Add pipeline tag and library name (#1)
Browse files- Add pipeline tag and library name (f1aff8cc1b07be74f53949a9d12db6253a818acf)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -9,6 +9,8 @@ datasets:
|
|
| 9 |
- codingsteven/Llama-3-8B-chat
|
| 10 |
language:
|
| 11 |
- zh
|
|
|
|
|
|
|
| 12 |
base_model:
|
| 13 |
- meta-llama/Llama-3.1-8B
|
| 14 |
model-index:
|
|
@@ -66,13 +68,15 @@ model-index:
|
|
| 66 |
value: 0.4425833189431877
|
| 67 |
stderr: 0.004506238417180843
|
| 68 |
verified: false
|
| 69 |
-
|
|
|
|
| 70 |
---
|
|
|
|
| 71 |
# Control-LLM-Llama3.1-8B-SynE-Full-Parameter-Tuning
|
| 72 |
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset.
|
| 73 |
|
| 74 |
## Linked Paper
|
| 75 |
-
This model is associated with the paper: [Control
|
| 76 |
|
| 77 |
## Linked Open Source code - training, eval and benchmark
|
| 78 |
This model is associated with the github: [Control-LLM](https://github.com/linkedin/ControlLLM).
|
|
@@ -111,4 +115,4 @@ The table below summarizes evaluation results across Chinese tasks and original
|
|
| 111 |
### Full Parameter Tuning on Chinese-SynE
|
| 112 |
The following plot illustrates the Catastrophic Forgetting of full parameter tuning in terms of hidden states alignment drift.
|
| 113 |
|
| 114 |
-

|
|
|
|
| 9 |
- codingsteven/Llama-3-8B-chat
|
| 10 |
language:
|
| 11 |
- zh
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
base_model:
|
| 15 |
- meta-llama/Llama-3.1-8B
|
| 16 |
model-index:
|
|
|
|
| 68 |
value: 0.4425833189431877
|
| 69 |
stderr: 0.004506238417180843
|
| 70 |
verified: false
|
| 71 |
+
pipeline_tag: text-generation
|
| 72 |
+
library_name: transformers
|
| 73 |
---
|
| 74 |
+
|
| 75 |
# Control-LLM-Llama3.1-8B-SynE-Full-Parameter-Tuning
|
| 76 |
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset.
|
| 77 |
|
| 78 |
## Linked Paper
|
| 79 |
+
This model is associated with the paper: [Control LLM: Controlled Evolution for Intelligence Retention in LLM](https://huggingface.co/papers/2501.10979).
|
| 80 |
|
| 81 |
## Linked Open Source code - training, eval and benchmark
|
| 82 |
This model is associated with the github: [Control-LLM](https://github.com/linkedin/ControlLLM).
|
|
|
|
| 115 |
### Full Parameter Tuning on Chinese-SynE
|
| 116 |
The following plot illustrates the Catastrophic Forgetting of full parameter tuning in terms of hidden states alignment drift.
|
| 117 |
|
| 118 |
+

|