Upload model
Browse files- config.json +21 -0
- configuration_videollama3_encoder.py +49 -0
- model.safetensors +3 -0
- modeling_videollama3_encoder.py +534 -0
config.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Videollama3VisionEncoderModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_videollama3_encoder.Videollama3VisionEncoderConfig",
|
| 8 |
+
"AutoModel": "modeling_videollama3_encoder.Videollama3VisionEncoderModel"
|
| 9 |
+
},
|
| 10 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 11 |
+
"hidden_size": 1152,
|
| 12 |
+
"intermediate_size": 4304,
|
| 13 |
+
"layer_norm_eps": 1e-06,
|
| 14 |
+
"model_type": "videollama3_vision_encoder",
|
| 15 |
+
"num_attention_heads": 16,
|
| 16 |
+
"num_channels": 3,
|
| 17 |
+
"num_hidden_layers": 27,
|
| 18 |
+
"patch_size": 14,
|
| 19 |
+
"torch_dtype": "bfloat16",
|
| 20 |
+
"transformers_version": "4.49.0"
|
| 21 |
+
}
|
configuration_videollama3_encoder.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/siglip/configuration_siglip.py.
|
| 2 |
+
# Below is the original copyright:
|
| 3 |
+
# coding=utf-8
|
| 4 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
"""VideoLLaMA3 vision encoder model configuration."""
|
| 18 |
+
|
| 19 |
+
from transformers import PretrainedConfig
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class Videollama3VisionEncoderConfig(PretrainedConfig):
|
| 23 |
+
|
| 24 |
+
model_type = "videollama3_vision_encoder"
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
hidden_size=768,
|
| 29 |
+
intermediate_size=3072,
|
| 30 |
+
num_hidden_layers=12,
|
| 31 |
+
num_attention_heads=12,
|
| 32 |
+
num_channels=3,
|
| 33 |
+
patch_size=16,
|
| 34 |
+
hidden_act="gelu_pytorch_tanh",
|
| 35 |
+
layer_norm_eps=1e-6,
|
| 36 |
+
attention_dropout=0.0,
|
| 37 |
+
**kwargs,
|
| 38 |
+
):
|
| 39 |
+
super().__init__(**kwargs)
|
| 40 |
+
|
| 41 |
+
self.hidden_size = hidden_size
|
| 42 |
+
self.intermediate_size = intermediate_size
|
| 43 |
+
self.num_hidden_layers = num_hidden_layers
|
| 44 |
+
self.num_attention_heads = num_attention_heads
|
| 45 |
+
self.num_channels = num_channels
|
| 46 |
+
self.patch_size = patch_size
|
| 47 |
+
self.attention_dropout = attention_dropout
|
| 48 |
+
self.layer_norm_eps = layer_norm_eps
|
| 49 |
+
self.hidden_act = hidden_act
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14f386f859500ad3a90e7ff4528c94c0f92848c12efe1a7b166ea32ebcce4619
|
| 3 |
+
size 824342816
|
modeling_videollama3_encoder.py
ADDED
|
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py.
|
| 2 |
+
# Below is the original copyright:
|
| 3 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 6 |
+
# and OPT implementations in this library. It has been modified from its
|
| 7 |
+
# original forms to accommodate minor architectural differences compared
|
| 8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 9 |
+
#
|
| 10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
+
# you may not use this file except in compliance with the License.
|
| 12 |
+
# You may obtain a copy of the License at
|
| 13 |
+
#
|
| 14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
+
#
|
| 16 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
+
# See the License for the specific language governing permissions and
|
| 20 |
+
# limitations under the License.
|
| 21 |
+
"""PyTorch VideoLLaMA3 vision encoder model."""
|
| 22 |
+
|
| 23 |
+
import importlib.util
|
| 24 |
+
import os.path as osp
|
| 25 |
+
import math
|
| 26 |
+
import warnings
|
| 27 |
+
|
| 28 |
+
import torch
|
| 29 |
+
import torch.nn as nn
|
| 30 |
+
import torch.nn.functional as F
|
| 31 |
+
import torch.utils.checkpoint
|
| 32 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
| 33 |
+
|
| 34 |
+
from transformers.activations import ACT2FN
|
| 35 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 36 |
+
from transformers.utils import is_flash_attn_2_available
|
| 37 |
+
|
| 38 |
+
if is_flash_attn_2_available():
|
| 39 |
+
from flash_attn import flash_attn_varlen_func
|
| 40 |
+
else:
|
| 41 |
+
flash_attn_varlen_func = None
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
from .configuration_videollama3_encoder import Videollama3VisionEncoderConfig
|
| 45 |
+
except ImportError:
|
| 46 |
+
spec = importlib.util.spec_from_file_location(
|
| 47 |
+
"configuration_videollama3_encoder",
|
| 48 |
+
osp.join(osp.dirname(__file__), "configuration_videollama3_encoder.py"),
|
| 49 |
+
)
|
| 50 |
+
configuration_videollama3_encoder = importlib.util.module_from_spec(spec)
|
| 51 |
+
spec.loader.exec_module(configuration_videollama3_encoder)
|
| 52 |
+
Videollama3VisionEncoderConfig = getattr(
|
| 53 |
+
configuration_videollama3_encoder,
|
| 54 |
+
"Videollama3VisionEncoderConfig",
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 59 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 60 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 61 |
+
def norm_cdf(x):
|
| 62 |
+
# Computes standard normal cumulative distribution function
|
| 63 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
| 64 |
+
|
| 65 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 66 |
+
warnings.warn(
|
| 67 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 68 |
+
"The distribution of values may be incorrect.",
|
| 69 |
+
stacklevel=2,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Values are generated by using a truncated uniform distribution and
|
| 73 |
+
# then using the inverse CDF for the normal distribution.
|
| 74 |
+
# Get upper and lower cdf values
|
| 75 |
+
l = norm_cdf((a - mean) / std)
|
| 76 |
+
u = norm_cdf((b - mean) / std)
|
| 77 |
+
|
| 78 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 79 |
+
# [2l-1, 2u-1].
|
| 80 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 81 |
+
|
| 82 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 83 |
+
# standard normal
|
| 84 |
+
tensor.erfinv_()
|
| 85 |
+
|
| 86 |
+
# Transform to proper mean, std
|
| 87 |
+
tensor.mul_(std * math.sqrt(2.0))
|
| 88 |
+
tensor.add_(mean)
|
| 89 |
+
|
| 90 |
+
# Clamp to ensure it's in the proper range
|
| 91 |
+
tensor.clamp_(min=a, max=b)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def trunc_normal_tf_(
|
| 95 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
| 96 |
+
) -> torch.Tensor:
|
| 97 |
+
"""Fills the input Tensor with values drawn from a truncated
|
| 98 |
+
normal distribution. The values are effectively drawn from the
|
| 99 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 100 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 101 |
+
the bounds. The method used for generating the random values works
|
| 102 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
| 103 |
+
|
| 104 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
| 105 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
| 106 |
+
and the result is subsequently scaled and shifted by the mean and std args.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 110 |
+
mean: the mean of the normal distribution
|
| 111 |
+
std: the standard deviation of the normal distribution
|
| 112 |
+
a: the minimum cutoff value
|
| 113 |
+
b: the maximum cutoff value
|
| 114 |
+
"""
|
| 115 |
+
with torch.no_grad():
|
| 116 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
| 117 |
+
tensor.mul_(std).add_(mean)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
| 121 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
| 122 |
+
if mode == "fan_in":
|
| 123 |
+
denom = fan_in
|
| 124 |
+
elif mode == "fan_out":
|
| 125 |
+
denom = fan_out
|
| 126 |
+
elif mode == "fan_avg":
|
| 127 |
+
denom = (fan_in + fan_out) / 2
|
| 128 |
+
|
| 129 |
+
variance = scale / denom
|
| 130 |
+
|
| 131 |
+
if distribution == "truncated_normal":
|
| 132 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
| 133 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
| 134 |
+
elif distribution == "normal":
|
| 135 |
+
with torch.no_grad():
|
| 136 |
+
tensor.normal_(std=math.sqrt(variance))
|
| 137 |
+
elif distribution == "uniform":
|
| 138 |
+
bound = math.sqrt(3 * variance)
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
tensor.uniform_(-bound, bound)
|
| 141 |
+
else:
|
| 142 |
+
raise ValueError(f"invalid distribution {distribution}")
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def lecun_normal_(tensor):
|
| 146 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def default_flax_embed_init(tensor):
|
| 150 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 154 |
+
def rotate_half(x):
|
| 155 |
+
"""Rotates half the hidden dims of the input."""
|
| 156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 158 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
| 162 |
+
orig_dtype = tensor.dtype
|
| 163 |
+
tensor = tensor.float()
|
| 164 |
+
cos = freqs.cos()
|
| 165 |
+
sin = freqs.sin()
|
| 166 |
+
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
| 167 |
+
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
| 168 |
+
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
| 169 |
+
output = output.to(orig_dtype)
|
| 170 |
+
return output
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class VisionRotaryEmbedding(nn.Module):
|
| 174 |
+
|
| 175 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
| 176 |
+
super().__init__()
|
| 177 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
| 178 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 179 |
+
|
| 180 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
| 181 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
| 182 |
+
freqs = torch.outer(seq, self.inv_freq)
|
| 183 |
+
return freqs
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class Videollama3VisionEmbeddings(nn.Module):
|
| 187 |
+
|
| 188 |
+
def __init__(self, config: Videollama3VisionEncoderConfig):
|
| 189 |
+
super().__init__()
|
| 190 |
+
self.config = config
|
| 191 |
+
self.embed_dim = config.hidden_size
|
| 192 |
+
self.patch_size = config.patch_size
|
| 193 |
+
|
| 194 |
+
self.patch_embedding = nn.Conv2d(
|
| 195 |
+
in_channels=config.num_channels,
|
| 196 |
+
out_channels=self.embed_dim,
|
| 197 |
+
kernel_size=self.patch_size,
|
| 198 |
+
stride=self.patch_size,
|
| 199 |
+
padding="valid",
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 203 |
+
hidden_states = hidden_states.view(
|
| 204 |
+
-1, self.config.num_channels, self.patch_size, self.patch_size
|
| 205 |
+
)
|
| 206 |
+
patch_embeds = self.patch_embedding(hidden_states) # shape = [*, width, grid, grid]
|
| 207 |
+
# embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
| 208 |
+
embeddings = patch_embeds.view(-1, self.embed_dim)
|
| 209 |
+
|
| 210 |
+
return embeddings
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class VisionAttention(nn.Module):
|
| 214 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 215 |
+
|
| 216 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
| 217 |
+
def __init__(self, config):
|
| 218 |
+
super().__init__()
|
| 219 |
+
self.config = config
|
| 220 |
+
self.embed_dim = config.hidden_size
|
| 221 |
+
self.num_heads = config.num_attention_heads
|
| 222 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 223 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 224 |
+
raise ValueError(
|
| 225 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 226 |
+
f" {self.num_heads})."
|
| 227 |
+
)
|
| 228 |
+
self.scale = self.head_dim**-0.5
|
| 229 |
+
self.dropout = config.attention_dropout
|
| 230 |
+
|
| 231 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 232 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 233 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 234 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 235 |
+
|
| 236 |
+
def forward(
|
| 237 |
+
self,
|
| 238 |
+
hidden_states: torch.Tensor,
|
| 239 |
+
cu_seqlens: torch.Tensor,
|
| 240 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 241 |
+
) -> torch.Tensor:
|
| 242 |
+
"""Input shape: Time x Channel"""
|
| 243 |
+
|
| 244 |
+
q_len, _ = hidden_states.size()
|
| 245 |
+
|
| 246 |
+
query_states = self.q_proj(hidden_states)
|
| 247 |
+
key_states = self.k_proj(hidden_states)
|
| 248 |
+
value_states = self.v_proj(hidden_states)
|
| 249 |
+
|
| 250 |
+
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
|
| 251 |
+
key_states = key_states.view(q_len, self.num_heads, self.head_dim)
|
| 252 |
+
value_states = value_states.view(q_len, self.num_heads, self.head_dim)
|
| 253 |
+
|
| 254 |
+
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 255 |
+
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 256 |
+
|
| 257 |
+
attention_mask = torch.zeros([1, q_len, q_len], device=query_states.device, dtype=torch.bool)
|
| 258 |
+
for i in range(1, len(cu_seqlens)):
|
| 259 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
| 260 |
+
|
| 261 |
+
query_states = query_states.transpose(0, 1)
|
| 262 |
+
key_states = key_states.transpose(0, 1)
|
| 263 |
+
value_states = value_states.transpose(0, 1)
|
| 264 |
+
|
| 265 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim)
|
| 266 |
+
attn_weights = attn_weights + attention_mask
|
| 267 |
+
|
| 268 |
+
# upcast attention to fp32
|
| 269 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 270 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 271 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 272 |
+
|
| 273 |
+
attn_output = attn_output.transpose(0, 1)
|
| 274 |
+
attn_output = attn_output.reshape(q_len, -1)
|
| 275 |
+
attn_output = self.out_proj(attn_output)
|
| 276 |
+
|
| 277 |
+
return attn_output
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class VisionFlashAttention2(VisionAttention):
|
| 281 |
+
|
| 282 |
+
def __init__(self, *args, **kwargs):
|
| 283 |
+
super().__init__(*args, **kwargs)
|
| 284 |
+
|
| 285 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
| 286 |
+
def forward(
|
| 287 |
+
self,
|
| 288 |
+
hidden_states: torch.Tensor,
|
| 289 |
+
cu_seqlens: torch.Tensor,
|
| 290 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 291 |
+
) -> torch.Tensor:
|
| 292 |
+
q_len, _ = hidden_states.size()
|
| 293 |
+
|
| 294 |
+
query_states = self.q_proj(hidden_states)
|
| 295 |
+
key_states = self.k_proj(hidden_states)
|
| 296 |
+
value_states = self.v_proj(hidden_states)
|
| 297 |
+
|
| 298 |
+
# Flash attention requires the input to have the shape
|
| 299 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 300 |
+
# therefore we just need to keep the original shape
|
| 301 |
+
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
|
| 302 |
+
key_states = key_states.view(q_len, self.num_heads, self.head_dim)
|
| 303 |
+
value_states = value_states.view(q_len, self.num_heads, self.head_dim)
|
| 304 |
+
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 305 |
+
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 306 |
+
|
| 307 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
| 308 |
+
attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
| 309 |
+
q_len, -1
|
| 310 |
+
)
|
| 311 |
+
attn_output = self.out_proj(attn_output)
|
| 312 |
+
|
| 313 |
+
return attn_output
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
class VisionSdpaAttention(VisionAttention):
|
| 317 |
+
|
| 318 |
+
def forward(
|
| 319 |
+
self,
|
| 320 |
+
hidden_states: torch.Tensor,
|
| 321 |
+
cu_seqlens: torch.Tensor,
|
| 322 |
+
rotary_pos_emb: torch.Tensor = None,
|
| 323 |
+
) -> torch.Tensor:
|
| 324 |
+
seq_length = hidden_states.shape[0]
|
| 325 |
+
query_states = self.q_proj(hidden_states)
|
| 326 |
+
key_states = self.k_proj(hidden_states)
|
| 327 |
+
value_states = self.v_proj(hidden_states)
|
| 328 |
+
|
| 329 |
+
query_states = query_states.view(seq_length, self.num_heads, self.head_dim)
|
| 330 |
+
key_states = key_states.view(seq_length, self.num_heads, self.head_dim)
|
| 331 |
+
value_states = value_states.view(seq_length, self.num_heads, self.head_dim)
|
| 332 |
+
|
| 333 |
+
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 334 |
+
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
| 335 |
+
|
| 336 |
+
attention_mask = torch.zeros([1, seq_length, seq_length], device=query_states.device, dtype=torch.bool)
|
| 337 |
+
for i in range(1, len(cu_seqlens)):
|
| 338 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
| 339 |
+
|
| 340 |
+
query_states = query_states.transpose(0, 1)
|
| 341 |
+
key_states = key_states.transpose(0, 1)
|
| 342 |
+
value_states = value_states.transpose(0, 1)
|
| 343 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=0.0)
|
| 344 |
+
attn_output = attn_output.transpose(0, 1)
|
| 345 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
| 346 |
+
attn_output = self.proj(attn_output)
|
| 347 |
+
return attn_output
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
VISION_ATTENTION_CLASSES = {
|
| 351 |
+
"eager": VisionAttention,
|
| 352 |
+
"flash_attention_2": VisionFlashAttention2,
|
| 353 |
+
"sdpa": VisionSdpaAttention,
|
| 354 |
+
}
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Videollama3
|
| 358 |
+
class Videollama3VisionMLP(nn.Module):
|
| 359 |
+
|
| 360 |
+
def __init__(self, config):
|
| 361 |
+
super().__init__()
|
| 362 |
+
self.config = config
|
| 363 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 364 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 365 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 366 |
+
|
| 367 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 368 |
+
hidden_states = self.fc1(hidden_states)
|
| 369 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 370 |
+
hidden_states = self.fc2(hidden_states)
|
| 371 |
+
return hidden_states
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class Videollama3VisionEncoderLayer(nn.Module):
|
| 375 |
+
|
| 376 |
+
def __init__(self, config: Videollama3VisionEncoderConfig):
|
| 377 |
+
super().__init__()
|
| 378 |
+
self.embed_dim = config.hidden_size
|
| 379 |
+
self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation](config=config)
|
| 380 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 381 |
+
self.mlp = Videollama3VisionMLP(config)
|
| 382 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 383 |
+
|
| 384 |
+
# Ignore copy
|
| 385 |
+
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
|
| 386 |
+
hidden_states = hidden_states + self.self_attn(
|
| 387 |
+
self.layer_norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
| 388 |
+
)
|
| 389 |
+
hidden_states = hidden_states + self.mlp(self.layer_norm2(hidden_states))
|
| 390 |
+
return hidden_states
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class Videollama3VisionTransformerEncoder(nn.Module):
|
| 394 |
+
|
| 395 |
+
def __init__(self, config: Videollama3VisionEncoderConfig):
|
| 396 |
+
super().__init__()
|
| 397 |
+
self.config = config
|
| 398 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
| 399 |
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
| 400 |
+
self.layers = nn.ModuleList([Videollama3VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 401 |
+
self.gradient_checkpointing = False
|
| 402 |
+
|
| 403 |
+
def rot_pos_emb(self, grid_sizes, merge_sizes):
|
| 404 |
+
pos_ids = []
|
| 405 |
+
for (t, h, w), merge_size in zip(grid_sizes, merge_sizes):
|
| 406 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
| 407 |
+
hpos_ids = hpos_ids.reshape(
|
| 408 |
+
h // merge_size,
|
| 409 |
+
merge_size,
|
| 410 |
+
w // merge_size,
|
| 411 |
+
merge_size,
|
| 412 |
+
)
|
| 413 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
| 414 |
+
hpos_ids = hpos_ids.flatten()
|
| 415 |
+
|
| 416 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
| 417 |
+
wpos_ids = wpos_ids.reshape(
|
| 418 |
+
h // merge_size,
|
| 419 |
+
merge_size,
|
| 420 |
+
w // merge_size,
|
| 421 |
+
merge_size,
|
| 422 |
+
)
|
| 423 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
| 424 |
+
wpos_ids = wpos_ids.flatten()
|
| 425 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
| 426 |
+
|
| 427 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
| 428 |
+
max_grid_size = grid_sizes[:, 1:].max()
|
| 429 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
| 430 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
| 431 |
+
|
| 432 |
+
return rotary_pos_emb
|
| 433 |
+
|
| 434 |
+
def forward(self, hidden_states, grid_sizes, merge_sizes) -> torch.Tensor:
|
| 435 |
+
rotary_pos_emb = self.rot_pos_emb(grid_sizes, merge_sizes)
|
| 436 |
+
|
| 437 |
+
cu_seqlens = torch.repeat_interleave(grid_sizes[:, 1] * grid_sizes[:, 2], grid_sizes[:, 0]).cumsum(dim=0, dtype=torch.int32)
|
| 438 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 439 |
+
|
| 440 |
+
for blk in self.layers:
|
| 441 |
+
if self.gradient_checkpointing and self.training:
|
| 442 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 443 |
+
blk.__call__,
|
| 444 |
+
hidden_states,
|
| 445 |
+
cu_seqlens,
|
| 446 |
+
rotary_pos_emb
|
| 447 |
+
)
|
| 448 |
+
else:
|
| 449 |
+
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
| 450 |
+
|
| 451 |
+
return hidden_states
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
class Videollama3VisionEncoderModel(PreTrainedModel):
|
| 455 |
+
|
| 456 |
+
config_class = Videollama3VisionEncoderConfig
|
| 457 |
+
base_model_prefix = "videollama3"
|
| 458 |
+
main_input_name = "pixel_values"
|
| 459 |
+
supports_gradient_checkpointing = True
|
| 460 |
+
_no_split_modules = [
|
| 461 |
+
"Videollama3VisionEncoderLayer",
|
| 462 |
+
"Videollama3VisionEmbeddings",
|
| 463 |
+
]
|
| 464 |
+
_supports_flash_attn_2 = True
|
| 465 |
+
_supports_sdpa = True
|
| 466 |
+
|
| 467 |
+
def __init__(self, config: Videollama3VisionEncoderConfig):
|
| 468 |
+
super().__init__(config=config)
|
| 469 |
+
embed_dim = config.hidden_size
|
| 470 |
+
|
| 471 |
+
self.embeddings = Videollama3VisionEmbeddings(config)
|
| 472 |
+
self.encoder = Videollama3VisionTransformerEncoder(config)
|
| 473 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 474 |
+
|
| 475 |
+
self.post_init()
|
| 476 |
+
|
| 477 |
+
def forward(self, pixel_values, grid_sizes, merge_sizes=None) -> torch.Tensor:
|
| 478 |
+
hidden_states = self.embeddings(pixel_values)
|
| 479 |
+
hidden_states = self.encoder(hidden_states, grid_sizes, merge_sizes)
|
| 480 |
+
hidden_states = self.post_layernorm(hidden_states)
|
| 481 |
+
|
| 482 |
+
hidden_states_chunks = hidden_states.split(grid_sizes.prod(dim=1).tolist(), dim=0)
|
| 483 |
+
outputs = []
|
| 484 |
+
|
| 485 |
+
for hidden_states, grid_size, merge_size in zip(hidden_states_chunks, grid_sizes, merge_sizes):
|
| 486 |
+
# NOTE: previous implementation, which supports downsampling with any factor
|
| 487 |
+
c = hidden_states.shape[-1]
|
| 488 |
+
hidden_states = hidden_states.view(
|
| 489 |
+
grid_size[0], grid_size[1] // merge_size, grid_size[2] // merge_size, merge_size, merge_size, c
|
| 490 |
+
).permute(0, 1, 3, 2, 4, 5)
|
| 491 |
+
hidden_states = hidden_states.reshape(
|
| 492 |
+
grid_size[0], grid_size[1], grid_size[2], c
|
| 493 |
+
).permute(0, 3, 1, 2)
|
| 494 |
+
hidden_states = torch.nn.functional.interpolate(
|
| 495 |
+
hidden_states,
|
| 496 |
+
size=(grid_size[1] // merge_size, grid_size[2] // merge_size),
|
| 497 |
+
mode='bilinear'
|
| 498 |
+
)
|
| 499 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).view(-1, c)
|
| 500 |
+
|
| 501 |
+
# NOTE: simplified implementation, which only supports downsampling with integer factor
|
| 502 |
+
# NOTE: this implementation is mathematically equivalent to the previous one when merge_size is 1 or 2 but may cause slightly different results
|
| 503 |
+
# hidden_states = hidden_states.view(-1, merge_size * merge_size, hidden_states.size(-1))
|
| 504 |
+
# hidden_states = hidden_states.mean(dim=1)
|
| 505 |
+
|
| 506 |
+
outputs.append(hidden_states)
|
| 507 |
+
|
| 508 |
+
return torch.cat(outputs, dim=0)
|
| 509 |
+
|
| 510 |
+
def _init_weights(self, module):
|
| 511 |
+
"""Initialize the weights"""
|
| 512 |
+
if isinstance(module, nn.Embedding):
|
| 513 |
+
default_flax_embed_init(module.weight)
|
| 514 |
+
elif isinstance(module, VisionAttention):
|
| 515 |
+
nn.init.xavier_uniform_(module.q_proj.weight)
|
| 516 |
+
nn.init.xavier_uniform_(module.k_proj.weight)
|
| 517 |
+
nn.init.xavier_uniform_(module.v_proj.weight)
|
| 518 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
| 519 |
+
nn.init.zeros_(module.q_proj.bias)
|
| 520 |
+
nn.init.zeros_(module.k_proj.bias)
|
| 521 |
+
nn.init.zeros_(module.v_proj.bias)
|
| 522 |
+
nn.init.zeros_(module.out_proj.bias)
|
| 523 |
+
elif isinstance(module, Videollama3VisionMLP):
|
| 524 |
+
nn.init.xavier_uniform_(module.fc1.weight)
|
| 525 |
+
nn.init.xavier_uniform_(module.fc2.weight)
|
| 526 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
| 527 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
| 528 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 529 |
+
lecun_normal_(module.weight)
|
| 530 |
+
if module.bias is not None:
|
| 531 |
+
nn.init.zeros_(module.bias)
|
| 532 |
+
elif isinstance(module, nn.LayerNorm):
|
| 533 |
+
module.bias.data.zero_()
|
| 534 |
+
module.weight.data.fill_(1.0)
|