--- library_name: transformers license: apache-2.0 base_model: - Intel/zoedepth-nyu-kitti pipeline_tag: depth-estimation --- This model is a quantized version of Intel's zoedepth-nyu-kitti model. The model was quantized using 4-bit bitsandbytes. ## Quantize code ```python quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) depth_model = AutoModelForDepthEstimation.from_pretrained( "Intel/zoedepth-nyu-kitti", quantization_config=quantization_config, device_map="auto", dtype="auto", ) ``` ## How to use it ```bash pip install --upgrade transformers accelerate bitsandbytes ``` ```python import torch from PIL import Image from transformers import AutoModelForDepthEstimation, AutoImageProcessor device = "cuda" if torch.cuda.is_available() else "cpu" depth_model = AutoModelForDepthEstimation.from_pretrained( "CineAI/zoedepth-nyu-kitti-4bit", device_map="auto", ) image_processor = AutoImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti", use_fast=True) image = Image.open("image path") image = image.convert(mode="RGB") inputs = image_processor(images=image, return_tensors="pt").to(device) with torch.no_grad(): outputs = depth_model(**inputs) source_sizes = [(image.height, image.width)] post_processed_output = image_processor.post_process_depth_estimation(outputs, source_sizes=source_sizes,) depth = post_processed_output[0]["predicted_depth"] depth_np = depth.cpu().detach().numpy() depth_np ```