Chuanming commited on
Commit
18c4282
·
1 Parent(s): 19b3ff8

Upload folder using huggingface_hub

Browse files
Files changed (43) hide show
  1. README.md +95 -0
  2. adapter_config.json +28 -0
  3. adapter_model.bin +3 -0
  4. added_tokens.json +3 -0
  5. checkpoint-130/README.md +204 -0
  6. checkpoint-130/adapter_config.json +28 -0
  7. checkpoint-130/adapter_model.safetensors +3 -0
  8. checkpoint-130/optimizer.pt +3 -0
  9. checkpoint-130/rng_state.pth +3 -0
  10. checkpoint-130/scheduler.pt +3 -0
  11. checkpoint-130/trainer_state.json +1009 -0
  12. checkpoint-130/training_args.bin +3 -0
  13. checkpoint-140/README.md +204 -0
  14. checkpoint-140/adapter_config.json +28 -0
  15. checkpoint-140/adapter_model.safetensors +3 -0
  16. checkpoint-140/optimizer.pt +3 -0
  17. checkpoint-140/rng_state.pth +3 -0
  18. checkpoint-140/scheduler.pt +3 -0
  19. checkpoint-140/trainer_state.json +1085 -0
  20. checkpoint-140/training_args.bin +3 -0
  21. checkpoint-150/README.md +204 -0
  22. checkpoint-150/adapter_config.json +28 -0
  23. checkpoint-150/adapter_model.safetensors +3 -0
  24. checkpoint-150/optimizer.pt +3 -0
  25. checkpoint-150/rng_state.pth +3 -0
  26. checkpoint-150/scheduler.pt +3 -0
  27. checkpoint-150/trainer_state.json +1161 -0
  28. checkpoint-150/training_args.bin +3 -0
  29. checkpoint-160/README.md +204 -0
  30. checkpoint-160/adapter_config.json +28 -0
  31. checkpoint-160/adapter_model.safetensors +3 -0
  32. checkpoint-160/optimizer.pt +3 -0
  33. checkpoint-160/rng_state.pth +3 -0
  34. checkpoint-160/scheduler.pt +3 -0
  35. checkpoint-160/trainer_state.json +1237 -0
  36. checkpoint-160/training_args.bin +3 -0
  37. config.json +47 -0
  38. merges.txt +0 -0
  39. runs/Dec11_13-09-26_89a289c3b611/events.out.tfevents.1702300167.89a289c3b611.10242.0 +3 -0
  40. special_tokens_map.json +24 -0
  41. tokenizer.json +0 -0
  42. tokenizer_config.json +28 -0
  43. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: tiiuae/falcon-rw-1b
7
+ model-index:
8
+ - name: qlora-out
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ # qlora-out
17
+
18
+ This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.2365
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0002
40
+ - train_batch_size: 1
41
+ - eval_batch_size: 1
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 2
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: cosine
47
+ - lr_scheduler_warmup_steps: 10
48
+ - num_epochs: 3
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss |
53
+ |:-------------:|:-----:|:----:|:---------------:|
54
+ | 2.3201 | 0.0 | 5 | 1.9676 |
55
+ | 2.2557 | 0.0 | 10 | 1.7400 |
56
+ | 1.571 | 0.0 | 15 | 1.6036 |
57
+ | 1.3875 | 0.01 | 20 | 1.5074 |
58
+ | 1.5436 | 0.01 | 25 | 1.4680 |
59
+ | 1.4257 | 0.01 | 30 | 1.4222 |
60
+ | 1.097 | 0.01 | 35 | 1.4049 |
61
+ | 1.4748 | 0.01 | 40 | 1.3831 |
62
+ | 1.1752 | 0.01 | 45 | 1.3784 |
63
+ | 1.3857 | 0.01 | 50 | 1.3780 |
64
+ | 1.5965 | 0.01 | 55 | 1.3631 |
65
+ | 1.071 | 0.02 | 60 | 1.3275 |
66
+ | 1.197 | 0.02 | 65 | 1.3171 |
67
+ | 1.8883 | 0.02 | 70 | 1.3108 |
68
+ | 1.0119 | 0.02 | 75 | 1.3053 |
69
+ | 1.399 | 0.02 | 80 | 1.3035 |
70
+ | 1.5369 | 0.02 | 85 | 1.3028 |
71
+ | 1.5707 | 0.02 | 90 | 1.2982 |
72
+ | 1.0073 | 0.03 | 95 | 1.3020 |
73
+ | 1.1018 | 0.03 | 100 | 1.2908 |
74
+ | 1.2036 | 0.03 | 105 | 1.2742 |
75
+ | 1.2444 | 0.03 | 110 | 1.2967 |
76
+ | 0.6345 | 0.03 | 115 | 1.2656 |
77
+ | 1.0579 | 0.03 | 120 | 1.2641 |
78
+ | 1.2388 | 0.03 | 125 | 1.2543 |
79
+ | 1.0607 | 0.04 | 130 | 1.2552 |
80
+ | 1.0723 | 0.04 | 135 | 1.2611 |
81
+ | 1.3775 | 0.04 | 140 | 1.2582 |
82
+ | 1.1543 | 0.04 | 145 | 1.2527 |
83
+ | 1.1324 | 0.04 | 150 | 1.2365 |
84
+ | 0.7309 | 0.04 | 155 | 1.2445 |
85
+ | 1.3585 | 0.04 | 160 | 1.2491 |
86
+ | 1.0855 | 0.04 | 165 | 1.2365 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - PEFT 0.7.1.dev0
92
+ - Transformers 4.36.0.dev0
93
+ - Pytorch 2.0.1+cu117
94
+ - Datasets 2.15.0
95
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "tiiuae/falcon-rw-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "dense",
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense_4h_to_h"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14095f535d5e289866efc4f92f937963bd45baf462bc9c9e4ae123fb5f90e232
3
+ size 201397005
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ ">>ABSTRACT<<": 50257
3
+ }
checkpoint-130/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: tiiuae/falcon-rw-1b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1.dev0
checkpoint-130/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "tiiuae/falcon-rw-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "dense",
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense_4h_to_h"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-130/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eeec4b868f4dbc100b7800cf737d227260111d4dc1616765945e36a019e96d8
3
+ size 201353800
checkpoint-130/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5ee1553390da0f0a0d984a93051191ab8266fc4cbed9a7023f0a3bdb93756af
3
+ size 402771653
checkpoint-130/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92b8dd2a4813a9179668f98d73ea5ebc739b4bbf71aafc0db44b3b4901339af8
3
+ size 14575
checkpoint-130/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:877aa68a1a78795960bc047011ea89c4410e43d57f053e01f9c95de08951a5d5
3
+ size 627
checkpoint-130/trainer_state.json ADDED
@@ -0,0 +1,1009 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2552071809768677,
3
+ "best_model_checkpoint": "./qlora-out/checkpoint-130",
4
+ "epoch": 0.03514463368477967,
5
+ "eval_steps": 5,
6
+ "global_step": 130,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 2.0394,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4e-05,
20
+ "loss": 1.8358,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 6e-05,
26
+ "loss": 1.9194,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "learning_rate": 8e-05,
32
+ "loss": 1.5998,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.0,
37
+ "learning_rate": 0.0001,
38
+ "loss": 2.3201,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "eval_loss": 1.9676190614700317,
44
+ "eval_runtime": 16.4542,
45
+ "eval_samples_per_second": 4.558,
46
+ "eval_steps_per_second": 4.558,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.0,
51
+ "learning_rate": 0.00012,
52
+ "loss": 1.7955,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.0,
57
+ "learning_rate": 0.00014,
58
+ "loss": 1.9124,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.8056,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0,
69
+ "learning_rate": 0.00018,
70
+ "loss": 1.6452,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.0,
75
+ "learning_rate": 0.0002,
76
+ "loss": 2.2557,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.0,
81
+ "eval_loss": 1.739979863166809,
82
+ "eval_runtime": 16.9804,
83
+ "eval_samples_per_second": 4.417,
84
+ "eval_steps_per_second": 4.417,
85
+ "step": 10
86
+ },
87
+ {
88
+ "epoch": 0.0,
89
+ "learning_rate": 0.00019999999598540582,
90
+ "loss": 1.5087,
91
+ "step": 11
92
+ },
93
+ {
94
+ "epoch": 0.0,
95
+ "learning_rate": 0.00019999998394162357,
96
+ "loss": 1.785,
97
+ "step": 12
98
+ },
99
+ {
100
+ "epoch": 0.0,
101
+ "learning_rate": 0.00019999996386865424,
102
+ "loss": 1.5459,
103
+ "step": 13
104
+ },
105
+ {
106
+ "epoch": 0.0,
107
+ "learning_rate": 0.0001999999357664994,
108
+ "loss": 1.8027,
109
+ "step": 14
110
+ },
111
+ {
112
+ "epoch": 0.0,
113
+ "learning_rate": 0.00019999989963516136,
114
+ "loss": 1.571,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.0,
119
+ "eval_loss": 1.6035555601119995,
120
+ "eval_runtime": 17.543,
121
+ "eval_samples_per_second": 4.275,
122
+ "eval_steps_per_second": 4.275,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.0,
127
+ "learning_rate": 0.000199999855474643,
128
+ "loss": 1.2283,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.0,
133
+ "learning_rate": 0.00019999980328494788,
134
+ "loss": 1.2223,
135
+ "step": 17
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "learning_rate": 0.00019999974306608012,
140
+ "loss": 1.8525,
141
+ "step": 18
142
+ },
143
+ {
144
+ "epoch": 0.01,
145
+ "learning_rate": 0.00019999967481804467,
146
+ "loss": 1.3687,
147
+ "step": 19
148
+ },
149
+ {
150
+ "epoch": 0.01,
151
+ "learning_rate": 0.00019999959854084692,
152
+ "loss": 1.3875,
153
+ "step": 20
154
+ },
155
+ {
156
+ "epoch": 0.01,
157
+ "eval_loss": 1.5073901414871216,
158
+ "eval_runtime": 18.6107,
159
+ "eval_samples_per_second": 4.03,
160
+ "eval_steps_per_second": 4.03,
161
+ "step": 20
162
+ },
163
+ {
164
+ "epoch": 0.01,
165
+ "learning_rate": 0.00019999951423449303,
166
+ "loss": 1.3078,
167
+ "step": 21
168
+ },
169
+ {
170
+ "epoch": 0.01,
171
+ "learning_rate": 0.00019999942189898975,
172
+ "loss": 1.4264,
173
+ "step": 22
174
+ },
175
+ {
176
+ "epoch": 0.01,
177
+ "learning_rate": 0.00019999932153434453,
178
+ "loss": 1.8519,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.01,
183
+ "learning_rate": 0.00019999921314056539,
184
+ "loss": 1.1411,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.01,
189
+ "learning_rate": 0.00019999909671766103,
190
+ "loss": 1.5436,
191
+ "step": 25
192
+ },
193
+ {
194
+ "epoch": 0.01,
195
+ "eval_loss": 1.4679571390151978,
196
+ "eval_runtime": 19.229,
197
+ "eval_samples_per_second": 3.9,
198
+ "eval_steps_per_second": 3.9,
199
+ "step": 25
200
+ },
201
+ {
202
+ "epoch": 0.01,
203
+ "learning_rate": 0.00019999897226564083,
204
+ "loss": 1.2738,
205
+ "step": 26
206
+ },
207
+ {
208
+ "epoch": 0.01,
209
+ "learning_rate": 0.0001999988397845148,
210
+ "loss": 1.1203,
211
+ "step": 27
212
+ },
213
+ {
214
+ "epoch": 0.01,
215
+ "learning_rate": 0.00019999869927429353,
216
+ "loss": 1.1895,
217
+ "step": 28
218
+ },
219
+ {
220
+ "epoch": 0.01,
221
+ "learning_rate": 0.0001999985507349883,
222
+ "loss": 1.3932,
223
+ "step": 29
224
+ },
225
+ {
226
+ "epoch": 0.01,
227
+ "learning_rate": 0.00019999839416661106,
228
+ "loss": 1.4257,
229
+ "step": 30
230
+ },
231
+ {
232
+ "epoch": 0.01,
233
+ "eval_loss": 1.422224998474121,
234
+ "eval_runtime": 18.4406,
235
+ "eval_samples_per_second": 4.067,
236
+ "eval_steps_per_second": 4.067,
237
+ "step": 30
238
+ },
239
+ {
240
+ "epoch": 0.01,
241
+ "learning_rate": 0.00019999822956917439,
242
+ "loss": 1.1026,
243
+ "step": 31
244
+ },
245
+ {
246
+ "epoch": 0.01,
247
+ "learning_rate": 0.00019999805694269145,
248
+ "loss": 1.337,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.01,
253
+ "learning_rate": 0.0001999978762871762,
254
+ "loss": 1.2867,
255
+ "step": 33
256
+ },
257
+ {
258
+ "epoch": 0.01,
259
+ "learning_rate": 0.00019999768760264303,
260
+ "loss": 1.4109,
261
+ "step": 34
262
+ },
263
+ {
264
+ "epoch": 0.01,
265
+ "learning_rate": 0.00019999749088910718,
266
+ "loss": 1.097,
267
+ "step": 35
268
+ },
269
+ {
270
+ "epoch": 0.01,
271
+ "eval_loss": 1.4048928022384644,
272
+ "eval_runtime": 18.7186,
273
+ "eval_samples_per_second": 4.007,
274
+ "eval_steps_per_second": 4.007,
275
+ "step": 35
276
+ },
277
+ {
278
+ "epoch": 0.01,
279
+ "learning_rate": 0.0001999972861465844,
280
+ "loss": 1.11,
281
+ "step": 36
282
+ },
283
+ {
284
+ "epoch": 0.01,
285
+ "learning_rate": 0.00019999707337509115,
286
+ "loss": 0.9963,
287
+ "step": 37
288
+ },
289
+ {
290
+ "epoch": 0.01,
291
+ "learning_rate": 0.00019999685257464446,
292
+ "loss": 1.2733,
293
+ "step": 38
294
+ },
295
+ {
296
+ "epoch": 0.01,
297
+ "learning_rate": 0.00019999662374526215,
298
+ "loss": 1.6809,
299
+ "step": 39
300
+ },
301
+ {
302
+ "epoch": 0.01,
303
+ "learning_rate": 0.00019999638688696254,
304
+ "loss": 1.4748,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.01,
309
+ "eval_loss": 1.383140206336975,
310
+ "eval_runtime": 18.9843,
311
+ "eval_samples_per_second": 3.951,
312
+ "eval_steps_per_second": 3.951,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.01,
317
+ "learning_rate": 0.00019999614199976465,
318
+ "loss": 1.3495,
319
+ "step": 41
320
+ },
321
+ {
322
+ "epoch": 0.01,
323
+ "learning_rate": 0.00019999588908368817,
324
+ "loss": 0.6009,
325
+ "step": 42
326
+ },
327
+ {
328
+ "epoch": 0.01,
329
+ "learning_rate": 0.00019999562813875334,
330
+ "loss": 1.2478,
331
+ "step": 43
332
+ },
333
+ {
334
+ "epoch": 0.01,
335
+ "learning_rate": 0.00019999535916498116,
336
+ "loss": 1.525,
337
+ "step": 44
338
+ },
339
+ {
340
+ "epoch": 0.01,
341
+ "learning_rate": 0.00019999508216239322,
342
+ "loss": 1.1752,
343
+ "step": 45
344
+ },
345
+ {
346
+ "epoch": 0.01,
347
+ "eval_loss": 1.378393292427063,
348
+ "eval_runtime": 18.7075,
349
+ "eval_samples_per_second": 4.009,
350
+ "eval_steps_per_second": 4.009,
351
+ "step": 45
352
+ },
353
+ {
354
+ "epoch": 0.01,
355
+ "learning_rate": 0.0001999947971310118,
356
+ "loss": 1.4202,
357
+ "step": 46
358
+ },
359
+ {
360
+ "epoch": 0.01,
361
+ "learning_rate": 0.0001999945040708597,
362
+ "loss": 1.2551,
363
+ "step": 47
364
+ },
365
+ {
366
+ "epoch": 0.01,
367
+ "learning_rate": 0.00019999420298196055,
368
+ "loss": 1.3672,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.01,
373
+ "learning_rate": 0.00019999389386433843,
374
+ "loss": 1.4148,
375
+ "step": 49
376
+ },
377
+ {
378
+ "epoch": 0.01,
379
+ "learning_rate": 0.00019999357671801818,
380
+ "loss": 1.3857,
381
+ "step": 50
382
+ },
383
+ {
384
+ "epoch": 0.01,
385
+ "eval_loss": 1.3779667615890503,
386
+ "eval_runtime": 18.7662,
387
+ "eval_samples_per_second": 3.997,
388
+ "eval_steps_per_second": 3.997,
389
+ "step": 50
390
+ },
391
+ {
392
+ "epoch": 0.01,
393
+ "learning_rate": 0.00019999325154302535,
394
+ "loss": 1.8206,
395
+ "step": 51
396
+ },
397
+ {
398
+ "epoch": 0.01,
399
+ "learning_rate": 0.00019999291833938597,
400
+ "loss": 1.248,
401
+ "step": 52
402
+ },
403
+ {
404
+ "epoch": 0.01,
405
+ "learning_rate": 0.0001999925771071268,
406
+ "loss": 1.2879,
407
+ "step": 53
408
+ },
409
+ {
410
+ "epoch": 0.01,
411
+ "learning_rate": 0.00019999222784627523,
412
+ "loss": 1.298,
413
+ "step": 54
414
+ },
415
+ {
416
+ "epoch": 0.01,
417
+ "learning_rate": 0.00019999187055685935,
418
+ "loss": 1.5965,
419
+ "step": 55
420
+ },
421
+ {
422
+ "epoch": 0.01,
423
+ "eval_loss": 1.3631337881088257,
424
+ "eval_runtime": 18.8459,
425
+ "eval_samples_per_second": 3.98,
426
+ "eval_steps_per_second": 3.98,
427
+ "step": 55
428
+ },
429
+ {
430
+ "epoch": 0.02,
431
+ "learning_rate": 0.0001999915052389078,
432
+ "loss": 1.3097,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.02,
437
+ "learning_rate": 0.00019999113189244993,
438
+ "loss": 1.5143,
439
+ "step": 57
440
+ },
441
+ {
442
+ "epoch": 0.02,
443
+ "learning_rate": 0.00019999075051751572,
444
+ "loss": 1.4421,
445
+ "step": 58
446
+ },
447
+ {
448
+ "epoch": 0.02,
449
+ "learning_rate": 0.0001999903611141358,
450
+ "loss": 1.2693,
451
+ "step": 59
452
+ },
453
+ {
454
+ "epoch": 0.02,
455
+ "learning_rate": 0.00019998996368234142,
456
+ "loss": 1.071,
457
+ "step": 60
458
+ },
459
+ {
460
+ "epoch": 0.02,
461
+ "eval_loss": 1.3275150060653687,
462
+ "eval_runtime": 18.8306,
463
+ "eval_samples_per_second": 3.983,
464
+ "eval_steps_per_second": 3.983,
465
+ "step": 60
466
+ },
467
+ {
468
+ "epoch": 0.02,
469
+ "learning_rate": 0.00019998955822216448,
470
+ "loss": 1.4956,
471
+ "step": 61
472
+ },
473
+ {
474
+ "epoch": 0.02,
475
+ "learning_rate": 0.00019998914473363754,
476
+ "loss": 1.2852,
477
+ "step": 62
478
+ },
479
+ {
480
+ "epoch": 0.02,
481
+ "learning_rate": 0.00019998872321679386,
482
+ "loss": 1.1603,
483
+ "step": 63
484
+ },
485
+ {
486
+ "epoch": 0.02,
487
+ "learning_rate": 0.00019998829367166718,
488
+ "loss": 1.3886,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 0.02,
493
+ "learning_rate": 0.00019998785609829205,
494
+ "loss": 1.197,
495
+ "step": 65
496
+ },
497
+ {
498
+ "epoch": 0.02,
499
+ "eval_loss": 1.3170785903930664,
500
+ "eval_runtime": 18.9971,
501
+ "eval_samples_per_second": 3.948,
502
+ "eval_steps_per_second": 3.948,
503
+ "step": 65
504
+ },
505
+ {
506
+ "epoch": 0.02,
507
+ "learning_rate": 0.00019998741049670363,
508
+ "loss": 1.3182,
509
+ "step": 66
510
+ },
511
+ {
512
+ "epoch": 0.02,
513
+ "learning_rate": 0.00019998695686693766,
514
+ "loss": 1.0751,
515
+ "step": 67
516
+ },
517
+ {
518
+ "epoch": 0.02,
519
+ "learning_rate": 0.00019998649520903055,
520
+ "loss": 1.2292,
521
+ "step": 68
522
+ },
523
+ {
524
+ "epoch": 0.02,
525
+ "learning_rate": 0.00019998602552301936,
526
+ "loss": 1.4889,
527
+ "step": 69
528
+ },
529
+ {
530
+ "epoch": 0.02,
531
+ "learning_rate": 0.00019998554780894186,
532
+ "loss": 1.8883,
533
+ "step": 70
534
+ },
535
+ {
536
+ "epoch": 0.02,
537
+ "eval_loss": 1.3108329772949219,
538
+ "eval_runtime": 18.8686,
539
+ "eval_samples_per_second": 3.975,
540
+ "eval_steps_per_second": 3.975,
541
+ "step": 70
542
+ },
543
+ {
544
+ "epoch": 0.02,
545
+ "learning_rate": 0.0001999850620668364,
546
+ "loss": 1.5412,
547
+ "step": 71
548
+ },
549
+ {
550
+ "epoch": 0.02,
551
+ "learning_rate": 0.0001999845682967419,
552
+ "loss": 1.4129,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 0.02,
557
+ "learning_rate": 0.00019998406649869807,
558
+ "loss": 1.1464,
559
+ "step": 73
560
+ },
561
+ {
562
+ "epoch": 0.02,
563
+ "learning_rate": 0.0001999835566727452,
564
+ "loss": 1.3642,
565
+ "step": 74
566
+ },
567
+ {
568
+ "epoch": 0.02,
569
+ "learning_rate": 0.00019998303881892424,
570
+ "loss": 1.0119,
571
+ "step": 75
572
+ },
573
+ {
574
+ "epoch": 0.02,
575
+ "eval_loss": 1.305336356163025,
576
+ "eval_runtime": 18.6567,
577
+ "eval_samples_per_second": 4.02,
578
+ "eval_steps_per_second": 4.02,
579
+ "step": 75
580
+ },
581
+ {
582
+ "epoch": 0.02,
583
+ "learning_rate": 0.00019998251293727672,
584
+ "loss": 1.2123,
585
+ "step": 76
586
+ },
587
+ {
588
+ "epoch": 0.02,
589
+ "learning_rate": 0.0001999819790278449,
590
+ "loss": 1.1538,
591
+ "step": 77
592
+ },
593
+ {
594
+ "epoch": 0.02,
595
+ "learning_rate": 0.0001999814370906716,
596
+ "loss": 1.292,
597
+ "step": 78
598
+ },
599
+ {
600
+ "epoch": 0.02,
601
+ "learning_rate": 0.0001999808871258004,
602
+ "loss": 1.4582,
603
+ "step": 79
604
+ },
605
+ {
606
+ "epoch": 0.02,
607
+ "learning_rate": 0.00019998032913327545,
608
+ "loss": 1.399,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 0.02,
613
+ "eval_loss": 1.3035436868667603,
614
+ "eval_runtime": 18.936,
615
+ "eval_samples_per_second": 3.961,
616
+ "eval_steps_per_second": 3.961,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 0.02,
621
+ "learning_rate": 0.00019997976311314148,
622
+ "loss": 1.2134,
623
+ "step": 81
624
+ },
625
+ {
626
+ "epoch": 0.02,
627
+ "learning_rate": 0.00019997918906544402,
628
+ "loss": 1.3052,
629
+ "step": 82
630
+ },
631
+ {
632
+ "epoch": 0.02,
633
+ "learning_rate": 0.00019997860699022915,
634
+ "loss": 1.2369,
635
+ "step": 83
636
+ },
637
+ {
638
+ "epoch": 0.02,
639
+ "learning_rate": 0.00019997801688754354,
640
+ "loss": 1.4202,
641
+ "step": 84
642
+ },
643
+ {
644
+ "epoch": 0.02,
645
+ "learning_rate": 0.00019997741875743463,
646
+ "loss": 1.5369,
647
+ "step": 85
648
+ },
649
+ {
650
+ "epoch": 0.02,
651
+ "eval_loss": 1.3028186559677124,
652
+ "eval_runtime": 18.8349,
653
+ "eval_samples_per_second": 3.982,
654
+ "eval_steps_per_second": 3.982,
655
+ "step": 85
656
+ },
657
+ {
658
+ "epoch": 0.02,
659
+ "learning_rate": 0.00019997681259995045,
660
+ "loss": 1.1764,
661
+ "step": 86
662
+ },
663
+ {
664
+ "epoch": 0.02,
665
+ "learning_rate": 0.00019997619841513964,
666
+ "loss": 1.1738,
667
+ "step": 87
668
+ },
669
+ {
670
+ "epoch": 0.02,
671
+ "learning_rate": 0.00019997557620305152,
672
+ "loss": 1.0718,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 0.02,
677
+ "learning_rate": 0.00019997494596373603,
678
+ "loss": 0.9415,
679
+ "step": 89
680
+ },
681
+ {
682
+ "epoch": 0.02,
683
+ "learning_rate": 0.00019997430769724383,
684
+ "loss": 1.5707,
685
+ "step": 90
686
+ },
687
+ {
688
+ "epoch": 0.02,
689
+ "eval_loss": 1.2982343435287476,
690
+ "eval_runtime": 18.86,
691
+ "eval_samples_per_second": 3.977,
692
+ "eval_steps_per_second": 3.977,
693
+ "step": 90
694
+ },
695
+ {
696
+ "epoch": 0.02,
697
+ "learning_rate": 0.0001999736614036261,
698
+ "loss": 1.1557,
699
+ "step": 91
700
+ },
701
+ {
702
+ "epoch": 0.02,
703
+ "learning_rate": 0.00019997300708293482,
704
+ "loss": 1.5742,
705
+ "step": 92
706
+ },
707
+ {
708
+ "epoch": 0.03,
709
+ "learning_rate": 0.0001999723447352224,
710
+ "loss": 1.1634,
711
+ "step": 93
712
+ },
713
+ {
714
+ "epoch": 0.03,
715
+ "learning_rate": 0.00019997167436054217,
716
+ "loss": 1.1777,
717
+ "step": 94
718
+ },
719
+ {
720
+ "epoch": 0.03,
721
+ "learning_rate": 0.00019997099595894783,
722
+ "loss": 1.0073,
723
+ "step": 95
724
+ },
725
+ {
726
+ "epoch": 0.03,
727
+ "eval_loss": 1.3020063638687134,
728
+ "eval_runtime": 18.7946,
729
+ "eval_samples_per_second": 3.99,
730
+ "eval_steps_per_second": 3.99,
731
+ "step": 95
732
+ },
733
+ {
734
+ "epoch": 0.03,
735
+ "learning_rate": 0.0001999703095304939,
736
+ "loss": 1.1973,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 0.03,
741
+ "learning_rate": 0.0001999696150752355,
742
+ "loss": 0.9865,
743
+ "step": 97
744
+ },
745
+ {
746
+ "epoch": 0.03,
747
+ "learning_rate": 0.00019996891259322838,
748
+ "loss": 1.397,
749
+ "step": 98
750
+ },
751
+ {
752
+ "epoch": 0.03,
753
+ "learning_rate": 0.00019996820208452895,
754
+ "loss": 1.789,
755
+ "step": 99
756
+ },
757
+ {
758
+ "epoch": 0.03,
759
+ "learning_rate": 0.00019996748354919426,
760
+ "loss": 1.1018,
761
+ "step": 100
762
+ },
763
+ {
764
+ "epoch": 0.03,
765
+ "eval_loss": 1.2908077239990234,
766
+ "eval_runtime": 18.8592,
767
+ "eval_samples_per_second": 3.977,
768
+ "eval_steps_per_second": 3.977,
769
+ "step": 100
770
+ },
771
+ {
772
+ "epoch": 0.03,
773
+ "learning_rate": 0.00019996675698728198,
774
+ "loss": 0.9187,
775
+ "step": 101
776
+ },
777
+ {
778
+ "epoch": 0.03,
779
+ "learning_rate": 0.00019996602239885048,
780
+ "loss": 1.0549,
781
+ "step": 102
782
+ },
783
+ {
784
+ "epoch": 0.03,
785
+ "learning_rate": 0.00019996527978395872,
786
+ "loss": 0.9875,
787
+ "step": 103
788
+ },
789
+ {
790
+ "epoch": 0.03,
791
+ "learning_rate": 0.00019996452914266633,
792
+ "loss": 1.1548,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 0.03,
797
+ "learning_rate": 0.0001999637704750336,
798
+ "loss": 1.2036,
799
+ "step": 105
800
+ },
801
+ {
802
+ "epoch": 0.03,
803
+ "eval_loss": 1.2741996049880981,
804
+ "eval_runtime": 18.8746,
805
+ "eval_samples_per_second": 3.974,
806
+ "eval_steps_per_second": 3.974,
807
+ "step": 105
808
+ },
809
+ {
810
+ "epoch": 0.03,
811
+ "learning_rate": 0.00019996300378112138,
812
+ "loss": 1.0375,
813
+ "step": 106
814
+ },
815
+ {
816
+ "epoch": 0.03,
817
+ "learning_rate": 0.00019996222906099132,
818
+ "loss": 0.948,
819
+ "step": 107
820
+ },
821
+ {
822
+ "epoch": 0.03,
823
+ "learning_rate": 0.00019996144631470554,
824
+ "loss": 1.2329,
825
+ "step": 108
826
+ },
827
+ {
828
+ "epoch": 0.03,
829
+ "learning_rate": 0.00019996065554232697,
830
+ "loss": 1.1863,
831
+ "step": 109
832
+ },
833
+ {
834
+ "epoch": 0.03,
835
+ "learning_rate": 0.00019995985674391904,
836
+ "loss": 1.2444,
837
+ "step": 110
838
+ },
839
+ {
840
+ "epoch": 0.03,
841
+ "eval_loss": 1.2966747283935547,
842
+ "eval_runtime": 18.7891,
843
+ "eval_samples_per_second": 3.992,
844
+ "eval_steps_per_second": 3.992,
845
+ "step": 110
846
+ },
847
+ {
848
+ "epoch": 0.03,
849
+ "learning_rate": 0.00019995904991954591,
850
+ "loss": 1.4494,
851
+ "step": 111
852
+ },
853
+ {
854
+ "epoch": 0.03,
855
+ "learning_rate": 0.00019995823506927237,
856
+ "loss": 1.246,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 0.03,
861
+ "learning_rate": 0.0001999574121931638,
862
+ "loss": 0.6458,
863
+ "step": 113
864
+ },
865
+ {
866
+ "epoch": 0.03,
867
+ "learning_rate": 0.00019995658129128634,
868
+ "loss": 0.8595,
869
+ "step": 114
870
+ },
871
+ {
872
+ "epoch": 0.03,
873
+ "learning_rate": 0.00019995574236370667,
874
+ "loss": 0.6345,
875
+ "step": 115
876
+ },
877
+ {
878
+ "epoch": 0.03,
879
+ "eval_loss": 1.2656028270721436,
880
+ "eval_runtime": 18.7533,
881
+ "eval_samples_per_second": 3.999,
882
+ "eval_steps_per_second": 3.999,
883
+ "step": 115
884
+ },
885
+ {
886
+ "epoch": 0.03,
887
+ "learning_rate": 0.00019995489541049213,
888
+ "loss": 1.5478,
889
+ "step": 116
890
+ },
891
+ {
892
+ "epoch": 0.03,
893
+ "learning_rate": 0.00019995404043171073,
894
+ "loss": 1.3418,
895
+ "step": 117
896
+ },
897
+ {
898
+ "epoch": 0.03,
899
+ "learning_rate": 0.00019995317742743115,
900
+ "loss": 1.0865,
901
+ "step": 118
902
+ },
903
+ {
904
+ "epoch": 0.03,
905
+ "learning_rate": 0.00019995230639772266,
906
+ "loss": 1.4096,
907
+ "step": 119
908
+ },
909
+ {
910
+ "epoch": 0.03,
911
+ "learning_rate": 0.0001999514273426552,
912
+ "loss": 1.0579,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 0.03,
917
+ "eval_loss": 1.2640577554702759,
918
+ "eval_runtime": 18.8481,
919
+ "eval_samples_per_second": 3.979,
920
+ "eval_steps_per_second": 3.979,
921
+ "step": 120
922
+ },
923
+ {
924
+ "epoch": 0.03,
925
+ "learning_rate": 0.00019995054026229934,
926
+ "loss": 1.1476,
927
+ "step": 121
928
+ },
929
+ {
930
+ "epoch": 0.03,
931
+ "learning_rate": 0.00019994964515672635,
932
+ "loss": 1.2489,
933
+ "step": 122
934
+ },
935
+ {
936
+ "epoch": 0.03,
937
+ "learning_rate": 0.00019994874202600802,
938
+ "loss": 1.202,
939
+ "step": 123
940
+ },
941
+ {
942
+ "epoch": 0.03,
943
+ "learning_rate": 0.00019994783087021694,
944
+ "loss": 1.1668,
945
+ "step": 124
946
+ },
947
+ {
948
+ "epoch": 0.03,
949
+ "learning_rate": 0.00019994691168942624,
950
+ "loss": 1.2388,
951
+ "step": 125
952
+ },
953
+ {
954
+ "epoch": 0.03,
955
+ "eval_loss": 1.254260778427124,
956
+ "eval_runtime": 18.8299,
957
+ "eval_samples_per_second": 3.983,
958
+ "eval_steps_per_second": 3.983,
959
+ "step": 125
960
+ },
961
+ {
962
+ "epoch": 0.03,
963
+ "learning_rate": 0.00019994598448370968,
964
+ "loss": 1.2471,
965
+ "step": 126
966
+ },
967
+ {
968
+ "epoch": 0.03,
969
+ "learning_rate": 0.00019994504925314178,
970
+ "loss": 1.3326,
971
+ "step": 127
972
+ },
973
+ {
974
+ "epoch": 0.03,
975
+ "learning_rate": 0.00019994410599779758,
976
+ "loss": 0.8072,
977
+ "step": 128
978
+ },
979
+ {
980
+ "epoch": 0.03,
981
+ "learning_rate": 0.00019994315471775286,
982
+ "loss": 1.3839,
983
+ "step": 129
984
+ },
985
+ {
986
+ "epoch": 0.04,
987
+ "learning_rate": 0.00019994219541308395,
988
+ "loss": 1.0607,
989
+ "step": 130
990
+ },
991
+ {
992
+ "epoch": 0.04,
993
+ "eval_loss": 1.2552071809768677,
994
+ "eval_runtime": 18.8237,
995
+ "eval_samples_per_second": 3.984,
996
+ "eval_steps_per_second": 3.984,
997
+ "step": 130
998
+ }
999
+ ],
1000
+ "logging_steps": 1,
1001
+ "max_steps": 11097,
1002
+ "num_input_tokens_seen": 0,
1003
+ "num_train_epochs": 3,
1004
+ "save_steps": 10,
1005
+ "total_flos": 395446362046464.0,
1006
+ "train_batch_size": 1,
1007
+ "trial_name": null,
1008
+ "trial_params": null
1009
+ }
checkpoint-130/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:786039498a72f9a643419e602fa4d3daa50f1e5858e981d85461c4c589dd2706
3
+ size 4731
checkpoint-140/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: tiiuae/falcon-rw-1b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1.dev0
checkpoint-140/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "tiiuae/falcon-rw-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "dense",
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense_4h_to_h"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-140/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5989e0131c69278698595e6b012308c013e6d310db3e222e29822b9bd75a8316
3
+ size 201353800
checkpoint-140/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7d7a824154b9b4673717293daa23f9538a6ad15365e3d4f384403930662d79f
3
+ size 402771653
checkpoint-140/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa48b73745d83a55e3dbfeaf29884f220fd33b8c5fa44e5f7262f1385744fa71
3
+ size 14575
checkpoint-140/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ecf8375fec1894488614c89112a465863a8e80053c24ea74b9c565476e3e0dd
3
+ size 627
checkpoint-140/trainer_state.json ADDED
@@ -0,0 +1,1085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2552071809768677,
3
+ "best_model_checkpoint": "./qlora-out/checkpoint-130",
4
+ "epoch": 0.037848067045147336,
5
+ "eval_steps": 5,
6
+ "global_step": 140,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 2.0394,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4e-05,
20
+ "loss": 1.8358,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 6e-05,
26
+ "loss": 1.9194,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "learning_rate": 8e-05,
32
+ "loss": 1.5998,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.0,
37
+ "learning_rate": 0.0001,
38
+ "loss": 2.3201,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "eval_loss": 1.9676190614700317,
44
+ "eval_runtime": 16.4542,
45
+ "eval_samples_per_second": 4.558,
46
+ "eval_steps_per_second": 4.558,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.0,
51
+ "learning_rate": 0.00012,
52
+ "loss": 1.7955,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.0,
57
+ "learning_rate": 0.00014,
58
+ "loss": 1.9124,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.8056,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0,
69
+ "learning_rate": 0.00018,
70
+ "loss": 1.6452,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.0,
75
+ "learning_rate": 0.0002,
76
+ "loss": 2.2557,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.0,
81
+ "eval_loss": 1.739979863166809,
82
+ "eval_runtime": 16.9804,
83
+ "eval_samples_per_second": 4.417,
84
+ "eval_steps_per_second": 4.417,
85
+ "step": 10
86
+ },
87
+ {
88
+ "epoch": 0.0,
89
+ "learning_rate": 0.00019999999598540582,
90
+ "loss": 1.5087,
91
+ "step": 11
92
+ },
93
+ {
94
+ "epoch": 0.0,
95
+ "learning_rate": 0.00019999998394162357,
96
+ "loss": 1.785,
97
+ "step": 12
98
+ },
99
+ {
100
+ "epoch": 0.0,
101
+ "learning_rate": 0.00019999996386865424,
102
+ "loss": 1.5459,
103
+ "step": 13
104
+ },
105
+ {
106
+ "epoch": 0.0,
107
+ "learning_rate": 0.0001999999357664994,
108
+ "loss": 1.8027,
109
+ "step": 14
110
+ },
111
+ {
112
+ "epoch": 0.0,
113
+ "learning_rate": 0.00019999989963516136,
114
+ "loss": 1.571,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.0,
119
+ "eval_loss": 1.6035555601119995,
120
+ "eval_runtime": 17.543,
121
+ "eval_samples_per_second": 4.275,
122
+ "eval_steps_per_second": 4.275,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.0,
127
+ "learning_rate": 0.000199999855474643,
128
+ "loss": 1.2283,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.0,
133
+ "learning_rate": 0.00019999980328494788,
134
+ "loss": 1.2223,
135
+ "step": 17
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "learning_rate": 0.00019999974306608012,
140
+ "loss": 1.8525,
141
+ "step": 18
142
+ },
143
+ {
144
+ "epoch": 0.01,
145
+ "learning_rate": 0.00019999967481804467,
146
+ "loss": 1.3687,
147
+ "step": 19
148
+ },
149
+ {
150
+ "epoch": 0.01,
151
+ "learning_rate": 0.00019999959854084692,
152
+ "loss": 1.3875,
153
+ "step": 20
154
+ },
155
+ {
156
+ "epoch": 0.01,
157
+ "eval_loss": 1.5073901414871216,
158
+ "eval_runtime": 18.6107,
159
+ "eval_samples_per_second": 4.03,
160
+ "eval_steps_per_second": 4.03,
161
+ "step": 20
162
+ },
163
+ {
164
+ "epoch": 0.01,
165
+ "learning_rate": 0.00019999951423449303,
166
+ "loss": 1.3078,
167
+ "step": 21
168
+ },
169
+ {
170
+ "epoch": 0.01,
171
+ "learning_rate": 0.00019999942189898975,
172
+ "loss": 1.4264,
173
+ "step": 22
174
+ },
175
+ {
176
+ "epoch": 0.01,
177
+ "learning_rate": 0.00019999932153434453,
178
+ "loss": 1.8519,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.01,
183
+ "learning_rate": 0.00019999921314056539,
184
+ "loss": 1.1411,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.01,
189
+ "learning_rate": 0.00019999909671766103,
190
+ "loss": 1.5436,
191
+ "step": 25
192
+ },
193
+ {
194
+ "epoch": 0.01,
195
+ "eval_loss": 1.4679571390151978,
196
+ "eval_runtime": 19.229,
197
+ "eval_samples_per_second": 3.9,
198
+ "eval_steps_per_second": 3.9,
199
+ "step": 25
200
+ },
201
+ {
202
+ "epoch": 0.01,
203
+ "learning_rate": 0.00019999897226564083,
204
+ "loss": 1.2738,
205
+ "step": 26
206
+ },
207
+ {
208
+ "epoch": 0.01,
209
+ "learning_rate": 0.0001999988397845148,
210
+ "loss": 1.1203,
211
+ "step": 27
212
+ },
213
+ {
214
+ "epoch": 0.01,
215
+ "learning_rate": 0.00019999869927429353,
216
+ "loss": 1.1895,
217
+ "step": 28
218
+ },
219
+ {
220
+ "epoch": 0.01,
221
+ "learning_rate": 0.0001999985507349883,
222
+ "loss": 1.3932,
223
+ "step": 29
224
+ },
225
+ {
226
+ "epoch": 0.01,
227
+ "learning_rate": 0.00019999839416661106,
228
+ "loss": 1.4257,
229
+ "step": 30
230
+ },
231
+ {
232
+ "epoch": 0.01,
233
+ "eval_loss": 1.422224998474121,
234
+ "eval_runtime": 18.4406,
235
+ "eval_samples_per_second": 4.067,
236
+ "eval_steps_per_second": 4.067,
237
+ "step": 30
238
+ },
239
+ {
240
+ "epoch": 0.01,
241
+ "learning_rate": 0.00019999822956917439,
242
+ "loss": 1.1026,
243
+ "step": 31
244
+ },
245
+ {
246
+ "epoch": 0.01,
247
+ "learning_rate": 0.00019999805694269145,
248
+ "loss": 1.337,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.01,
253
+ "learning_rate": 0.0001999978762871762,
254
+ "loss": 1.2867,
255
+ "step": 33
256
+ },
257
+ {
258
+ "epoch": 0.01,
259
+ "learning_rate": 0.00019999768760264303,
260
+ "loss": 1.4109,
261
+ "step": 34
262
+ },
263
+ {
264
+ "epoch": 0.01,
265
+ "learning_rate": 0.00019999749088910718,
266
+ "loss": 1.097,
267
+ "step": 35
268
+ },
269
+ {
270
+ "epoch": 0.01,
271
+ "eval_loss": 1.4048928022384644,
272
+ "eval_runtime": 18.7186,
273
+ "eval_samples_per_second": 4.007,
274
+ "eval_steps_per_second": 4.007,
275
+ "step": 35
276
+ },
277
+ {
278
+ "epoch": 0.01,
279
+ "learning_rate": 0.0001999972861465844,
280
+ "loss": 1.11,
281
+ "step": 36
282
+ },
283
+ {
284
+ "epoch": 0.01,
285
+ "learning_rate": 0.00019999707337509115,
286
+ "loss": 0.9963,
287
+ "step": 37
288
+ },
289
+ {
290
+ "epoch": 0.01,
291
+ "learning_rate": 0.00019999685257464446,
292
+ "loss": 1.2733,
293
+ "step": 38
294
+ },
295
+ {
296
+ "epoch": 0.01,
297
+ "learning_rate": 0.00019999662374526215,
298
+ "loss": 1.6809,
299
+ "step": 39
300
+ },
301
+ {
302
+ "epoch": 0.01,
303
+ "learning_rate": 0.00019999638688696254,
304
+ "loss": 1.4748,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.01,
309
+ "eval_loss": 1.383140206336975,
310
+ "eval_runtime": 18.9843,
311
+ "eval_samples_per_second": 3.951,
312
+ "eval_steps_per_second": 3.951,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.01,
317
+ "learning_rate": 0.00019999614199976465,
318
+ "loss": 1.3495,
319
+ "step": 41
320
+ },
321
+ {
322
+ "epoch": 0.01,
323
+ "learning_rate": 0.00019999588908368817,
324
+ "loss": 0.6009,
325
+ "step": 42
326
+ },
327
+ {
328
+ "epoch": 0.01,
329
+ "learning_rate": 0.00019999562813875334,
330
+ "loss": 1.2478,
331
+ "step": 43
332
+ },
333
+ {
334
+ "epoch": 0.01,
335
+ "learning_rate": 0.00019999535916498116,
336
+ "loss": 1.525,
337
+ "step": 44
338
+ },
339
+ {
340
+ "epoch": 0.01,
341
+ "learning_rate": 0.00019999508216239322,
342
+ "loss": 1.1752,
343
+ "step": 45
344
+ },
345
+ {
346
+ "epoch": 0.01,
347
+ "eval_loss": 1.378393292427063,
348
+ "eval_runtime": 18.7075,
349
+ "eval_samples_per_second": 4.009,
350
+ "eval_steps_per_second": 4.009,
351
+ "step": 45
352
+ },
353
+ {
354
+ "epoch": 0.01,
355
+ "learning_rate": 0.0001999947971310118,
356
+ "loss": 1.4202,
357
+ "step": 46
358
+ },
359
+ {
360
+ "epoch": 0.01,
361
+ "learning_rate": 0.0001999945040708597,
362
+ "loss": 1.2551,
363
+ "step": 47
364
+ },
365
+ {
366
+ "epoch": 0.01,
367
+ "learning_rate": 0.00019999420298196055,
368
+ "loss": 1.3672,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.01,
373
+ "learning_rate": 0.00019999389386433843,
374
+ "loss": 1.4148,
375
+ "step": 49
376
+ },
377
+ {
378
+ "epoch": 0.01,
379
+ "learning_rate": 0.00019999357671801818,
380
+ "loss": 1.3857,
381
+ "step": 50
382
+ },
383
+ {
384
+ "epoch": 0.01,
385
+ "eval_loss": 1.3779667615890503,
386
+ "eval_runtime": 18.7662,
387
+ "eval_samples_per_second": 3.997,
388
+ "eval_steps_per_second": 3.997,
389
+ "step": 50
390
+ },
391
+ {
392
+ "epoch": 0.01,
393
+ "learning_rate": 0.00019999325154302535,
394
+ "loss": 1.8206,
395
+ "step": 51
396
+ },
397
+ {
398
+ "epoch": 0.01,
399
+ "learning_rate": 0.00019999291833938597,
400
+ "loss": 1.248,
401
+ "step": 52
402
+ },
403
+ {
404
+ "epoch": 0.01,
405
+ "learning_rate": 0.0001999925771071268,
406
+ "loss": 1.2879,
407
+ "step": 53
408
+ },
409
+ {
410
+ "epoch": 0.01,
411
+ "learning_rate": 0.00019999222784627523,
412
+ "loss": 1.298,
413
+ "step": 54
414
+ },
415
+ {
416
+ "epoch": 0.01,
417
+ "learning_rate": 0.00019999187055685935,
418
+ "loss": 1.5965,
419
+ "step": 55
420
+ },
421
+ {
422
+ "epoch": 0.01,
423
+ "eval_loss": 1.3631337881088257,
424
+ "eval_runtime": 18.8459,
425
+ "eval_samples_per_second": 3.98,
426
+ "eval_steps_per_second": 3.98,
427
+ "step": 55
428
+ },
429
+ {
430
+ "epoch": 0.02,
431
+ "learning_rate": 0.0001999915052389078,
432
+ "loss": 1.3097,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.02,
437
+ "learning_rate": 0.00019999113189244993,
438
+ "loss": 1.5143,
439
+ "step": 57
440
+ },
441
+ {
442
+ "epoch": 0.02,
443
+ "learning_rate": 0.00019999075051751572,
444
+ "loss": 1.4421,
445
+ "step": 58
446
+ },
447
+ {
448
+ "epoch": 0.02,
449
+ "learning_rate": 0.0001999903611141358,
450
+ "loss": 1.2693,
451
+ "step": 59
452
+ },
453
+ {
454
+ "epoch": 0.02,
455
+ "learning_rate": 0.00019998996368234142,
456
+ "loss": 1.071,
457
+ "step": 60
458
+ },
459
+ {
460
+ "epoch": 0.02,
461
+ "eval_loss": 1.3275150060653687,
462
+ "eval_runtime": 18.8306,
463
+ "eval_samples_per_second": 3.983,
464
+ "eval_steps_per_second": 3.983,
465
+ "step": 60
466
+ },
467
+ {
468
+ "epoch": 0.02,
469
+ "learning_rate": 0.00019998955822216448,
470
+ "loss": 1.4956,
471
+ "step": 61
472
+ },
473
+ {
474
+ "epoch": 0.02,
475
+ "learning_rate": 0.00019998914473363754,
476
+ "loss": 1.2852,
477
+ "step": 62
478
+ },
479
+ {
480
+ "epoch": 0.02,
481
+ "learning_rate": 0.00019998872321679386,
482
+ "loss": 1.1603,
483
+ "step": 63
484
+ },
485
+ {
486
+ "epoch": 0.02,
487
+ "learning_rate": 0.00019998829367166718,
488
+ "loss": 1.3886,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 0.02,
493
+ "learning_rate": 0.00019998785609829205,
494
+ "loss": 1.197,
495
+ "step": 65
496
+ },
497
+ {
498
+ "epoch": 0.02,
499
+ "eval_loss": 1.3170785903930664,
500
+ "eval_runtime": 18.9971,
501
+ "eval_samples_per_second": 3.948,
502
+ "eval_steps_per_second": 3.948,
503
+ "step": 65
504
+ },
505
+ {
506
+ "epoch": 0.02,
507
+ "learning_rate": 0.00019998741049670363,
508
+ "loss": 1.3182,
509
+ "step": 66
510
+ },
511
+ {
512
+ "epoch": 0.02,
513
+ "learning_rate": 0.00019998695686693766,
514
+ "loss": 1.0751,
515
+ "step": 67
516
+ },
517
+ {
518
+ "epoch": 0.02,
519
+ "learning_rate": 0.00019998649520903055,
520
+ "loss": 1.2292,
521
+ "step": 68
522
+ },
523
+ {
524
+ "epoch": 0.02,
525
+ "learning_rate": 0.00019998602552301936,
526
+ "loss": 1.4889,
527
+ "step": 69
528
+ },
529
+ {
530
+ "epoch": 0.02,
531
+ "learning_rate": 0.00019998554780894186,
532
+ "loss": 1.8883,
533
+ "step": 70
534
+ },
535
+ {
536
+ "epoch": 0.02,
537
+ "eval_loss": 1.3108329772949219,
538
+ "eval_runtime": 18.8686,
539
+ "eval_samples_per_second": 3.975,
540
+ "eval_steps_per_second": 3.975,
541
+ "step": 70
542
+ },
543
+ {
544
+ "epoch": 0.02,
545
+ "learning_rate": 0.0001999850620668364,
546
+ "loss": 1.5412,
547
+ "step": 71
548
+ },
549
+ {
550
+ "epoch": 0.02,
551
+ "learning_rate": 0.0001999845682967419,
552
+ "loss": 1.4129,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 0.02,
557
+ "learning_rate": 0.00019998406649869807,
558
+ "loss": 1.1464,
559
+ "step": 73
560
+ },
561
+ {
562
+ "epoch": 0.02,
563
+ "learning_rate": 0.0001999835566727452,
564
+ "loss": 1.3642,
565
+ "step": 74
566
+ },
567
+ {
568
+ "epoch": 0.02,
569
+ "learning_rate": 0.00019998303881892424,
570
+ "loss": 1.0119,
571
+ "step": 75
572
+ },
573
+ {
574
+ "epoch": 0.02,
575
+ "eval_loss": 1.305336356163025,
576
+ "eval_runtime": 18.6567,
577
+ "eval_samples_per_second": 4.02,
578
+ "eval_steps_per_second": 4.02,
579
+ "step": 75
580
+ },
581
+ {
582
+ "epoch": 0.02,
583
+ "learning_rate": 0.00019998251293727672,
584
+ "loss": 1.2123,
585
+ "step": 76
586
+ },
587
+ {
588
+ "epoch": 0.02,
589
+ "learning_rate": 0.0001999819790278449,
590
+ "loss": 1.1538,
591
+ "step": 77
592
+ },
593
+ {
594
+ "epoch": 0.02,
595
+ "learning_rate": 0.0001999814370906716,
596
+ "loss": 1.292,
597
+ "step": 78
598
+ },
599
+ {
600
+ "epoch": 0.02,
601
+ "learning_rate": 0.0001999808871258004,
602
+ "loss": 1.4582,
603
+ "step": 79
604
+ },
605
+ {
606
+ "epoch": 0.02,
607
+ "learning_rate": 0.00019998032913327545,
608
+ "loss": 1.399,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 0.02,
613
+ "eval_loss": 1.3035436868667603,
614
+ "eval_runtime": 18.936,
615
+ "eval_samples_per_second": 3.961,
616
+ "eval_steps_per_second": 3.961,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 0.02,
621
+ "learning_rate": 0.00019997976311314148,
622
+ "loss": 1.2134,
623
+ "step": 81
624
+ },
625
+ {
626
+ "epoch": 0.02,
627
+ "learning_rate": 0.00019997918906544402,
628
+ "loss": 1.3052,
629
+ "step": 82
630
+ },
631
+ {
632
+ "epoch": 0.02,
633
+ "learning_rate": 0.00019997860699022915,
634
+ "loss": 1.2369,
635
+ "step": 83
636
+ },
637
+ {
638
+ "epoch": 0.02,
639
+ "learning_rate": 0.00019997801688754354,
640
+ "loss": 1.4202,
641
+ "step": 84
642
+ },
643
+ {
644
+ "epoch": 0.02,
645
+ "learning_rate": 0.00019997741875743463,
646
+ "loss": 1.5369,
647
+ "step": 85
648
+ },
649
+ {
650
+ "epoch": 0.02,
651
+ "eval_loss": 1.3028186559677124,
652
+ "eval_runtime": 18.8349,
653
+ "eval_samples_per_second": 3.982,
654
+ "eval_steps_per_second": 3.982,
655
+ "step": 85
656
+ },
657
+ {
658
+ "epoch": 0.02,
659
+ "learning_rate": 0.00019997681259995045,
660
+ "loss": 1.1764,
661
+ "step": 86
662
+ },
663
+ {
664
+ "epoch": 0.02,
665
+ "learning_rate": 0.00019997619841513964,
666
+ "loss": 1.1738,
667
+ "step": 87
668
+ },
669
+ {
670
+ "epoch": 0.02,
671
+ "learning_rate": 0.00019997557620305152,
672
+ "loss": 1.0718,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 0.02,
677
+ "learning_rate": 0.00019997494596373603,
678
+ "loss": 0.9415,
679
+ "step": 89
680
+ },
681
+ {
682
+ "epoch": 0.02,
683
+ "learning_rate": 0.00019997430769724383,
684
+ "loss": 1.5707,
685
+ "step": 90
686
+ },
687
+ {
688
+ "epoch": 0.02,
689
+ "eval_loss": 1.2982343435287476,
690
+ "eval_runtime": 18.86,
691
+ "eval_samples_per_second": 3.977,
692
+ "eval_steps_per_second": 3.977,
693
+ "step": 90
694
+ },
695
+ {
696
+ "epoch": 0.02,
697
+ "learning_rate": 0.0001999736614036261,
698
+ "loss": 1.1557,
699
+ "step": 91
700
+ },
701
+ {
702
+ "epoch": 0.02,
703
+ "learning_rate": 0.00019997300708293482,
704
+ "loss": 1.5742,
705
+ "step": 92
706
+ },
707
+ {
708
+ "epoch": 0.03,
709
+ "learning_rate": 0.0001999723447352224,
710
+ "loss": 1.1634,
711
+ "step": 93
712
+ },
713
+ {
714
+ "epoch": 0.03,
715
+ "learning_rate": 0.00019997167436054217,
716
+ "loss": 1.1777,
717
+ "step": 94
718
+ },
719
+ {
720
+ "epoch": 0.03,
721
+ "learning_rate": 0.00019997099595894783,
722
+ "loss": 1.0073,
723
+ "step": 95
724
+ },
725
+ {
726
+ "epoch": 0.03,
727
+ "eval_loss": 1.3020063638687134,
728
+ "eval_runtime": 18.7946,
729
+ "eval_samples_per_second": 3.99,
730
+ "eval_steps_per_second": 3.99,
731
+ "step": 95
732
+ },
733
+ {
734
+ "epoch": 0.03,
735
+ "learning_rate": 0.0001999703095304939,
736
+ "loss": 1.1973,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 0.03,
741
+ "learning_rate": 0.0001999696150752355,
742
+ "loss": 0.9865,
743
+ "step": 97
744
+ },
745
+ {
746
+ "epoch": 0.03,
747
+ "learning_rate": 0.00019996891259322838,
748
+ "loss": 1.397,
749
+ "step": 98
750
+ },
751
+ {
752
+ "epoch": 0.03,
753
+ "learning_rate": 0.00019996820208452895,
754
+ "loss": 1.789,
755
+ "step": 99
756
+ },
757
+ {
758
+ "epoch": 0.03,
759
+ "learning_rate": 0.00019996748354919426,
760
+ "loss": 1.1018,
761
+ "step": 100
762
+ },
763
+ {
764
+ "epoch": 0.03,
765
+ "eval_loss": 1.2908077239990234,
766
+ "eval_runtime": 18.8592,
767
+ "eval_samples_per_second": 3.977,
768
+ "eval_steps_per_second": 3.977,
769
+ "step": 100
770
+ },
771
+ {
772
+ "epoch": 0.03,
773
+ "learning_rate": 0.00019996675698728198,
774
+ "loss": 0.9187,
775
+ "step": 101
776
+ },
777
+ {
778
+ "epoch": 0.03,
779
+ "learning_rate": 0.00019996602239885048,
780
+ "loss": 1.0549,
781
+ "step": 102
782
+ },
783
+ {
784
+ "epoch": 0.03,
785
+ "learning_rate": 0.00019996527978395872,
786
+ "loss": 0.9875,
787
+ "step": 103
788
+ },
789
+ {
790
+ "epoch": 0.03,
791
+ "learning_rate": 0.00019996452914266633,
792
+ "loss": 1.1548,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 0.03,
797
+ "learning_rate": 0.0001999637704750336,
798
+ "loss": 1.2036,
799
+ "step": 105
800
+ },
801
+ {
802
+ "epoch": 0.03,
803
+ "eval_loss": 1.2741996049880981,
804
+ "eval_runtime": 18.8746,
805
+ "eval_samples_per_second": 3.974,
806
+ "eval_steps_per_second": 3.974,
807
+ "step": 105
808
+ },
809
+ {
810
+ "epoch": 0.03,
811
+ "learning_rate": 0.00019996300378112138,
812
+ "loss": 1.0375,
813
+ "step": 106
814
+ },
815
+ {
816
+ "epoch": 0.03,
817
+ "learning_rate": 0.00019996222906099132,
818
+ "loss": 0.948,
819
+ "step": 107
820
+ },
821
+ {
822
+ "epoch": 0.03,
823
+ "learning_rate": 0.00019996144631470554,
824
+ "loss": 1.2329,
825
+ "step": 108
826
+ },
827
+ {
828
+ "epoch": 0.03,
829
+ "learning_rate": 0.00019996065554232697,
830
+ "loss": 1.1863,
831
+ "step": 109
832
+ },
833
+ {
834
+ "epoch": 0.03,
835
+ "learning_rate": 0.00019995985674391904,
836
+ "loss": 1.2444,
837
+ "step": 110
838
+ },
839
+ {
840
+ "epoch": 0.03,
841
+ "eval_loss": 1.2966747283935547,
842
+ "eval_runtime": 18.7891,
843
+ "eval_samples_per_second": 3.992,
844
+ "eval_steps_per_second": 3.992,
845
+ "step": 110
846
+ },
847
+ {
848
+ "epoch": 0.03,
849
+ "learning_rate": 0.00019995904991954591,
850
+ "loss": 1.4494,
851
+ "step": 111
852
+ },
853
+ {
854
+ "epoch": 0.03,
855
+ "learning_rate": 0.00019995823506927237,
856
+ "loss": 1.246,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 0.03,
861
+ "learning_rate": 0.0001999574121931638,
862
+ "loss": 0.6458,
863
+ "step": 113
864
+ },
865
+ {
866
+ "epoch": 0.03,
867
+ "learning_rate": 0.00019995658129128634,
868
+ "loss": 0.8595,
869
+ "step": 114
870
+ },
871
+ {
872
+ "epoch": 0.03,
873
+ "learning_rate": 0.00019995574236370667,
874
+ "loss": 0.6345,
875
+ "step": 115
876
+ },
877
+ {
878
+ "epoch": 0.03,
879
+ "eval_loss": 1.2656028270721436,
880
+ "eval_runtime": 18.7533,
881
+ "eval_samples_per_second": 3.999,
882
+ "eval_steps_per_second": 3.999,
883
+ "step": 115
884
+ },
885
+ {
886
+ "epoch": 0.03,
887
+ "learning_rate": 0.00019995489541049213,
888
+ "loss": 1.5478,
889
+ "step": 116
890
+ },
891
+ {
892
+ "epoch": 0.03,
893
+ "learning_rate": 0.00019995404043171073,
894
+ "loss": 1.3418,
895
+ "step": 117
896
+ },
897
+ {
898
+ "epoch": 0.03,
899
+ "learning_rate": 0.00019995317742743115,
900
+ "loss": 1.0865,
901
+ "step": 118
902
+ },
903
+ {
904
+ "epoch": 0.03,
905
+ "learning_rate": 0.00019995230639772266,
906
+ "loss": 1.4096,
907
+ "step": 119
908
+ },
909
+ {
910
+ "epoch": 0.03,
911
+ "learning_rate": 0.0001999514273426552,
912
+ "loss": 1.0579,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 0.03,
917
+ "eval_loss": 1.2640577554702759,
918
+ "eval_runtime": 18.8481,
919
+ "eval_samples_per_second": 3.979,
920
+ "eval_steps_per_second": 3.979,
921
+ "step": 120
922
+ },
923
+ {
924
+ "epoch": 0.03,
925
+ "learning_rate": 0.00019995054026229934,
926
+ "loss": 1.1476,
927
+ "step": 121
928
+ },
929
+ {
930
+ "epoch": 0.03,
931
+ "learning_rate": 0.00019994964515672635,
932
+ "loss": 1.2489,
933
+ "step": 122
934
+ },
935
+ {
936
+ "epoch": 0.03,
937
+ "learning_rate": 0.00019994874202600802,
938
+ "loss": 1.202,
939
+ "step": 123
940
+ },
941
+ {
942
+ "epoch": 0.03,
943
+ "learning_rate": 0.00019994783087021694,
944
+ "loss": 1.1668,
945
+ "step": 124
946
+ },
947
+ {
948
+ "epoch": 0.03,
949
+ "learning_rate": 0.00019994691168942624,
950
+ "loss": 1.2388,
951
+ "step": 125
952
+ },
953
+ {
954
+ "epoch": 0.03,
955
+ "eval_loss": 1.254260778427124,
956
+ "eval_runtime": 18.8299,
957
+ "eval_samples_per_second": 3.983,
958
+ "eval_steps_per_second": 3.983,
959
+ "step": 125
960
+ },
961
+ {
962
+ "epoch": 0.03,
963
+ "learning_rate": 0.00019994598448370968,
964
+ "loss": 1.2471,
965
+ "step": 126
966
+ },
967
+ {
968
+ "epoch": 0.03,
969
+ "learning_rate": 0.00019994504925314178,
970
+ "loss": 1.3326,
971
+ "step": 127
972
+ },
973
+ {
974
+ "epoch": 0.03,
975
+ "learning_rate": 0.00019994410599779758,
976
+ "loss": 0.8072,
977
+ "step": 128
978
+ },
979
+ {
980
+ "epoch": 0.03,
981
+ "learning_rate": 0.00019994315471775286,
982
+ "loss": 1.3839,
983
+ "step": 129
984
+ },
985
+ {
986
+ "epoch": 0.04,
987
+ "learning_rate": 0.00019994219541308395,
988
+ "loss": 1.0607,
989
+ "step": 130
990
+ },
991
+ {
992
+ "epoch": 0.04,
993
+ "eval_loss": 1.2552071809768677,
994
+ "eval_runtime": 18.8237,
995
+ "eval_samples_per_second": 3.984,
996
+ "eval_steps_per_second": 3.984,
997
+ "step": 130
998
+ },
999
+ {
1000
+ "epoch": 0.04,
1001
+ "learning_rate": 0.0001999412280838679,
1002
+ "loss": 1.125,
1003
+ "step": 131
1004
+ },
1005
+ {
1006
+ "epoch": 0.04,
1007
+ "learning_rate": 0.0001999402527301824,
1008
+ "loss": 1.5856,
1009
+ "step": 132
1010
+ },
1011
+ {
1012
+ "epoch": 0.04,
1013
+ "learning_rate": 0.00019993926935210575,
1014
+ "loss": 1.0919,
1015
+ "step": 133
1016
+ },
1017
+ {
1018
+ "epoch": 0.04,
1019
+ "learning_rate": 0.00019993827794971685,
1020
+ "loss": 1.077,
1021
+ "step": 134
1022
+ },
1023
+ {
1024
+ "epoch": 0.04,
1025
+ "learning_rate": 0.0001999372785230954,
1026
+ "loss": 1.0723,
1027
+ "step": 135
1028
+ },
1029
+ {
1030
+ "epoch": 0.04,
1031
+ "eval_loss": 1.2610790729522705,
1032
+ "eval_runtime": 18.7486,
1033
+ "eval_samples_per_second": 4.0,
1034
+ "eval_steps_per_second": 4.0,
1035
+ "step": 135
1036
+ },
1037
+ {
1038
+ "epoch": 0.04,
1039
+ "learning_rate": 0.00019993627107232155,
1040
+ "loss": 1.2645,
1041
+ "step": 136
1042
+ },
1043
+ {
1044
+ "epoch": 0.04,
1045
+ "learning_rate": 0.00019993525559747622,
1046
+ "loss": 1.0603,
1047
+ "step": 137
1048
+ },
1049
+ {
1050
+ "epoch": 0.04,
1051
+ "learning_rate": 0.00019993423209864103,
1052
+ "loss": 1.5076,
1053
+ "step": 138
1054
+ },
1055
+ {
1056
+ "epoch": 0.04,
1057
+ "learning_rate": 0.00019993320057589805,
1058
+ "loss": 0.7648,
1059
+ "step": 139
1060
+ },
1061
+ {
1062
+ "epoch": 0.04,
1063
+ "learning_rate": 0.00019993216102933014,
1064
+ "loss": 1.3775,
1065
+ "step": 140
1066
+ },
1067
+ {
1068
+ "epoch": 0.04,
1069
+ "eval_loss": 1.2581839561462402,
1070
+ "eval_runtime": 18.8104,
1071
+ "eval_samples_per_second": 3.987,
1072
+ "eval_steps_per_second": 3.987,
1073
+ "step": 140
1074
+ }
1075
+ ],
1076
+ "logging_steps": 1,
1077
+ "max_steps": 11097,
1078
+ "num_input_tokens_seen": 0,
1079
+ "num_train_epochs": 3,
1080
+ "save_steps": 10,
1081
+ "total_flos": 428319653756928.0,
1082
+ "train_batch_size": 1,
1083
+ "trial_name": null,
1084
+ "trial_params": null
1085
+ }
checkpoint-140/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:786039498a72f9a643419e602fa4d3daa50f1e5858e981d85461c4c589dd2706
3
+ size 4731
checkpoint-150/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: tiiuae/falcon-rw-1b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1.dev0
checkpoint-150/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "tiiuae/falcon-rw-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "dense",
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense_4h_to_h"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-150/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b37aa1e63f70d0177527c1a11ea1cfacd3bf7739a3cf513bf5933cdc8c9a2ad3
3
+ size 201353800
checkpoint-150/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4cbd7d1ed9223af407a33bda9d0525230d881aa8bf26c97ea1d5ddef1979444
3
+ size 402771653
checkpoint-150/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:648e959eb466505bd326b36fdac52b2ce644eb86ec36e0773d36bd18abef0bf4
3
+ size 14575
checkpoint-150/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f28ab913faa006a61be0776dc8fe1545d2ea80b217d324396b9c052d2096d3c
3
+ size 627
checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,1161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2364587783813477,
3
+ "best_model_checkpoint": "./qlora-out/checkpoint-150",
4
+ "epoch": 0.040551500405515,
5
+ "eval_steps": 5,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 2.0394,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4e-05,
20
+ "loss": 1.8358,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 6e-05,
26
+ "loss": 1.9194,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "learning_rate": 8e-05,
32
+ "loss": 1.5998,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.0,
37
+ "learning_rate": 0.0001,
38
+ "loss": 2.3201,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "eval_loss": 1.9676190614700317,
44
+ "eval_runtime": 16.4542,
45
+ "eval_samples_per_second": 4.558,
46
+ "eval_steps_per_second": 4.558,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.0,
51
+ "learning_rate": 0.00012,
52
+ "loss": 1.7955,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.0,
57
+ "learning_rate": 0.00014,
58
+ "loss": 1.9124,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.8056,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0,
69
+ "learning_rate": 0.00018,
70
+ "loss": 1.6452,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.0,
75
+ "learning_rate": 0.0002,
76
+ "loss": 2.2557,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.0,
81
+ "eval_loss": 1.739979863166809,
82
+ "eval_runtime": 16.9804,
83
+ "eval_samples_per_second": 4.417,
84
+ "eval_steps_per_second": 4.417,
85
+ "step": 10
86
+ },
87
+ {
88
+ "epoch": 0.0,
89
+ "learning_rate": 0.00019999999598540582,
90
+ "loss": 1.5087,
91
+ "step": 11
92
+ },
93
+ {
94
+ "epoch": 0.0,
95
+ "learning_rate": 0.00019999998394162357,
96
+ "loss": 1.785,
97
+ "step": 12
98
+ },
99
+ {
100
+ "epoch": 0.0,
101
+ "learning_rate": 0.00019999996386865424,
102
+ "loss": 1.5459,
103
+ "step": 13
104
+ },
105
+ {
106
+ "epoch": 0.0,
107
+ "learning_rate": 0.0001999999357664994,
108
+ "loss": 1.8027,
109
+ "step": 14
110
+ },
111
+ {
112
+ "epoch": 0.0,
113
+ "learning_rate": 0.00019999989963516136,
114
+ "loss": 1.571,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.0,
119
+ "eval_loss": 1.6035555601119995,
120
+ "eval_runtime": 17.543,
121
+ "eval_samples_per_second": 4.275,
122
+ "eval_steps_per_second": 4.275,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.0,
127
+ "learning_rate": 0.000199999855474643,
128
+ "loss": 1.2283,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.0,
133
+ "learning_rate": 0.00019999980328494788,
134
+ "loss": 1.2223,
135
+ "step": 17
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "learning_rate": 0.00019999974306608012,
140
+ "loss": 1.8525,
141
+ "step": 18
142
+ },
143
+ {
144
+ "epoch": 0.01,
145
+ "learning_rate": 0.00019999967481804467,
146
+ "loss": 1.3687,
147
+ "step": 19
148
+ },
149
+ {
150
+ "epoch": 0.01,
151
+ "learning_rate": 0.00019999959854084692,
152
+ "loss": 1.3875,
153
+ "step": 20
154
+ },
155
+ {
156
+ "epoch": 0.01,
157
+ "eval_loss": 1.5073901414871216,
158
+ "eval_runtime": 18.6107,
159
+ "eval_samples_per_second": 4.03,
160
+ "eval_steps_per_second": 4.03,
161
+ "step": 20
162
+ },
163
+ {
164
+ "epoch": 0.01,
165
+ "learning_rate": 0.00019999951423449303,
166
+ "loss": 1.3078,
167
+ "step": 21
168
+ },
169
+ {
170
+ "epoch": 0.01,
171
+ "learning_rate": 0.00019999942189898975,
172
+ "loss": 1.4264,
173
+ "step": 22
174
+ },
175
+ {
176
+ "epoch": 0.01,
177
+ "learning_rate": 0.00019999932153434453,
178
+ "loss": 1.8519,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.01,
183
+ "learning_rate": 0.00019999921314056539,
184
+ "loss": 1.1411,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.01,
189
+ "learning_rate": 0.00019999909671766103,
190
+ "loss": 1.5436,
191
+ "step": 25
192
+ },
193
+ {
194
+ "epoch": 0.01,
195
+ "eval_loss": 1.4679571390151978,
196
+ "eval_runtime": 19.229,
197
+ "eval_samples_per_second": 3.9,
198
+ "eval_steps_per_second": 3.9,
199
+ "step": 25
200
+ },
201
+ {
202
+ "epoch": 0.01,
203
+ "learning_rate": 0.00019999897226564083,
204
+ "loss": 1.2738,
205
+ "step": 26
206
+ },
207
+ {
208
+ "epoch": 0.01,
209
+ "learning_rate": 0.0001999988397845148,
210
+ "loss": 1.1203,
211
+ "step": 27
212
+ },
213
+ {
214
+ "epoch": 0.01,
215
+ "learning_rate": 0.00019999869927429353,
216
+ "loss": 1.1895,
217
+ "step": 28
218
+ },
219
+ {
220
+ "epoch": 0.01,
221
+ "learning_rate": 0.0001999985507349883,
222
+ "loss": 1.3932,
223
+ "step": 29
224
+ },
225
+ {
226
+ "epoch": 0.01,
227
+ "learning_rate": 0.00019999839416661106,
228
+ "loss": 1.4257,
229
+ "step": 30
230
+ },
231
+ {
232
+ "epoch": 0.01,
233
+ "eval_loss": 1.422224998474121,
234
+ "eval_runtime": 18.4406,
235
+ "eval_samples_per_second": 4.067,
236
+ "eval_steps_per_second": 4.067,
237
+ "step": 30
238
+ },
239
+ {
240
+ "epoch": 0.01,
241
+ "learning_rate": 0.00019999822956917439,
242
+ "loss": 1.1026,
243
+ "step": 31
244
+ },
245
+ {
246
+ "epoch": 0.01,
247
+ "learning_rate": 0.00019999805694269145,
248
+ "loss": 1.337,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.01,
253
+ "learning_rate": 0.0001999978762871762,
254
+ "loss": 1.2867,
255
+ "step": 33
256
+ },
257
+ {
258
+ "epoch": 0.01,
259
+ "learning_rate": 0.00019999768760264303,
260
+ "loss": 1.4109,
261
+ "step": 34
262
+ },
263
+ {
264
+ "epoch": 0.01,
265
+ "learning_rate": 0.00019999749088910718,
266
+ "loss": 1.097,
267
+ "step": 35
268
+ },
269
+ {
270
+ "epoch": 0.01,
271
+ "eval_loss": 1.4048928022384644,
272
+ "eval_runtime": 18.7186,
273
+ "eval_samples_per_second": 4.007,
274
+ "eval_steps_per_second": 4.007,
275
+ "step": 35
276
+ },
277
+ {
278
+ "epoch": 0.01,
279
+ "learning_rate": 0.0001999972861465844,
280
+ "loss": 1.11,
281
+ "step": 36
282
+ },
283
+ {
284
+ "epoch": 0.01,
285
+ "learning_rate": 0.00019999707337509115,
286
+ "loss": 0.9963,
287
+ "step": 37
288
+ },
289
+ {
290
+ "epoch": 0.01,
291
+ "learning_rate": 0.00019999685257464446,
292
+ "loss": 1.2733,
293
+ "step": 38
294
+ },
295
+ {
296
+ "epoch": 0.01,
297
+ "learning_rate": 0.00019999662374526215,
298
+ "loss": 1.6809,
299
+ "step": 39
300
+ },
301
+ {
302
+ "epoch": 0.01,
303
+ "learning_rate": 0.00019999638688696254,
304
+ "loss": 1.4748,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.01,
309
+ "eval_loss": 1.383140206336975,
310
+ "eval_runtime": 18.9843,
311
+ "eval_samples_per_second": 3.951,
312
+ "eval_steps_per_second": 3.951,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.01,
317
+ "learning_rate": 0.00019999614199976465,
318
+ "loss": 1.3495,
319
+ "step": 41
320
+ },
321
+ {
322
+ "epoch": 0.01,
323
+ "learning_rate": 0.00019999588908368817,
324
+ "loss": 0.6009,
325
+ "step": 42
326
+ },
327
+ {
328
+ "epoch": 0.01,
329
+ "learning_rate": 0.00019999562813875334,
330
+ "loss": 1.2478,
331
+ "step": 43
332
+ },
333
+ {
334
+ "epoch": 0.01,
335
+ "learning_rate": 0.00019999535916498116,
336
+ "loss": 1.525,
337
+ "step": 44
338
+ },
339
+ {
340
+ "epoch": 0.01,
341
+ "learning_rate": 0.00019999508216239322,
342
+ "loss": 1.1752,
343
+ "step": 45
344
+ },
345
+ {
346
+ "epoch": 0.01,
347
+ "eval_loss": 1.378393292427063,
348
+ "eval_runtime": 18.7075,
349
+ "eval_samples_per_second": 4.009,
350
+ "eval_steps_per_second": 4.009,
351
+ "step": 45
352
+ },
353
+ {
354
+ "epoch": 0.01,
355
+ "learning_rate": 0.0001999947971310118,
356
+ "loss": 1.4202,
357
+ "step": 46
358
+ },
359
+ {
360
+ "epoch": 0.01,
361
+ "learning_rate": 0.0001999945040708597,
362
+ "loss": 1.2551,
363
+ "step": 47
364
+ },
365
+ {
366
+ "epoch": 0.01,
367
+ "learning_rate": 0.00019999420298196055,
368
+ "loss": 1.3672,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.01,
373
+ "learning_rate": 0.00019999389386433843,
374
+ "loss": 1.4148,
375
+ "step": 49
376
+ },
377
+ {
378
+ "epoch": 0.01,
379
+ "learning_rate": 0.00019999357671801818,
380
+ "loss": 1.3857,
381
+ "step": 50
382
+ },
383
+ {
384
+ "epoch": 0.01,
385
+ "eval_loss": 1.3779667615890503,
386
+ "eval_runtime": 18.7662,
387
+ "eval_samples_per_second": 3.997,
388
+ "eval_steps_per_second": 3.997,
389
+ "step": 50
390
+ },
391
+ {
392
+ "epoch": 0.01,
393
+ "learning_rate": 0.00019999325154302535,
394
+ "loss": 1.8206,
395
+ "step": 51
396
+ },
397
+ {
398
+ "epoch": 0.01,
399
+ "learning_rate": 0.00019999291833938597,
400
+ "loss": 1.248,
401
+ "step": 52
402
+ },
403
+ {
404
+ "epoch": 0.01,
405
+ "learning_rate": 0.0001999925771071268,
406
+ "loss": 1.2879,
407
+ "step": 53
408
+ },
409
+ {
410
+ "epoch": 0.01,
411
+ "learning_rate": 0.00019999222784627523,
412
+ "loss": 1.298,
413
+ "step": 54
414
+ },
415
+ {
416
+ "epoch": 0.01,
417
+ "learning_rate": 0.00019999187055685935,
418
+ "loss": 1.5965,
419
+ "step": 55
420
+ },
421
+ {
422
+ "epoch": 0.01,
423
+ "eval_loss": 1.3631337881088257,
424
+ "eval_runtime": 18.8459,
425
+ "eval_samples_per_second": 3.98,
426
+ "eval_steps_per_second": 3.98,
427
+ "step": 55
428
+ },
429
+ {
430
+ "epoch": 0.02,
431
+ "learning_rate": 0.0001999915052389078,
432
+ "loss": 1.3097,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.02,
437
+ "learning_rate": 0.00019999113189244993,
438
+ "loss": 1.5143,
439
+ "step": 57
440
+ },
441
+ {
442
+ "epoch": 0.02,
443
+ "learning_rate": 0.00019999075051751572,
444
+ "loss": 1.4421,
445
+ "step": 58
446
+ },
447
+ {
448
+ "epoch": 0.02,
449
+ "learning_rate": 0.0001999903611141358,
450
+ "loss": 1.2693,
451
+ "step": 59
452
+ },
453
+ {
454
+ "epoch": 0.02,
455
+ "learning_rate": 0.00019998996368234142,
456
+ "loss": 1.071,
457
+ "step": 60
458
+ },
459
+ {
460
+ "epoch": 0.02,
461
+ "eval_loss": 1.3275150060653687,
462
+ "eval_runtime": 18.8306,
463
+ "eval_samples_per_second": 3.983,
464
+ "eval_steps_per_second": 3.983,
465
+ "step": 60
466
+ },
467
+ {
468
+ "epoch": 0.02,
469
+ "learning_rate": 0.00019998955822216448,
470
+ "loss": 1.4956,
471
+ "step": 61
472
+ },
473
+ {
474
+ "epoch": 0.02,
475
+ "learning_rate": 0.00019998914473363754,
476
+ "loss": 1.2852,
477
+ "step": 62
478
+ },
479
+ {
480
+ "epoch": 0.02,
481
+ "learning_rate": 0.00019998872321679386,
482
+ "loss": 1.1603,
483
+ "step": 63
484
+ },
485
+ {
486
+ "epoch": 0.02,
487
+ "learning_rate": 0.00019998829367166718,
488
+ "loss": 1.3886,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 0.02,
493
+ "learning_rate": 0.00019998785609829205,
494
+ "loss": 1.197,
495
+ "step": 65
496
+ },
497
+ {
498
+ "epoch": 0.02,
499
+ "eval_loss": 1.3170785903930664,
500
+ "eval_runtime": 18.9971,
501
+ "eval_samples_per_second": 3.948,
502
+ "eval_steps_per_second": 3.948,
503
+ "step": 65
504
+ },
505
+ {
506
+ "epoch": 0.02,
507
+ "learning_rate": 0.00019998741049670363,
508
+ "loss": 1.3182,
509
+ "step": 66
510
+ },
511
+ {
512
+ "epoch": 0.02,
513
+ "learning_rate": 0.00019998695686693766,
514
+ "loss": 1.0751,
515
+ "step": 67
516
+ },
517
+ {
518
+ "epoch": 0.02,
519
+ "learning_rate": 0.00019998649520903055,
520
+ "loss": 1.2292,
521
+ "step": 68
522
+ },
523
+ {
524
+ "epoch": 0.02,
525
+ "learning_rate": 0.00019998602552301936,
526
+ "loss": 1.4889,
527
+ "step": 69
528
+ },
529
+ {
530
+ "epoch": 0.02,
531
+ "learning_rate": 0.00019998554780894186,
532
+ "loss": 1.8883,
533
+ "step": 70
534
+ },
535
+ {
536
+ "epoch": 0.02,
537
+ "eval_loss": 1.3108329772949219,
538
+ "eval_runtime": 18.8686,
539
+ "eval_samples_per_second": 3.975,
540
+ "eval_steps_per_second": 3.975,
541
+ "step": 70
542
+ },
543
+ {
544
+ "epoch": 0.02,
545
+ "learning_rate": 0.0001999850620668364,
546
+ "loss": 1.5412,
547
+ "step": 71
548
+ },
549
+ {
550
+ "epoch": 0.02,
551
+ "learning_rate": 0.0001999845682967419,
552
+ "loss": 1.4129,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 0.02,
557
+ "learning_rate": 0.00019998406649869807,
558
+ "loss": 1.1464,
559
+ "step": 73
560
+ },
561
+ {
562
+ "epoch": 0.02,
563
+ "learning_rate": 0.0001999835566727452,
564
+ "loss": 1.3642,
565
+ "step": 74
566
+ },
567
+ {
568
+ "epoch": 0.02,
569
+ "learning_rate": 0.00019998303881892424,
570
+ "loss": 1.0119,
571
+ "step": 75
572
+ },
573
+ {
574
+ "epoch": 0.02,
575
+ "eval_loss": 1.305336356163025,
576
+ "eval_runtime": 18.6567,
577
+ "eval_samples_per_second": 4.02,
578
+ "eval_steps_per_second": 4.02,
579
+ "step": 75
580
+ },
581
+ {
582
+ "epoch": 0.02,
583
+ "learning_rate": 0.00019998251293727672,
584
+ "loss": 1.2123,
585
+ "step": 76
586
+ },
587
+ {
588
+ "epoch": 0.02,
589
+ "learning_rate": 0.0001999819790278449,
590
+ "loss": 1.1538,
591
+ "step": 77
592
+ },
593
+ {
594
+ "epoch": 0.02,
595
+ "learning_rate": 0.0001999814370906716,
596
+ "loss": 1.292,
597
+ "step": 78
598
+ },
599
+ {
600
+ "epoch": 0.02,
601
+ "learning_rate": 0.0001999808871258004,
602
+ "loss": 1.4582,
603
+ "step": 79
604
+ },
605
+ {
606
+ "epoch": 0.02,
607
+ "learning_rate": 0.00019998032913327545,
608
+ "loss": 1.399,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 0.02,
613
+ "eval_loss": 1.3035436868667603,
614
+ "eval_runtime": 18.936,
615
+ "eval_samples_per_second": 3.961,
616
+ "eval_steps_per_second": 3.961,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 0.02,
621
+ "learning_rate": 0.00019997976311314148,
622
+ "loss": 1.2134,
623
+ "step": 81
624
+ },
625
+ {
626
+ "epoch": 0.02,
627
+ "learning_rate": 0.00019997918906544402,
628
+ "loss": 1.3052,
629
+ "step": 82
630
+ },
631
+ {
632
+ "epoch": 0.02,
633
+ "learning_rate": 0.00019997860699022915,
634
+ "loss": 1.2369,
635
+ "step": 83
636
+ },
637
+ {
638
+ "epoch": 0.02,
639
+ "learning_rate": 0.00019997801688754354,
640
+ "loss": 1.4202,
641
+ "step": 84
642
+ },
643
+ {
644
+ "epoch": 0.02,
645
+ "learning_rate": 0.00019997741875743463,
646
+ "loss": 1.5369,
647
+ "step": 85
648
+ },
649
+ {
650
+ "epoch": 0.02,
651
+ "eval_loss": 1.3028186559677124,
652
+ "eval_runtime": 18.8349,
653
+ "eval_samples_per_second": 3.982,
654
+ "eval_steps_per_second": 3.982,
655
+ "step": 85
656
+ },
657
+ {
658
+ "epoch": 0.02,
659
+ "learning_rate": 0.00019997681259995045,
660
+ "loss": 1.1764,
661
+ "step": 86
662
+ },
663
+ {
664
+ "epoch": 0.02,
665
+ "learning_rate": 0.00019997619841513964,
666
+ "loss": 1.1738,
667
+ "step": 87
668
+ },
669
+ {
670
+ "epoch": 0.02,
671
+ "learning_rate": 0.00019997557620305152,
672
+ "loss": 1.0718,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 0.02,
677
+ "learning_rate": 0.00019997494596373603,
678
+ "loss": 0.9415,
679
+ "step": 89
680
+ },
681
+ {
682
+ "epoch": 0.02,
683
+ "learning_rate": 0.00019997430769724383,
684
+ "loss": 1.5707,
685
+ "step": 90
686
+ },
687
+ {
688
+ "epoch": 0.02,
689
+ "eval_loss": 1.2982343435287476,
690
+ "eval_runtime": 18.86,
691
+ "eval_samples_per_second": 3.977,
692
+ "eval_steps_per_second": 3.977,
693
+ "step": 90
694
+ },
695
+ {
696
+ "epoch": 0.02,
697
+ "learning_rate": 0.0001999736614036261,
698
+ "loss": 1.1557,
699
+ "step": 91
700
+ },
701
+ {
702
+ "epoch": 0.02,
703
+ "learning_rate": 0.00019997300708293482,
704
+ "loss": 1.5742,
705
+ "step": 92
706
+ },
707
+ {
708
+ "epoch": 0.03,
709
+ "learning_rate": 0.0001999723447352224,
710
+ "loss": 1.1634,
711
+ "step": 93
712
+ },
713
+ {
714
+ "epoch": 0.03,
715
+ "learning_rate": 0.00019997167436054217,
716
+ "loss": 1.1777,
717
+ "step": 94
718
+ },
719
+ {
720
+ "epoch": 0.03,
721
+ "learning_rate": 0.00019997099595894783,
722
+ "loss": 1.0073,
723
+ "step": 95
724
+ },
725
+ {
726
+ "epoch": 0.03,
727
+ "eval_loss": 1.3020063638687134,
728
+ "eval_runtime": 18.7946,
729
+ "eval_samples_per_second": 3.99,
730
+ "eval_steps_per_second": 3.99,
731
+ "step": 95
732
+ },
733
+ {
734
+ "epoch": 0.03,
735
+ "learning_rate": 0.0001999703095304939,
736
+ "loss": 1.1973,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 0.03,
741
+ "learning_rate": 0.0001999696150752355,
742
+ "loss": 0.9865,
743
+ "step": 97
744
+ },
745
+ {
746
+ "epoch": 0.03,
747
+ "learning_rate": 0.00019996891259322838,
748
+ "loss": 1.397,
749
+ "step": 98
750
+ },
751
+ {
752
+ "epoch": 0.03,
753
+ "learning_rate": 0.00019996820208452895,
754
+ "loss": 1.789,
755
+ "step": 99
756
+ },
757
+ {
758
+ "epoch": 0.03,
759
+ "learning_rate": 0.00019996748354919426,
760
+ "loss": 1.1018,
761
+ "step": 100
762
+ },
763
+ {
764
+ "epoch": 0.03,
765
+ "eval_loss": 1.2908077239990234,
766
+ "eval_runtime": 18.8592,
767
+ "eval_samples_per_second": 3.977,
768
+ "eval_steps_per_second": 3.977,
769
+ "step": 100
770
+ },
771
+ {
772
+ "epoch": 0.03,
773
+ "learning_rate": 0.00019996675698728198,
774
+ "loss": 0.9187,
775
+ "step": 101
776
+ },
777
+ {
778
+ "epoch": 0.03,
779
+ "learning_rate": 0.00019996602239885048,
780
+ "loss": 1.0549,
781
+ "step": 102
782
+ },
783
+ {
784
+ "epoch": 0.03,
785
+ "learning_rate": 0.00019996527978395872,
786
+ "loss": 0.9875,
787
+ "step": 103
788
+ },
789
+ {
790
+ "epoch": 0.03,
791
+ "learning_rate": 0.00019996452914266633,
792
+ "loss": 1.1548,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 0.03,
797
+ "learning_rate": 0.0001999637704750336,
798
+ "loss": 1.2036,
799
+ "step": 105
800
+ },
801
+ {
802
+ "epoch": 0.03,
803
+ "eval_loss": 1.2741996049880981,
804
+ "eval_runtime": 18.8746,
805
+ "eval_samples_per_second": 3.974,
806
+ "eval_steps_per_second": 3.974,
807
+ "step": 105
808
+ },
809
+ {
810
+ "epoch": 0.03,
811
+ "learning_rate": 0.00019996300378112138,
812
+ "loss": 1.0375,
813
+ "step": 106
814
+ },
815
+ {
816
+ "epoch": 0.03,
817
+ "learning_rate": 0.00019996222906099132,
818
+ "loss": 0.948,
819
+ "step": 107
820
+ },
821
+ {
822
+ "epoch": 0.03,
823
+ "learning_rate": 0.00019996144631470554,
824
+ "loss": 1.2329,
825
+ "step": 108
826
+ },
827
+ {
828
+ "epoch": 0.03,
829
+ "learning_rate": 0.00019996065554232697,
830
+ "loss": 1.1863,
831
+ "step": 109
832
+ },
833
+ {
834
+ "epoch": 0.03,
835
+ "learning_rate": 0.00019995985674391904,
836
+ "loss": 1.2444,
837
+ "step": 110
838
+ },
839
+ {
840
+ "epoch": 0.03,
841
+ "eval_loss": 1.2966747283935547,
842
+ "eval_runtime": 18.7891,
843
+ "eval_samples_per_second": 3.992,
844
+ "eval_steps_per_second": 3.992,
845
+ "step": 110
846
+ },
847
+ {
848
+ "epoch": 0.03,
849
+ "learning_rate": 0.00019995904991954591,
850
+ "loss": 1.4494,
851
+ "step": 111
852
+ },
853
+ {
854
+ "epoch": 0.03,
855
+ "learning_rate": 0.00019995823506927237,
856
+ "loss": 1.246,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 0.03,
861
+ "learning_rate": 0.0001999574121931638,
862
+ "loss": 0.6458,
863
+ "step": 113
864
+ },
865
+ {
866
+ "epoch": 0.03,
867
+ "learning_rate": 0.00019995658129128634,
868
+ "loss": 0.8595,
869
+ "step": 114
870
+ },
871
+ {
872
+ "epoch": 0.03,
873
+ "learning_rate": 0.00019995574236370667,
874
+ "loss": 0.6345,
875
+ "step": 115
876
+ },
877
+ {
878
+ "epoch": 0.03,
879
+ "eval_loss": 1.2656028270721436,
880
+ "eval_runtime": 18.7533,
881
+ "eval_samples_per_second": 3.999,
882
+ "eval_steps_per_second": 3.999,
883
+ "step": 115
884
+ },
885
+ {
886
+ "epoch": 0.03,
887
+ "learning_rate": 0.00019995489541049213,
888
+ "loss": 1.5478,
889
+ "step": 116
890
+ },
891
+ {
892
+ "epoch": 0.03,
893
+ "learning_rate": 0.00019995404043171073,
894
+ "loss": 1.3418,
895
+ "step": 117
896
+ },
897
+ {
898
+ "epoch": 0.03,
899
+ "learning_rate": 0.00019995317742743115,
900
+ "loss": 1.0865,
901
+ "step": 118
902
+ },
903
+ {
904
+ "epoch": 0.03,
905
+ "learning_rate": 0.00019995230639772266,
906
+ "loss": 1.4096,
907
+ "step": 119
908
+ },
909
+ {
910
+ "epoch": 0.03,
911
+ "learning_rate": 0.0001999514273426552,
912
+ "loss": 1.0579,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 0.03,
917
+ "eval_loss": 1.2640577554702759,
918
+ "eval_runtime": 18.8481,
919
+ "eval_samples_per_second": 3.979,
920
+ "eval_steps_per_second": 3.979,
921
+ "step": 120
922
+ },
923
+ {
924
+ "epoch": 0.03,
925
+ "learning_rate": 0.00019995054026229934,
926
+ "loss": 1.1476,
927
+ "step": 121
928
+ },
929
+ {
930
+ "epoch": 0.03,
931
+ "learning_rate": 0.00019994964515672635,
932
+ "loss": 1.2489,
933
+ "step": 122
934
+ },
935
+ {
936
+ "epoch": 0.03,
937
+ "learning_rate": 0.00019994874202600802,
938
+ "loss": 1.202,
939
+ "step": 123
940
+ },
941
+ {
942
+ "epoch": 0.03,
943
+ "learning_rate": 0.00019994783087021694,
944
+ "loss": 1.1668,
945
+ "step": 124
946
+ },
947
+ {
948
+ "epoch": 0.03,
949
+ "learning_rate": 0.00019994691168942624,
950
+ "loss": 1.2388,
951
+ "step": 125
952
+ },
953
+ {
954
+ "epoch": 0.03,
955
+ "eval_loss": 1.254260778427124,
956
+ "eval_runtime": 18.8299,
957
+ "eval_samples_per_second": 3.983,
958
+ "eval_steps_per_second": 3.983,
959
+ "step": 125
960
+ },
961
+ {
962
+ "epoch": 0.03,
963
+ "learning_rate": 0.00019994598448370968,
964
+ "loss": 1.2471,
965
+ "step": 126
966
+ },
967
+ {
968
+ "epoch": 0.03,
969
+ "learning_rate": 0.00019994504925314178,
970
+ "loss": 1.3326,
971
+ "step": 127
972
+ },
973
+ {
974
+ "epoch": 0.03,
975
+ "learning_rate": 0.00019994410599779758,
976
+ "loss": 0.8072,
977
+ "step": 128
978
+ },
979
+ {
980
+ "epoch": 0.03,
981
+ "learning_rate": 0.00019994315471775286,
982
+ "loss": 1.3839,
983
+ "step": 129
984
+ },
985
+ {
986
+ "epoch": 0.04,
987
+ "learning_rate": 0.00019994219541308395,
988
+ "loss": 1.0607,
989
+ "step": 130
990
+ },
991
+ {
992
+ "epoch": 0.04,
993
+ "eval_loss": 1.2552071809768677,
994
+ "eval_runtime": 18.8237,
995
+ "eval_samples_per_second": 3.984,
996
+ "eval_steps_per_second": 3.984,
997
+ "step": 130
998
+ },
999
+ {
1000
+ "epoch": 0.04,
1001
+ "learning_rate": 0.0001999412280838679,
1002
+ "loss": 1.125,
1003
+ "step": 131
1004
+ },
1005
+ {
1006
+ "epoch": 0.04,
1007
+ "learning_rate": 0.0001999402527301824,
1008
+ "loss": 1.5856,
1009
+ "step": 132
1010
+ },
1011
+ {
1012
+ "epoch": 0.04,
1013
+ "learning_rate": 0.00019993926935210575,
1014
+ "loss": 1.0919,
1015
+ "step": 133
1016
+ },
1017
+ {
1018
+ "epoch": 0.04,
1019
+ "learning_rate": 0.00019993827794971685,
1020
+ "loss": 1.077,
1021
+ "step": 134
1022
+ },
1023
+ {
1024
+ "epoch": 0.04,
1025
+ "learning_rate": 0.0001999372785230954,
1026
+ "loss": 1.0723,
1027
+ "step": 135
1028
+ },
1029
+ {
1030
+ "epoch": 0.04,
1031
+ "eval_loss": 1.2610790729522705,
1032
+ "eval_runtime": 18.7486,
1033
+ "eval_samples_per_second": 4.0,
1034
+ "eval_steps_per_second": 4.0,
1035
+ "step": 135
1036
+ },
1037
+ {
1038
+ "epoch": 0.04,
1039
+ "learning_rate": 0.00019993627107232155,
1040
+ "loss": 1.2645,
1041
+ "step": 136
1042
+ },
1043
+ {
1044
+ "epoch": 0.04,
1045
+ "learning_rate": 0.00019993525559747622,
1046
+ "loss": 1.0603,
1047
+ "step": 137
1048
+ },
1049
+ {
1050
+ "epoch": 0.04,
1051
+ "learning_rate": 0.00019993423209864103,
1052
+ "loss": 1.5076,
1053
+ "step": 138
1054
+ },
1055
+ {
1056
+ "epoch": 0.04,
1057
+ "learning_rate": 0.00019993320057589805,
1058
+ "loss": 0.7648,
1059
+ "step": 139
1060
+ },
1061
+ {
1062
+ "epoch": 0.04,
1063
+ "learning_rate": 0.00019993216102933014,
1064
+ "loss": 1.3775,
1065
+ "step": 140
1066
+ },
1067
+ {
1068
+ "epoch": 0.04,
1069
+ "eval_loss": 1.2581839561462402,
1070
+ "eval_runtime": 18.8104,
1071
+ "eval_samples_per_second": 3.987,
1072
+ "eval_steps_per_second": 3.987,
1073
+ "step": 140
1074
+ },
1075
+ {
1076
+ "epoch": 0.04,
1077
+ "learning_rate": 0.00019993111345902078,
1078
+ "loss": 1.6712,
1079
+ "step": 141
1080
+ },
1081
+ {
1082
+ "epoch": 0.04,
1083
+ "learning_rate": 0.00019993005786505405,
1084
+ "loss": 0.9862,
1085
+ "step": 142
1086
+ },
1087
+ {
1088
+ "epoch": 0.04,
1089
+ "learning_rate": 0.00019992899424751474,
1090
+ "loss": 0.834,
1091
+ "step": 143
1092
+ },
1093
+ {
1094
+ "epoch": 0.04,
1095
+ "learning_rate": 0.00019992792260648825,
1096
+ "loss": 0.9228,
1097
+ "step": 144
1098
+ },
1099
+ {
1100
+ "epoch": 0.04,
1101
+ "learning_rate": 0.00019992684294206056,
1102
+ "loss": 1.1543,
1103
+ "step": 145
1104
+ },
1105
+ {
1106
+ "epoch": 0.04,
1107
+ "eval_loss": 1.2526917457580566,
1108
+ "eval_runtime": 18.8068,
1109
+ "eval_samples_per_second": 3.988,
1110
+ "eval_steps_per_second": 3.988,
1111
+ "step": 145
1112
+ },
1113
+ {
1114
+ "epoch": 0.04,
1115
+ "learning_rate": 0.00019992575525431847,
1116
+ "loss": 1.1265,
1117
+ "step": 146
1118
+ },
1119
+ {
1120
+ "epoch": 0.04,
1121
+ "learning_rate": 0.00019992465954334922,
1122
+ "loss": 1.4227,
1123
+ "step": 147
1124
+ },
1125
+ {
1126
+ "epoch": 0.04,
1127
+ "learning_rate": 0.0001999235558092408,
1128
+ "loss": 1.1107,
1129
+ "step": 148
1130
+ },
1131
+ {
1132
+ "epoch": 0.04,
1133
+ "learning_rate": 0.0001999224440520819,
1134
+ "loss": 1.9652,
1135
+ "step": 149
1136
+ },
1137
+ {
1138
+ "epoch": 0.04,
1139
+ "learning_rate": 0.00019992132427196167,
1140
+ "loss": 1.1324,
1141
+ "step": 150
1142
+ },
1143
+ {
1144
+ "epoch": 0.04,
1145
+ "eval_loss": 1.2364587783813477,
1146
+ "eval_runtime": 18.8757,
1147
+ "eval_samples_per_second": 3.973,
1148
+ "eval_steps_per_second": 3.973,
1149
+ "step": 150
1150
+ }
1151
+ ],
1152
+ "logging_steps": 1,
1153
+ "max_steps": 11097,
1154
+ "num_input_tokens_seen": 0,
1155
+ "num_train_epochs": 3,
1156
+ "save_steps": 10,
1157
+ "total_flos": 458775791665152.0,
1158
+ "train_batch_size": 1,
1159
+ "trial_name": null,
1160
+ "trial_params": null
1161
+ }
checkpoint-150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:786039498a72f9a643419e602fa4d3daa50f1e5858e981d85461c4c589dd2706
3
+ size 4731
checkpoint-160/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: tiiuae/falcon-rw-1b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1.dev0
checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "tiiuae/falcon-rw-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "dense",
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense_4h_to_h"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-160/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79a2300c5c6eb63a1b590eafdd38887bad865833cff07a7d9e94cc02fe8d4cc8
3
+ size 201353800
checkpoint-160/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d76acdab11b04b9306f654d6011daeb9e9705dd9c20682b277a79796b25e7d9c
3
+ size 402771653
checkpoint-160/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9757f10781d60459c55ef99bfbf64d0a5078513e7910337900ed7794cee2b576
3
+ size 14575
checkpoint-160/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bba6df7db7111e6a0b9c5c89c15f567ea13f1e530b4cf70b291047abe62275c
3
+ size 627
checkpoint-160/trainer_state.json ADDED
@@ -0,0 +1,1237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2364587783813477,
3
+ "best_model_checkpoint": "./qlora-out/checkpoint-150",
4
+ "epoch": 0.04325493376588267,
5
+ "eval_steps": 5,
6
+ "global_step": 160,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 2.0394,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4e-05,
20
+ "loss": 1.8358,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 6e-05,
26
+ "loss": 1.9194,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "learning_rate": 8e-05,
32
+ "loss": 1.5998,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.0,
37
+ "learning_rate": 0.0001,
38
+ "loss": 2.3201,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "eval_loss": 1.9676190614700317,
44
+ "eval_runtime": 16.4542,
45
+ "eval_samples_per_second": 4.558,
46
+ "eval_steps_per_second": 4.558,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.0,
51
+ "learning_rate": 0.00012,
52
+ "loss": 1.7955,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.0,
57
+ "learning_rate": 0.00014,
58
+ "loss": 1.9124,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.8056,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0,
69
+ "learning_rate": 0.00018,
70
+ "loss": 1.6452,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.0,
75
+ "learning_rate": 0.0002,
76
+ "loss": 2.2557,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.0,
81
+ "eval_loss": 1.739979863166809,
82
+ "eval_runtime": 16.9804,
83
+ "eval_samples_per_second": 4.417,
84
+ "eval_steps_per_second": 4.417,
85
+ "step": 10
86
+ },
87
+ {
88
+ "epoch": 0.0,
89
+ "learning_rate": 0.00019999999598540582,
90
+ "loss": 1.5087,
91
+ "step": 11
92
+ },
93
+ {
94
+ "epoch": 0.0,
95
+ "learning_rate": 0.00019999998394162357,
96
+ "loss": 1.785,
97
+ "step": 12
98
+ },
99
+ {
100
+ "epoch": 0.0,
101
+ "learning_rate": 0.00019999996386865424,
102
+ "loss": 1.5459,
103
+ "step": 13
104
+ },
105
+ {
106
+ "epoch": 0.0,
107
+ "learning_rate": 0.0001999999357664994,
108
+ "loss": 1.8027,
109
+ "step": 14
110
+ },
111
+ {
112
+ "epoch": 0.0,
113
+ "learning_rate": 0.00019999989963516136,
114
+ "loss": 1.571,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.0,
119
+ "eval_loss": 1.6035555601119995,
120
+ "eval_runtime": 17.543,
121
+ "eval_samples_per_second": 4.275,
122
+ "eval_steps_per_second": 4.275,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.0,
127
+ "learning_rate": 0.000199999855474643,
128
+ "loss": 1.2283,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.0,
133
+ "learning_rate": 0.00019999980328494788,
134
+ "loss": 1.2223,
135
+ "step": 17
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "learning_rate": 0.00019999974306608012,
140
+ "loss": 1.8525,
141
+ "step": 18
142
+ },
143
+ {
144
+ "epoch": 0.01,
145
+ "learning_rate": 0.00019999967481804467,
146
+ "loss": 1.3687,
147
+ "step": 19
148
+ },
149
+ {
150
+ "epoch": 0.01,
151
+ "learning_rate": 0.00019999959854084692,
152
+ "loss": 1.3875,
153
+ "step": 20
154
+ },
155
+ {
156
+ "epoch": 0.01,
157
+ "eval_loss": 1.5073901414871216,
158
+ "eval_runtime": 18.6107,
159
+ "eval_samples_per_second": 4.03,
160
+ "eval_steps_per_second": 4.03,
161
+ "step": 20
162
+ },
163
+ {
164
+ "epoch": 0.01,
165
+ "learning_rate": 0.00019999951423449303,
166
+ "loss": 1.3078,
167
+ "step": 21
168
+ },
169
+ {
170
+ "epoch": 0.01,
171
+ "learning_rate": 0.00019999942189898975,
172
+ "loss": 1.4264,
173
+ "step": 22
174
+ },
175
+ {
176
+ "epoch": 0.01,
177
+ "learning_rate": 0.00019999932153434453,
178
+ "loss": 1.8519,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.01,
183
+ "learning_rate": 0.00019999921314056539,
184
+ "loss": 1.1411,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.01,
189
+ "learning_rate": 0.00019999909671766103,
190
+ "loss": 1.5436,
191
+ "step": 25
192
+ },
193
+ {
194
+ "epoch": 0.01,
195
+ "eval_loss": 1.4679571390151978,
196
+ "eval_runtime": 19.229,
197
+ "eval_samples_per_second": 3.9,
198
+ "eval_steps_per_second": 3.9,
199
+ "step": 25
200
+ },
201
+ {
202
+ "epoch": 0.01,
203
+ "learning_rate": 0.00019999897226564083,
204
+ "loss": 1.2738,
205
+ "step": 26
206
+ },
207
+ {
208
+ "epoch": 0.01,
209
+ "learning_rate": 0.0001999988397845148,
210
+ "loss": 1.1203,
211
+ "step": 27
212
+ },
213
+ {
214
+ "epoch": 0.01,
215
+ "learning_rate": 0.00019999869927429353,
216
+ "loss": 1.1895,
217
+ "step": 28
218
+ },
219
+ {
220
+ "epoch": 0.01,
221
+ "learning_rate": 0.0001999985507349883,
222
+ "loss": 1.3932,
223
+ "step": 29
224
+ },
225
+ {
226
+ "epoch": 0.01,
227
+ "learning_rate": 0.00019999839416661106,
228
+ "loss": 1.4257,
229
+ "step": 30
230
+ },
231
+ {
232
+ "epoch": 0.01,
233
+ "eval_loss": 1.422224998474121,
234
+ "eval_runtime": 18.4406,
235
+ "eval_samples_per_second": 4.067,
236
+ "eval_steps_per_second": 4.067,
237
+ "step": 30
238
+ },
239
+ {
240
+ "epoch": 0.01,
241
+ "learning_rate": 0.00019999822956917439,
242
+ "loss": 1.1026,
243
+ "step": 31
244
+ },
245
+ {
246
+ "epoch": 0.01,
247
+ "learning_rate": 0.00019999805694269145,
248
+ "loss": 1.337,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.01,
253
+ "learning_rate": 0.0001999978762871762,
254
+ "loss": 1.2867,
255
+ "step": 33
256
+ },
257
+ {
258
+ "epoch": 0.01,
259
+ "learning_rate": 0.00019999768760264303,
260
+ "loss": 1.4109,
261
+ "step": 34
262
+ },
263
+ {
264
+ "epoch": 0.01,
265
+ "learning_rate": 0.00019999749088910718,
266
+ "loss": 1.097,
267
+ "step": 35
268
+ },
269
+ {
270
+ "epoch": 0.01,
271
+ "eval_loss": 1.4048928022384644,
272
+ "eval_runtime": 18.7186,
273
+ "eval_samples_per_second": 4.007,
274
+ "eval_steps_per_second": 4.007,
275
+ "step": 35
276
+ },
277
+ {
278
+ "epoch": 0.01,
279
+ "learning_rate": 0.0001999972861465844,
280
+ "loss": 1.11,
281
+ "step": 36
282
+ },
283
+ {
284
+ "epoch": 0.01,
285
+ "learning_rate": 0.00019999707337509115,
286
+ "loss": 0.9963,
287
+ "step": 37
288
+ },
289
+ {
290
+ "epoch": 0.01,
291
+ "learning_rate": 0.00019999685257464446,
292
+ "loss": 1.2733,
293
+ "step": 38
294
+ },
295
+ {
296
+ "epoch": 0.01,
297
+ "learning_rate": 0.00019999662374526215,
298
+ "loss": 1.6809,
299
+ "step": 39
300
+ },
301
+ {
302
+ "epoch": 0.01,
303
+ "learning_rate": 0.00019999638688696254,
304
+ "loss": 1.4748,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.01,
309
+ "eval_loss": 1.383140206336975,
310
+ "eval_runtime": 18.9843,
311
+ "eval_samples_per_second": 3.951,
312
+ "eval_steps_per_second": 3.951,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.01,
317
+ "learning_rate": 0.00019999614199976465,
318
+ "loss": 1.3495,
319
+ "step": 41
320
+ },
321
+ {
322
+ "epoch": 0.01,
323
+ "learning_rate": 0.00019999588908368817,
324
+ "loss": 0.6009,
325
+ "step": 42
326
+ },
327
+ {
328
+ "epoch": 0.01,
329
+ "learning_rate": 0.00019999562813875334,
330
+ "loss": 1.2478,
331
+ "step": 43
332
+ },
333
+ {
334
+ "epoch": 0.01,
335
+ "learning_rate": 0.00019999535916498116,
336
+ "loss": 1.525,
337
+ "step": 44
338
+ },
339
+ {
340
+ "epoch": 0.01,
341
+ "learning_rate": 0.00019999508216239322,
342
+ "loss": 1.1752,
343
+ "step": 45
344
+ },
345
+ {
346
+ "epoch": 0.01,
347
+ "eval_loss": 1.378393292427063,
348
+ "eval_runtime": 18.7075,
349
+ "eval_samples_per_second": 4.009,
350
+ "eval_steps_per_second": 4.009,
351
+ "step": 45
352
+ },
353
+ {
354
+ "epoch": 0.01,
355
+ "learning_rate": 0.0001999947971310118,
356
+ "loss": 1.4202,
357
+ "step": 46
358
+ },
359
+ {
360
+ "epoch": 0.01,
361
+ "learning_rate": 0.0001999945040708597,
362
+ "loss": 1.2551,
363
+ "step": 47
364
+ },
365
+ {
366
+ "epoch": 0.01,
367
+ "learning_rate": 0.00019999420298196055,
368
+ "loss": 1.3672,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.01,
373
+ "learning_rate": 0.00019999389386433843,
374
+ "loss": 1.4148,
375
+ "step": 49
376
+ },
377
+ {
378
+ "epoch": 0.01,
379
+ "learning_rate": 0.00019999357671801818,
380
+ "loss": 1.3857,
381
+ "step": 50
382
+ },
383
+ {
384
+ "epoch": 0.01,
385
+ "eval_loss": 1.3779667615890503,
386
+ "eval_runtime": 18.7662,
387
+ "eval_samples_per_second": 3.997,
388
+ "eval_steps_per_second": 3.997,
389
+ "step": 50
390
+ },
391
+ {
392
+ "epoch": 0.01,
393
+ "learning_rate": 0.00019999325154302535,
394
+ "loss": 1.8206,
395
+ "step": 51
396
+ },
397
+ {
398
+ "epoch": 0.01,
399
+ "learning_rate": 0.00019999291833938597,
400
+ "loss": 1.248,
401
+ "step": 52
402
+ },
403
+ {
404
+ "epoch": 0.01,
405
+ "learning_rate": 0.0001999925771071268,
406
+ "loss": 1.2879,
407
+ "step": 53
408
+ },
409
+ {
410
+ "epoch": 0.01,
411
+ "learning_rate": 0.00019999222784627523,
412
+ "loss": 1.298,
413
+ "step": 54
414
+ },
415
+ {
416
+ "epoch": 0.01,
417
+ "learning_rate": 0.00019999187055685935,
418
+ "loss": 1.5965,
419
+ "step": 55
420
+ },
421
+ {
422
+ "epoch": 0.01,
423
+ "eval_loss": 1.3631337881088257,
424
+ "eval_runtime": 18.8459,
425
+ "eval_samples_per_second": 3.98,
426
+ "eval_steps_per_second": 3.98,
427
+ "step": 55
428
+ },
429
+ {
430
+ "epoch": 0.02,
431
+ "learning_rate": 0.0001999915052389078,
432
+ "loss": 1.3097,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.02,
437
+ "learning_rate": 0.00019999113189244993,
438
+ "loss": 1.5143,
439
+ "step": 57
440
+ },
441
+ {
442
+ "epoch": 0.02,
443
+ "learning_rate": 0.00019999075051751572,
444
+ "loss": 1.4421,
445
+ "step": 58
446
+ },
447
+ {
448
+ "epoch": 0.02,
449
+ "learning_rate": 0.0001999903611141358,
450
+ "loss": 1.2693,
451
+ "step": 59
452
+ },
453
+ {
454
+ "epoch": 0.02,
455
+ "learning_rate": 0.00019998996368234142,
456
+ "loss": 1.071,
457
+ "step": 60
458
+ },
459
+ {
460
+ "epoch": 0.02,
461
+ "eval_loss": 1.3275150060653687,
462
+ "eval_runtime": 18.8306,
463
+ "eval_samples_per_second": 3.983,
464
+ "eval_steps_per_second": 3.983,
465
+ "step": 60
466
+ },
467
+ {
468
+ "epoch": 0.02,
469
+ "learning_rate": 0.00019998955822216448,
470
+ "loss": 1.4956,
471
+ "step": 61
472
+ },
473
+ {
474
+ "epoch": 0.02,
475
+ "learning_rate": 0.00019998914473363754,
476
+ "loss": 1.2852,
477
+ "step": 62
478
+ },
479
+ {
480
+ "epoch": 0.02,
481
+ "learning_rate": 0.00019998872321679386,
482
+ "loss": 1.1603,
483
+ "step": 63
484
+ },
485
+ {
486
+ "epoch": 0.02,
487
+ "learning_rate": 0.00019998829367166718,
488
+ "loss": 1.3886,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 0.02,
493
+ "learning_rate": 0.00019998785609829205,
494
+ "loss": 1.197,
495
+ "step": 65
496
+ },
497
+ {
498
+ "epoch": 0.02,
499
+ "eval_loss": 1.3170785903930664,
500
+ "eval_runtime": 18.9971,
501
+ "eval_samples_per_second": 3.948,
502
+ "eval_steps_per_second": 3.948,
503
+ "step": 65
504
+ },
505
+ {
506
+ "epoch": 0.02,
507
+ "learning_rate": 0.00019998741049670363,
508
+ "loss": 1.3182,
509
+ "step": 66
510
+ },
511
+ {
512
+ "epoch": 0.02,
513
+ "learning_rate": 0.00019998695686693766,
514
+ "loss": 1.0751,
515
+ "step": 67
516
+ },
517
+ {
518
+ "epoch": 0.02,
519
+ "learning_rate": 0.00019998649520903055,
520
+ "loss": 1.2292,
521
+ "step": 68
522
+ },
523
+ {
524
+ "epoch": 0.02,
525
+ "learning_rate": 0.00019998602552301936,
526
+ "loss": 1.4889,
527
+ "step": 69
528
+ },
529
+ {
530
+ "epoch": 0.02,
531
+ "learning_rate": 0.00019998554780894186,
532
+ "loss": 1.8883,
533
+ "step": 70
534
+ },
535
+ {
536
+ "epoch": 0.02,
537
+ "eval_loss": 1.3108329772949219,
538
+ "eval_runtime": 18.8686,
539
+ "eval_samples_per_second": 3.975,
540
+ "eval_steps_per_second": 3.975,
541
+ "step": 70
542
+ },
543
+ {
544
+ "epoch": 0.02,
545
+ "learning_rate": 0.0001999850620668364,
546
+ "loss": 1.5412,
547
+ "step": 71
548
+ },
549
+ {
550
+ "epoch": 0.02,
551
+ "learning_rate": 0.0001999845682967419,
552
+ "loss": 1.4129,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 0.02,
557
+ "learning_rate": 0.00019998406649869807,
558
+ "loss": 1.1464,
559
+ "step": 73
560
+ },
561
+ {
562
+ "epoch": 0.02,
563
+ "learning_rate": 0.0001999835566727452,
564
+ "loss": 1.3642,
565
+ "step": 74
566
+ },
567
+ {
568
+ "epoch": 0.02,
569
+ "learning_rate": 0.00019998303881892424,
570
+ "loss": 1.0119,
571
+ "step": 75
572
+ },
573
+ {
574
+ "epoch": 0.02,
575
+ "eval_loss": 1.305336356163025,
576
+ "eval_runtime": 18.6567,
577
+ "eval_samples_per_second": 4.02,
578
+ "eval_steps_per_second": 4.02,
579
+ "step": 75
580
+ },
581
+ {
582
+ "epoch": 0.02,
583
+ "learning_rate": 0.00019998251293727672,
584
+ "loss": 1.2123,
585
+ "step": 76
586
+ },
587
+ {
588
+ "epoch": 0.02,
589
+ "learning_rate": 0.0001999819790278449,
590
+ "loss": 1.1538,
591
+ "step": 77
592
+ },
593
+ {
594
+ "epoch": 0.02,
595
+ "learning_rate": 0.0001999814370906716,
596
+ "loss": 1.292,
597
+ "step": 78
598
+ },
599
+ {
600
+ "epoch": 0.02,
601
+ "learning_rate": 0.0001999808871258004,
602
+ "loss": 1.4582,
603
+ "step": 79
604
+ },
605
+ {
606
+ "epoch": 0.02,
607
+ "learning_rate": 0.00019998032913327545,
608
+ "loss": 1.399,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 0.02,
613
+ "eval_loss": 1.3035436868667603,
614
+ "eval_runtime": 18.936,
615
+ "eval_samples_per_second": 3.961,
616
+ "eval_steps_per_second": 3.961,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 0.02,
621
+ "learning_rate": 0.00019997976311314148,
622
+ "loss": 1.2134,
623
+ "step": 81
624
+ },
625
+ {
626
+ "epoch": 0.02,
627
+ "learning_rate": 0.00019997918906544402,
628
+ "loss": 1.3052,
629
+ "step": 82
630
+ },
631
+ {
632
+ "epoch": 0.02,
633
+ "learning_rate": 0.00019997860699022915,
634
+ "loss": 1.2369,
635
+ "step": 83
636
+ },
637
+ {
638
+ "epoch": 0.02,
639
+ "learning_rate": 0.00019997801688754354,
640
+ "loss": 1.4202,
641
+ "step": 84
642
+ },
643
+ {
644
+ "epoch": 0.02,
645
+ "learning_rate": 0.00019997741875743463,
646
+ "loss": 1.5369,
647
+ "step": 85
648
+ },
649
+ {
650
+ "epoch": 0.02,
651
+ "eval_loss": 1.3028186559677124,
652
+ "eval_runtime": 18.8349,
653
+ "eval_samples_per_second": 3.982,
654
+ "eval_steps_per_second": 3.982,
655
+ "step": 85
656
+ },
657
+ {
658
+ "epoch": 0.02,
659
+ "learning_rate": 0.00019997681259995045,
660
+ "loss": 1.1764,
661
+ "step": 86
662
+ },
663
+ {
664
+ "epoch": 0.02,
665
+ "learning_rate": 0.00019997619841513964,
666
+ "loss": 1.1738,
667
+ "step": 87
668
+ },
669
+ {
670
+ "epoch": 0.02,
671
+ "learning_rate": 0.00019997557620305152,
672
+ "loss": 1.0718,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 0.02,
677
+ "learning_rate": 0.00019997494596373603,
678
+ "loss": 0.9415,
679
+ "step": 89
680
+ },
681
+ {
682
+ "epoch": 0.02,
683
+ "learning_rate": 0.00019997430769724383,
684
+ "loss": 1.5707,
685
+ "step": 90
686
+ },
687
+ {
688
+ "epoch": 0.02,
689
+ "eval_loss": 1.2982343435287476,
690
+ "eval_runtime": 18.86,
691
+ "eval_samples_per_second": 3.977,
692
+ "eval_steps_per_second": 3.977,
693
+ "step": 90
694
+ },
695
+ {
696
+ "epoch": 0.02,
697
+ "learning_rate": 0.0001999736614036261,
698
+ "loss": 1.1557,
699
+ "step": 91
700
+ },
701
+ {
702
+ "epoch": 0.02,
703
+ "learning_rate": 0.00019997300708293482,
704
+ "loss": 1.5742,
705
+ "step": 92
706
+ },
707
+ {
708
+ "epoch": 0.03,
709
+ "learning_rate": 0.0001999723447352224,
710
+ "loss": 1.1634,
711
+ "step": 93
712
+ },
713
+ {
714
+ "epoch": 0.03,
715
+ "learning_rate": 0.00019997167436054217,
716
+ "loss": 1.1777,
717
+ "step": 94
718
+ },
719
+ {
720
+ "epoch": 0.03,
721
+ "learning_rate": 0.00019997099595894783,
722
+ "loss": 1.0073,
723
+ "step": 95
724
+ },
725
+ {
726
+ "epoch": 0.03,
727
+ "eval_loss": 1.3020063638687134,
728
+ "eval_runtime": 18.7946,
729
+ "eval_samples_per_second": 3.99,
730
+ "eval_steps_per_second": 3.99,
731
+ "step": 95
732
+ },
733
+ {
734
+ "epoch": 0.03,
735
+ "learning_rate": 0.0001999703095304939,
736
+ "loss": 1.1973,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 0.03,
741
+ "learning_rate": 0.0001999696150752355,
742
+ "loss": 0.9865,
743
+ "step": 97
744
+ },
745
+ {
746
+ "epoch": 0.03,
747
+ "learning_rate": 0.00019996891259322838,
748
+ "loss": 1.397,
749
+ "step": 98
750
+ },
751
+ {
752
+ "epoch": 0.03,
753
+ "learning_rate": 0.00019996820208452895,
754
+ "loss": 1.789,
755
+ "step": 99
756
+ },
757
+ {
758
+ "epoch": 0.03,
759
+ "learning_rate": 0.00019996748354919426,
760
+ "loss": 1.1018,
761
+ "step": 100
762
+ },
763
+ {
764
+ "epoch": 0.03,
765
+ "eval_loss": 1.2908077239990234,
766
+ "eval_runtime": 18.8592,
767
+ "eval_samples_per_second": 3.977,
768
+ "eval_steps_per_second": 3.977,
769
+ "step": 100
770
+ },
771
+ {
772
+ "epoch": 0.03,
773
+ "learning_rate": 0.00019996675698728198,
774
+ "loss": 0.9187,
775
+ "step": 101
776
+ },
777
+ {
778
+ "epoch": 0.03,
779
+ "learning_rate": 0.00019996602239885048,
780
+ "loss": 1.0549,
781
+ "step": 102
782
+ },
783
+ {
784
+ "epoch": 0.03,
785
+ "learning_rate": 0.00019996527978395872,
786
+ "loss": 0.9875,
787
+ "step": 103
788
+ },
789
+ {
790
+ "epoch": 0.03,
791
+ "learning_rate": 0.00019996452914266633,
792
+ "loss": 1.1548,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 0.03,
797
+ "learning_rate": 0.0001999637704750336,
798
+ "loss": 1.2036,
799
+ "step": 105
800
+ },
801
+ {
802
+ "epoch": 0.03,
803
+ "eval_loss": 1.2741996049880981,
804
+ "eval_runtime": 18.8746,
805
+ "eval_samples_per_second": 3.974,
806
+ "eval_steps_per_second": 3.974,
807
+ "step": 105
808
+ },
809
+ {
810
+ "epoch": 0.03,
811
+ "learning_rate": 0.00019996300378112138,
812
+ "loss": 1.0375,
813
+ "step": 106
814
+ },
815
+ {
816
+ "epoch": 0.03,
817
+ "learning_rate": 0.00019996222906099132,
818
+ "loss": 0.948,
819
+ "step": 107
820
+ },
821
+ {
822
+ "epoch": 0.03,
823
+ "learning_rate": 0.00019996144631470554,
824
+ "loss": 1.2329,
825
+ "step": 108
826
+ },
827
+ {
828
+ "epoch": 0.03,
829
+ "learning_rate": 0.00019996065554232697,
830
+ "loss": 1.1863,
831
+ "step": 109
832
+ },
833
+ {
834
+ "epoch": 0.03,
835
+ "learning_rate": 0.00019995985674391904,
836
+ "loss": 1.2444,
837
+ "step": 110
838
+ },
839
+ {
840
+ "epoch": 0.03,
841
+ "eval_loss": 1.2966747283935547,
842
+ "eval_runtime": 18.7891,
843
+ "eval_samples_per_second": 3.992,
844
+ "eval_steps_per_second": 3.992,
845
+ "step": 110
846
+ },
847
+ {
848
+ "epoch": 0.03,
849
+ "learning_rate": 0.00019995904991954591,
850
+ "loss": 1.4494,
851
+ "step": 111
852
+ },
853
+ {
854
+ "epoch": 0.03,
855
+ "learning_rate": 0.00019995823506927237,
856
+ "loss": 1.246,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 0.03,
861
+ "learning_rate": 0.0001999574121931638,
862
+ "loss": 0.6458,
863
+ "step": 113
864
+ },
865
+ {
866
+ "epoch": 0.03,
867
+ "learning_rate": 0.00019995658129128634,
868
+ "loss": 0.8595,
869
+ "step": 114
870
+ },
871
+ {
872
+ "epoch": 0.03,
873
+ "learning_rate": 0.00019995574236370667,
874
+ "loss": 0.6345,
875
+ "step": 115
876
+ },
877
+ {
878
+ "epoch": 0.03,
879
+ "eval_loss": 1.2656028270721436,
880
+ "eval_runtime": 18.7533,
881
+ "eval_samples_per_second": 3.999,
882
+ "eval_steps_per_second": 3.999,
883
+ "step": 115
884
+ },
885
+ {
886
+ "epoch": 0.03,
887
+ "learning_rate": 0.00019995489541049213,
888
+ "loss": 1.5478,
889
+ "step": 116
890
+ },
891
+ {
892
+ "epoch": 0.03,
893
+ "learning_rate": 0.00019995404043171073,
894
+ "loss": 1.3418,
895
+ "step": 117
896
+ },
897
+ {
898
+ "epoch": 0.03,
899
+ "learning_rate": 0.00019995317742743115,
900
+ "loss": 1.0865,
901
+ "step": 118
902
+ },
903
+ {
904
+ "epoch": 0.03,
905
+ "learning_rate": 0.00019995230639772266,
906
+ "loss": 1.4096,
907
+ "step": 119
908
+ },
909
+ {
910
+ "epoch": 0.03,
911
+ "learning_rate": 0.0001999514273426552,
912
+ "loss": 1.0579,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 0.03,
917
+ "eval_loss": 1.2640577554702759,
918
+ "eval_runtime": 18.8481,
919
+ "eval_samples_per_second": 3.979,
920
+ "eval_steps_per_second": 3.979,
921
+ "step": 120
922
+ },
923
+ {
924
+ "epoch": 0.03,
925
+ "learning_rate": 0.00019995054026229934,
926
+ "loss": 1.1476,
927
+ "step": 121
928
+ },
929
+ {
930
+ "epoch": 0.03,
931
+ "learning_rate": 0.00019994964515672635,
932
+ "loss": 1.2489,
933
+ "step": 122
934
+ },
935
+ {
936
+ "epoch": 0.03,
937
+ "learning_rate": 0.00019994874202600802,
938
+ "loss": 1.202,
939
+ "step": 123
940
+ },
941
+ {
942
+ "epoch": 0.03,
943
+ "learning_rate": 0.00019994783087021694,
944
+ "loss": 1.1668,
945
+ "step": 124
946
+ },
947
+ {
948
+ "epoch": 0.03,
949
+ "learning_rate": 0.00019994691168942624,
950
+ "loss": 1.2388,
951
+ "step": 125
952
+ },
953
+ {
954
+ "epoch": 0.03,
955
+ "eval_loss": 1.254260778427124,
956
+ "eval_runtime": 18.8299,
957
+ "eval_samples_per_second": 3.983,
958
+ "eval_steps_per_second": 3.983,
959
+ "step": 125
960
+ },
961
+ {
962
+ "epoch": 0.03,
963
+ "learning_rate": 0.00019994598448370968,
964
+ "loss": 1.2471,
965
+ "step": 126
966
+ },
967
+ {
968
+ "epoch": 0.03,
969
+ "learning_rate": 0.00019994504925314178,
970
+ "loss": 1.3326,
971
+ "step": 127
972
+ },
973
+ {
974
+ "epoch": 0.03,
975
+ "learning_rate": 0.00019994410599779758,
976
+ "loss": 0.8072,
977
+ "step": 128
978
+ },
979
+ {
980
+ "epoch": 0.03,
981
+ "learning_rate": 0.00019994315471775286,
982
+ "loss": 1.3839,
983
+ "step": 129
984
+ },
985
+ {
986
+ "epoch": 0.04,
987
+ "learning_rate": 0.00019994219541308395,
988
+ "loss": 1.0607,
989
+ "step": 130
990
+ },
991
+ {
992
+ "epoch": 0.04,
993
+ "eval_loss": 1.2552071809768677,
994
+ "eval_runtime": 18.8237,
995
+ "eval_samples_per_second": 3.984,
996
+ "eval_steps_per_second": 3.984,
997
+ "step": 130
998
+ },
999
+ {
1000
+ "epoch": 0.04,
1001
+ "learning_rate": 0.0001999412280838679,
1002
+ "loss": 1.125,
1003
+ "step": 131
1004
+ },
1005
+ {
1006
+ "epoch": 0.04,
1007
+ "learning_rate": 0.0001999402527301824,
1008
+ "loss": 1.5856,
1009
+ "step": 132
1010
+ },
1011
+ {
1012
+ "epoch": 0.04,
1013
+ "learning_rate": 0.00019993926935210575,
1014
+ "loss": 1.0919,
1015
+ "step": 133
1016
+ },
1017
+ {
1018
+ "epoch": 0.04,
1019
+ "learning_rate": 0.00019993827794971685,
1020
+ "loss": 1.077,
1021
+ "step": 134
1022
+ },
1023
+ {
1024
+ "epoch": 0.04,
1025
+ "learning_rate": 0.0001999372785230954,
1026
+ "loss": 1.0723,
1027
+ "step": 135
1028
+ },
1029
+ {
1030
+ "epoch": 0.04,
1031
+ "eval_loss": 1.2610790729522705,
1032
+ "eval_runtime": 18.7486,
1033
+ "eval_samples_per_second": 4.0,
1034
+ "eval_steps_per_second": 4.0,
1035
+ "step": 135
1036
+ },
1037
+ {
1038
+ "epoch": 0.04,
1039
+ "learning_rate": 0.00019993627107232155,
1040
+ "loss": 1.2645,
1041
+ "step": 136
1042
+ },
1043
+ {
1044
+ "epoch": 0.04,
1045
+ "learning_rate": 0.00019993525559747622,
1046
+ "loss": 1.0603,
1047
+ "step": 137
1048
+ },
1049
+ {
1050
+ "epoch": 0.04,
1051
+ "learning_rate": 0.00019993423209864103,
1052
+ "loss": 1.5076,
1053
+ "step": 138
1054
+ },
1055
+ {
1056
+ "epoch": 0.04,
1057
+ "learning_rate": 0.00019993320057589805,
1058
+ "loss": 0.7648,
1059
+ "step": 139
1060
+ },
1061
+ {
1062
+ "epoch": 0.04,
1063
+ "learning_rate": 0.00019993216102933014,
1064
+ "loss": 1.3775,
1065
+ "step": 140
1066
+ },
1067
+ {
1068
+ "epoch": 0.04,
1069
+ "eval_loss": 1.2581839561462402,
1070
+ "eval_runtime": 18.8104,
1071
+ "eval_samples_per_second": 3.987,
1072
+ "eval_steps_per_second": 3.987,
1073
+ "step": 140
1074
+ },
1075
+ {
1076
+ "epoch": 0.04,
1077
+ "learning_rate": 0.00019993111345902078,
1078
+ "loss": 1.6712,
1079
+ "step": 141
1080
+ },
1081
+ {
1082
+ "epoch": 0.04,
1083
+ "learning_rate": 0.00019993005786505405,
1084
+ "loss": 0.9862,
1085
+ "step": 142
1086
+ },
1087
+ {
1088
+ "epoch": 0.04,
1089
+ "learning_rate": 0.00019992899424751474,
1090
+ "loss": 0.834,
1091
+ "step": 143
1092
+ },
1093
+ {
1094
+ "epoch": 0.04,
1095
+ "learning_rate": 0.00019992792260648825,
1096
+ "loss": 0.9228,
1097
+ "step": 144
1098
+ },
1099
+ {
1100
+ "epoch": 0.04,
1101
+ "learning_rate": 0.00019992684294206056,
1102
+ "loss": 1.1543,
1103
+ "step": 145
1104
+ },
1105
+ {
1106
+ "epoch": 0.04,
1107
+ "eval_loss": 1.2526917457580566,
1108
+ "eval_runtime": 18.8068,
1109
+ "eval_samples_per_second": 3.988,
1110
+ "eval_steps_per_second": 3.988,
1111
+ "step": 145
1112
+ },
1113
+ {
1114
+ "epoch": 0.04,
1115
+ "learning_rate": 0.00019992575525431847,
1116
+ "loss": 1.1265,
1117
+ "step": 146
1118
+ },
1119
+ {
1120
+ "epoch": 0.04,
1121
+ "learning_rate": 0.00019992465954334922,
1122
+ "loss": 1.4227,
1123
+ "step": 147
1124
+ },
1125
+ {
1126
+ "epoch": 0.04,
1127
+ "learning_rate": 0.0001999235558092408,
1128
+ "loss": 1.1107,
1129
+ "step": 148
1130
+ },
1131
+ {
1132
+ "epoch": 0.04,
1133
+ "learning_rate": 0.0001999224440520819,
1134
+ "loss": 1.9652,
1135
+ "step": 149
1136
+ },
1137
+ {
1138
+ "epoch": 0.04,
1139
+ "learning_rate": 0.00019992132427196167,
1140
+ "loss": 1.1324,
1141
+ "step": 150
1142
+ },
1143
+ {
1144
+ "epoch": 0.04,
1145
+ "eval_loss": 1.2364587783813477,
1146
+ "eval_runtime": 18.8757,
1147
+ "eval_samples_per_second": 3.973,
1148
+ "eval_steps_per_second": 3.973,
1149
+ "step": 150
1150
+ },
1151
+ {
1152
+ "epoch": 0.04,
1153
+ "learning_rate": 0.0001999201964689701,
1154
+ "loss": 1.0867,
1155
+ "step": 151
1156
+ },
1157
+ {
1158
+ "epoch": 0.04,
1159
+ "learning_rate": 0.00019991906064319777,
1160
+ "loss": 1.1107,
1161
+ "step": 152
1162
+ },
1163
+ {
1164
+ "epoch": 0.04,
1165
+ "learning_rate": 0.00019991791679473578,
1166
+ "loss": 1.1554,
1167
+ "step": 153
1168
+ },
1169
+ {
1170
+ "epoch": 0.04,
1171
+ "learning_rate": 0.00019991676492367604,
1172
+ "loss": 0.6891,
1173
+ "step": 154
1174
+ },
1175
+ {
1176
+ "epoch": 0.04,
1177
+ "learning_rate": 0.00019991560503011103,
1178
+ "loss": 0.7309,
1179
+ "step": 155
1180
+ },
1181
+ {
1182
+ "epoch": 0.04,
1183
+ "eval_loss": 1.2444915771484375,
1184
+ "eval_runtime": 18.7995,
1185
+ "eval_samples_per_second": 3.989,
1186
+ "eval_steps_per_second": 3.989,
1187
+ "step": 155
1188
+ },
1189
+ {
1190
+ "epoch": 0.04,
1191
+ "learning_rate": 0.00019991443711413385,
1192
+ "loss": 0.8146,
1193
+ "step": 156
1194
+ },
1195
+ {
1196
+ "epoch": 0.04,
1197
+ "learning_rate": 0.0001999132611758383,
1198
+ "loss": 1.259,
1199
+ "step": 157
1200
+ },
1201
+ {
1202
+ "epoch": 0.04,
1203
+ "learning_rate": 0.0001999120772153188,
1204
+ "loss": 0.8937,
1205
+ "step": 158
1206
+ },
1207
+ {
1208
+ "epoch": 0.04,
1209
+ "learning_rate": 0.00019991088523267043,
1210
+ "loss": 1.1238,
1211
+ "step": 159
1212
+ },
1213
+ {
1214
+ "epoch": 0.04,
1215
+ "learning_rate": 0.00019990968522798887,
1216
+ "loss": 1.3585,
1217
+ "step": 160
1218
+ },
1219
+ {
1220
+ "epoch": 0.04,
1221
+ "eval_loss": 1.2490602731704712,
1222
+ "eval_runtime": 18.834,
1223
+ "eval_samples_per_second": 3.982,
1224
+ "eval_steps_per_second": 3.982,
1225
+ "step": 160
1226
+ }
1227
+ ],
1228
+ "logging_steps": 1,
1229
+ "max_steps": 11097,
1230
+ "num_input_tokens_seen": 0,
1231
+ "num_train_epochs": 3,
1232
+ "save_steps": 10,
1233
+ "total_flos": 488265068052480.0,
1234
+ "train_batch_size": 1,
1235
+ "trial_name": null,
1236
+ "trial_params": null
1237
+ }
checkpoint-160/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:786039498a72f9a643419e602fa4d3daa50f1e5858e981d85461c4c589dd2706
3
+ size 4731
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tiiuae/falcon-rw-1b",
3
+ "alibi": true,
4
+ "apply_residual_connection_post_layernorm": false,
5
+ "architectures": [
6
+ "FalconForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "tiiuae/falcon-rw-1b--configuration_falcon.FalconConfig",
11
+ "AutoModel": "tiiuae/falcon-rw-1b--modeling_falcon.FalconModel",
12
+ "AutoModelForCausalLM": "tiiuae/falcon-rw-1b--modeling_falcon.FalconForCausalLM",
13
+ "AutoModelForQuestionAnswering": "tiiuae/falcon-rw-1b--modeling_falcon.FalconForQuestionAnswering",
14
+ "AutoModelForSequenceClassification": "tiiuae/falcon-rw-1b--modeling_falcon.FalconForSequenceClassification",
15
+ "AutoModelForTokenClassification": "tiiuae/falcon-rw-1b--modeling_falcon.FalconForTokenClassification"
16
+ },
17
+ "bias": true,
18
+ "bos_token_id": 50257,
19
+ "eos_token_id": 50256,
20
+ "hidden_dropout": 0.0,
21
+ "hidden_size": 2048,
22
+ "initializer_range": 0.02,
23
+ "layer_norm_epsilon": 1e-05,
24
+ "model_type": "falcon",
25
+ "multi_query": false,
26
+ "new_decoder_architecture": false,
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 24,
29
+ "num_kv_heads": 32,
30
+ "parallel_attn": false,
31
+ "quantization_config": {
32
+ "bnb_4bit_compute_dtype": "float32",
33
+ "bnb_4bit_quant_type": "nf4",
34
+ "bnb_4bit_use_double_quant": true,
35
+ "llm_int8_enable_fp32_cpu_offload": false,
36
+ "llm_int8_has_fp16_weight": false,
37
+ "llm_int8_skip_modules": null,
38
+ "llm_int8_threshold": 6.0,
39
+ "load_in_4bit": true,
40
+ "load_in_8bit": false,
41
+ "quant_method": "bitsandbytes"
42
+ },
43
+ "torch_dtype": "bfloat16",
44
+ "transformers_version": "4.36.0.dev0",
45
+ "use_cache": false,
46
+ "vocab_size": 50304
47
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
runs/Dec11_13-09-26_89a289c3b611/events.out.tfevents.1702300167.89a289c3b611.10242.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8a8d9747ca132e11f5877400542aebfa1a5a58ecc04a756bb86e6b7d4c1691b
3
+ size 40507
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": ">>ABSTRACT<<",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": "<|endoftext|>"
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": ">>ABSTRACT<<",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ }
20
+ },
21
+ "bos_token": ">>ABSTRACT<<",
22
+ "clean_up_tokenization_spaces": true,
23
+ "eos_token": "<|endoftext|>",
24
+ "model_max_length": 1024,
25
+ "pad_token": "<|endoftext|>",
26
+ "tokenizer_class": "GPT2Tokenizer",
27
+ "unk_token": "<|endoftext|>"
28
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff