File size: 2,365 Bytes
7bcc90f 802671b 7344c33 802671b e4c7716 802671b e4c7716 802671b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: mit
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
- confusion_matrix
pipeline_tag: tabular-classification
library_name: sklearn
tags:
- Water Potability
- Random Forest
- Standard Scaler
---
# π§ HydraSense - Water Potability Classifier Model (v1.0)
A lightweight **Random Forest + StandardScaler** based water potability prediction model developed by **DarkNeuronAI**.
It classifies water as **Potable (1)** or **Not Potable (0)** based on chemical and physical features β ideal for simple tabular classification tasks.
---
## π Features
- Fast and efficient β runs easily on standard laptops
- Trained with real-world water quality datasets
- Predicts potability from features like **pH, Hardness, Solids, Chloramines, Sulfate, Conductivity, Organic Carbon, Trihalomethanes, Turbidity**
- Uses a **pipeline** to automatically scale and preprocess input data
- Easy to use and integrate
---
## π Model Overview
- **Algorithm:** Random Forest Classifier
- **Preprocessing:** StandardScaler (automatic feature scaling)
- **Goal:** Predict whether water is safe to drink (Potable) or unsafe (Not Potable)
- **Performance:** Accurate classification on real-world datasets
---
## π§© Files Included
- `water_potability_model.pkl` β Trained Random Forest pipeline (scaler + model)
- `example_usage.py` β Example code to use the model
- `requirements.txt` β Dependencies list
---
## π·οΈ Prediction Labels (Binary)
- **0:** Not Potable (Unsafe to drink)
- **1:** Potable (Safe to drink)
---
## π‘ How to Use (Example Code)
```python
from huggingface_hub import hf_hub_download
import joblib
import pandas as pd
# Download and load the trained pipeline
pipeline_path = hf_hub_download("DarkNeuron-AI/darkneuron-hydrasense-v1", "water_potability_model.pkl")
model = joblib.load(pipeline_path)
# Example water sample
sample_data = {
'ph': [7.2],
'Hardness': [180],
'Solids': [15000],
'Chloramines': [8.3],
'Sulfate': [350],
'Conductivity': [450],
'Organic_carbon': [10],
'Trihalomethanes': [70],
'Turbidity': [3]
}
sample_df = pd.DataFrame(sample_data)
# Predict potability
prediction = model.predict(sample_df)
print("Prediction:", "π§ Potable" if prediction[0] == 1 else "β οΈ Not Potable")
```
# Developed With β€οΈ By DarkNeuronAI |