--- license: apache-2.0 language: - pyt base_model: - Qwen/Qwen2.5-0.5B --- ## Model Description This Memory Decoder model is trained on the Law domain and can be adapted to enhance any model in the Llama3, Llama3.1, and Llama3.2 families. > [!IMPORTANT] > These Llama models are initialized from Qwen models with the embedding layer adapted to fit the Llama tokenizer. This enables efficient cross-model family knowledge transfer. **Paper:** [Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models](https://www.arxiv.org/abs/2508.09874) **GitHub:** [https://github.com/LUMIA-Group/MemoryDecoder](https://github.com/LUMIA-Group/MemoryDecoder/tree/main) ## Training & Evaluation Data **Law Domain Dataset:** [AsyLex](https://huggingface.co/datasets/clairebarale/AsyLex) **Test Split:** [MemoryDecoder-domain-data](https://huggingface.co/datasets/Clover-Hill/MemoryDecoder-domain-data) ## Performance Results ### Llama3 Family | Model | Base Model | Base + MemDec | |-------|------------|---------------| | Llama3-8B | 5.96 | 4.46 | | Llama3-70B | 4.90 | 4.07 | ### Llama3.1 Family | Model | Base Model | Base + MemDec | |-------|------------|---------------| | Llama3.1-8B | 5.88 | 4.42 | | Llama3.1-70B | 4.89 | 4.06 | ### Llama3.2 Family | Model | Base Model | Base + MemDec | |-------|------------|---------------| | Llama3.2-1B | 8.23 | 5.11 | | Llama3.2-3B | 6.83 | 4.76 | *Perplexity scores on Law domain test set. Lower is better.* ## Citation ```bibtex @article{cao2025memory, title={Memory decoder: A pretrained, plug-and-play memory for large language models}, author={Cao, Jiaqi and Wang, Jiarui and Wei, Rubin and Guo, Qipeng and Chen, Kai and Zhou, Bowen and Lin, Zhouhan}, journal={arXiv preprint arXiv:2508.09874}, year={2025} } ``` ## Contact For questions and support: maximus.cao@outlook.com