Update README.md
Browse files
README.md
CHANGED
|
@@ -24,16 +24,46 @@ pipeline_tag: time-series-forecasting
|
|
| 24 |
---
|
| 25 |
# Toto-Open-Base-1.0
|
| 26 |
|
| 27 |
-
Toto (Time Series Optimized Transformer for [Observability](https://www.datadoghq.com/knowledge-center/observability/) is a time-series foundation model designed for multi-variate time series forecasting, emphasizing observability metrics. Toto efficiently handles high-dimensional, sparse, and non-stationary data commonly encountered in observability scenarios.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
<div style="width: 100%; margin: auto; padding: 1rem;">
|
| 31 |
<img src="figures/architecture.png" alt="model architecture" style="width: 100%; height: auto;" />
|
| 32 |
<em style="display: block; margin-top: 0.5rem; text-align: center;">
|
| 33 |
-
|
| 34 |
</em>
|
| 35 |
</div>
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
---
|
| 38 |
|
| 39 |
## β‘ Quick Start: Model Inference
|
|
@@ -113,29 +143,7 @@ For detailed inference instructions, refer to the [inference tutorial notebook](
|
|
| 113 |
| [Toto-Open-Base-1.0](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/model.safetensors) | 151M | [Config](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/config.json) | 605 MB | Initial release with SOTA performance |
|
| 114 |
|
| 115 |
|
| 116 |
-
## β¨ Key Features
|
| 117 |
-
|
| 118 |
-
- **Zero-Shot Forecasting**
|
| 119 |
-
- **Multi-Variate Support**
|
| 120 |
-
- **Decoder-Only Transformer Architecture**
|
| 121 |
-
- **Probabilistic Predictions (Student-T mixture model)**
|
| 122 |
-
- **Causal Patch-Wise Instance Normalization**
|
| 123 |
-
- **Extensive Pretraining on Large-Scale Data**
|
| 124 |
-
- **High-Dimensional Time Series Support**
|
| 125 |
-
- **Tailored for Observability Metrics**
|
| 126 |
-
- **State-of-the-Art Performance** on [GiftEval](https://huggingface.co/spaces/Salesforce/GIFT-Eval) and [BOOM](https://huggingface.co/datasets/Datadog/BOOM)
|
| 127 |
-
|
| 128 |
-
---
|
| 129 |
-
|
| 130 |
-
## π Training Data Summary
|
| 131 |
-
|
| 132 |
-
- **Observability Metrics:** ~1 trillion points from Datadog internal systems (no customer data)
|
| 133 |
-
- **Public Datasets:**
|
| 134 |
-
- [GiftEval Pretrain](https://huggingface.co/datasets/Salesforce/GiftEvalPretrain)
|
| 135 |
-
- [Chronos datasets](https://huggingface.co/datasets/autogluon/chronos_datasets)
|
| 136 |
-
- **Synthetic Data:** ~1/3 of training data
|
| 137 |
|
| 138 |
-
---
|
| 139 |
|
| 140 |
## π Additional Resources
|
| 141 |
|
|
|
|
| 24 |
---
|
| 25 |
# Toto-Open-Base-1.0
|
| 26 |
|
| 27 |
+
Toto (Time Series Optimized Transformer for [Observability](https://www.datadoghq.com/knowledge-center/observability/) is a state-of-the-art time-series foundation model designed for multi-variate time series forecasting, emphasizing observability metrics. Toto efficiently handles high-dimensional, sparse, and non-stationary data commonly encountered in observability scenarios.
|
| 28 |
+
|
| 29 |
+
<div style="width: 80%; margin: auto; padding: 1rem;">
|
| 30 |
+
<img src="figures/rankings.png" alt="model ranking" style="width: 100%; height: auto;" />
|
| 31 |
+
<em style="display: block; margin-top: 0.5rem; text-align: center;">
|
| 32 |
+
The average rank of Toto compared to the runner-up models on both the <a href="https://huggingface.co/spaces/Salesforce/GIFT-Eval">GIFT-Eval</a> and <a href="https://huggingface.co/datasets/Datadog/BOOM">BOOM</a> benchmarks (as of May 19, 2025).
|
| 33 |
+
</em>
|
| 34 |
+
</div>
|
| 35 |
+
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
## β¨ Key Features
|
| 39 |
+
|
| 40 |
+
- **Zero-Shot Forecasting**: Perform forecasting without fine-tuning on your specific time series.
|
| 41 |
+
- **High-Dimension Multi-Variate Support**: Efficiently process multiple variables using Proportional Factorized Space-Time Attention.
|
| 42 |
+
- **Decoder-Only Transformer Architecture**: Support for variable prediction horizons and context lengths.
|
| 43 |
+
- **Probabilistic Predictions**: Generate both point forecasts and uncertainty estimates using a Student-T mixture model.
|
| 44 |
+
- **Extensive Pretraining on Large-Scale Data**: Trained on over 2 trillion time series data points, the largest pretraining dataset for any open-weights time series foundation model to date.
|
| 45 |
+
- **Tailored for Observability Metrics with State-of-the-Art Performance** on [GIFT-Eval](https://huggingface.co/spaces/Salesforce/GIFT-Eval) and [BOOM](https://huggingface.co/datasets/Datadog/BOOM)
|
| 46 |
|
| 47 |
|
| 48 |
<div style="width: 100%; margin: auto; padding: 1rem;">
|
| 49 |
<img src="figures/architecture.png" alt="model architecture" style="width: 100%; height: auto;" />
|
| 50 |
<em style="display: block; margin-top: 0.5rem; text-align: center;">
|
| 51 |
+
Oerview of Toto-Open-Base-1.0 architecture.
|
| 52 |
</em>
|
| 53 |
</div>
|
| 54 |
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## π Training Data Summary
|
| 58 |
+
|
| 59 |
+
- **Observability Metrics:** ~1 trillion points from Datadog internal systems (no customer data)
|
| 60 |
+
- **Public Datasets:**
|
| 61 |
+
- [GIFT-Eval Pretrain](https://huggingface.co/datasets/Salesforce/GiftEvalPretrain)
|
| 62 |
+
- [Chronos datasets](https://huggingface.co/datasets/autogluon/chronos_datasets)
|
| 63 |
+
- **Synthetic Data:** ~1/3 of training data
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
---
|
| 68 |
|
| 69 |
## β‘ Quick Start: Model Inference
|
|
|
|
| 143 |
| [Toto-Open-Base-1.0](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/model.safetensors) | 151M | [Config](https://huggingface.co/Datadog/Toto-Open-Base-1.0/blob/main/config.json) | 605 MB | Initial release with SOTA performance |
|
| 144 |
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
|
|
|
| 147 |
|
| 148 |
## π Additional Resources
|
| 149 |
|