Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,50 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: openrail
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: openrail
|
| 3 |
+
datasets:
|
| 4 |
+
- DarthReca/crisislandmark
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
library_name: torchgeo
|
| 8 |
+
tags:
|
| 9 |
+
- remote-sensing
|
| 10 |
+
- text-to-image-retrieval
|
| 11 |
+
- multimodal
|
| 12 |
+
- geospatial
|
| 13 |
+
- SAR
|
| 14 |
+
- multispectral
|
| 15 |
+
- crisis-management
|
| 16 |
+
- earth-observation
|
| 17 |
+
- contrastive-learning
|
| 18 |
+
---
|
| 19 |
+
# CLOSP
|
| 20 |
+
|
| 21 |
+
CLOSP (Contrastive Language Optical SAR Pretraining) is a multimodal architecture designed for text-to-image retrieval.
|
| 22 |
+
It creates a unified embedding space for text, Sentinel-2 (MSI), and Sentinel-1 (SAR) data.
|
| 23 |
+
|
| 24 |
+
This repository contains all the separate visual encoders in PyTorch format.
|
| 25 |
+
|
| 26 |
+
## Model Details
|
| 27 |
+
The model uses three separate encoders: one for text, one for Sentinel-1 (SAR) data, and one for Sentinel-2 (MSI) data.
|
| 28 |
+
During training, it uses a contrastive objective to align the textual embeddings with the corresponding visual embeddings (either SAR or MSI).
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
- **Developed by:** Daniele Rege Cambrin
|
| 32 |
+
- **Model type:** CLOSP
|
| 33 |
+
- **Language(s) (NLP):** english
|
| 34 |
+
- **License:** OpenRAIL
|
| 35 |
+
- **Repository:** [GitHub](https://github.com/DarthReca/closp)
|
| 36 |
+
- **Paper:** [ArXiv](https://arxiv.org/abs/2507.10403)
|
| 37 |
+
|
| 38 |
+
## Citation
|
| 39 |
+
|
| 40 |
+
```bibtex
|
| 41 |
+
@misc{cambrin2025texttoremotesensingimageretrievalrgbsources,
|
| 42 |
+
title={Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources},
|
| 43 |
+
author={Daniele Rege Cambrin and Lorenzo Vaiani and Giuseppe Gallipoli and Luca Cagliero and Paolo Garza},
|
| 44 |
+
year={2025},
|
| 45 |
+
eprint={2507.10403},
|
| 46 |
+
archivePrefix={arXiv},
|
| 47 |
+
primaryClass={cs.CV},
|
| 48 |
+
url={https://arxiv.org/abs/2507.10403},
|
| 49 |
+
}
|
| 50 |
+
```
|