afshinrostami commited on
Commit
23b17a5
Β·
verified Β·
1 Parent(s): 16a9119

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -24
README.md CHANGED
@@ -24,16 +24,46 @@ pipeline_tag: time-series-forecasting
24
  ---
25
  # Toto-Open-Base-1.0
26
 
27
- Toto (Time Series Optimized Transformer for [Observability](https://www.datadoghq.com/knowledge-center/observability/) is a time-series foundation model designed for multi-variate time series forecasting, emphasizing observability metrics. Toto efficiently handles high-dimensional, sparse, and non-stationary data commonly encountered in observability scenarios.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
 
30
  <div style="width: 100%; margin: auto; padding: 1rem;">
31
  <img src="figures/architecture.png" alt="model architecture" style="width: 100%; height: auto;" />
32
  <em style="display: block; margin-top: 0.5rem; text-align: center;">
33
- Overview of Toto-Open-Base-1.0 architecture.
34
  </em>
35
  </div>
36
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ---
38
 
39
  ## ⚑ Quick Start: Model Inference
@@ -113,29 +143,7 @@ For detailed inference instructions, refer to the [inference tutorial notebook](
113
  | [Toto-Open-Base-1.0](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/model.safetensors) | 151M | [Config](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/config.json) | 605 MB | Initial release with SOTA performance |
114
 
115
 
116
- ## ✨ Key Features
117
-
118
- - **Zero-Shot Forecasting**
119
- - **Multi-Variate Support**
120
- - **Decoder-Only Transformer Architecture**
121
- - **Probabilistic Predictions (Student-T mixture model)**
122
- - **Causal Patch-Wise Instance Normalization**
123
- - **Extensive Pretraining on Large-Scale Data**
124
- - **High-Dimensional Time Series Support**
125
- - **Tailored for Observability Metrics**
126
- - **State-of-the-Art Performance** on [GiftEval](https://huggingface.co/spaces/Salesforce/GIFT-Eval) and [BOOM](https://huggingface.co/datasets/Datadog/BOOM)
127
-
128
- ---
129
-
130
- ## πŸ“š Training Data Summary
131
-
132
- - **Observability Metrics:** ~1 trillion points from Datadog internal systems (no customer data)
133
- - **Public Datasets:**
134
- - [GiftEval Pretrain](https://huggingface.co/datasets/Salesforce/GiftEvalPretrain)
135
- - [Chronos datasets](https://huggingface.co/datasets/autogluon/chronos_datasets)
136
- - **Synthetic Data:** ~1/3 of training data
137
 
138
- ---
139
 
140
  ## πŸ”— Additional Resources
141
 
 
24
  ---
25
  # Toto-Open-Base-1.0
26
 
27
+ Toto (Time Series Optimized Transformer for [Observability](https://www.datadoghq.com/knowledge-center/observability/) is a state-of-the-art time-series foundation model designed for multi-variate time series forecasting, emphasizing observability metrics. Toto efficiently handles high-dimensional, sparse, and non-stationary data commonly encountered in observability scenarios.
28
+
29
+ <div style="width: 80%; margin: auto; padding: 1rem;">
30
+ <img src="figures/rankings.png" alt="model ranking" style="width: 100%; height: auto;" />
31
+ <em style="display: block; margin-top: 0.5rem; text-align: center;">
32
+ The average rank of Toto compared to the runner-up models on both the <a href="https://huggingface.co/spaces/Salesforce/GIFT-Eval">GIFT-Eval</a> and <a href="https://huggingface.co/datasets/Datadog/BOOM">BOOM</a> benchmarks (as of May 19, 2025).
33
+ </em>
34
+ </div>
35
+
36
+ ---
37
+
38
+ ## ✨ Key Features
39
+
40
+ - **Zero-Shot Forecasting**: Perform forecasting without fine-tuning on your specific time series.
41
+ - **High-Dimension Multi-Variate Support**: Efficiently process multiple variables using Proportional Factorized Space-Time Attention.
42
+ - **Decoder-Only Transformer Architecture**: Support for variable prediction horizons and context lengths.
43
+ - **Probabilistic Predictions**: Generate both point forecasts and uncertainty estimates using a Student-T mixture model.
44
+ - **Extensive Pretraining on Large-Scale Data**: Trained on over 2 trillion time series data points, the largest pretraining dataset for any open-weights time series foundation model to date.
45
+ - **Tailored for Observability Metrics with State-of-the-Art Performance** on [GIFT-Eval](https://huggingface.co/spaces/Salesforce/GIFT-Eval) and [BOOM](https://huggingface.co/datasets/Datadog/BOOM)
46
 
47
 
48
  <div style="width: 100%; margin: auto; padding: 1rem;">
49
  <img src="figures/architecture.png" alt="model architecture" style="width: 100%; height: auto;" />
50
  <em style="display: block; margin-top: 0.5rem; text-align: center;">
51
+ Oerview of Toto-Open-Base-1.0 architecture.
52
  </em>
53
  </div>
54
 
55
+ ---
56
+
57
+ ## πŸ“š Training Data Summary
58
+
59
+ - **Observability Metrics:** ~1 trillion points from Datadog internal systems (no customer data)
60
+ - **Public Datasets:**
61
+ - [GIFT-Eval Pretrain](https://huggingface.co/datasets/Salesforce/GiftEvalPretrain)
62
+ - [Chronos datasets](https://huggingface.co/datasets/autogluon/chronos_datasets)
63
+ - **Synthetic Data:** ~1/3 of training data
64
+
65
+
66
+
67
  ---
68
 
69
  ## ⚑ Quick Start: Model Inference
 
143
  | [Toto-Open-Base-1.0](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/model.safetensors) | 151M | [Config](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/config.json) | 605 MB | Initial release with SOTA performance |
144
 
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
 
147
 
148
  ## πŸ”— Additional Resources
149