 | 0.9683 | | 0.2415 | 2500 | 0.1812 | - | | 0.2899 | 3000 | 0.1657 | - | | 0.3382 | 3500 | 0.1796 | - | | 0.3865 | 4000 | 0.1592 | 0.9702 | | 0.4348 | 4500 | 0.156 | - | | 0.4831 | 5000 | 0.1491 | - | | 0.5314 | 5500 | 0.1555 | - | | 0.5797 | 6000 | 0.1216 | 0.9683 | | 0.6280 | 6500 | 0.1276 | - | | 0.6763 | 7000 | 0.1305 | - | | 0.7246 | 7500 | 0.1156 | - | | 0.7729 | 8000 | 0.1197 | 0.9759 | | 0.8213 | 8500 | 0.1215 | - | | 0.8696 | 9000 | 0.1065 | - | | 0.9179 | 9500 | 0.0896 | - | | 0.9662 | 10000 | 0.1135 | 0.9772 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 5.1.0 - Transformers: 4.53.2 - PyTorch: 2.7.1+cu126 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```