File size: 12,973 Bytes
b010003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#!/usr/bin/env python3
"""
Helion-2.5-Rnd Batch Inference
Efficient batch processing for large-scale inference tasks
"""

import argparse
import json
import logging
import time
from pathlib import Path
from typing import Dict, List, Optional, Union

import pandas as pd
from tqdm import tqdm

from inference.client import HelionClient

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)


class BatchProcessor:
    """Process large batches of inference requests"""
    
    def __init__(
        self,
        client: HelionClient,
        batch_size: int = 10,
        max_retries: int = 3,
        retry_delay: float = 1.0
    ):
        """
        Initialize batch processor
        
        Args:
            client: HelionClient instance
            batch_size: Number of requests to process concurrently
            max_retries: Maximum retry attempts for failed requests
            retry_delay: Delay between retries in seconds
        """
        self.client = client
        self.batch_size = batch_size
        self.max_retries = max_retries
        self.retry_delay = retry_delay
        
        self.stats = {
            'total': 0,
            'successful': 0,
            'failed': 0,
            'total_time': 0.0,
            'avg_time_per_request': 0.0
        }
    
    def process_prompts(
        self,
        prompts: List[str],
        temperature: float = 0.7,
        max_tokens: int = 1024,
        **kwargs
    ) -> List[Dict]:
        """
        Process a list of prompts
        
        Args:
            prompts: List of input prompts
            temperature: Sampling temperature
            max_tokens: Maximum tokens per response
            **kwargs: Additional generation parameters
        
        Returns:
            List of results with prompt, response, and metadata
        """
        results = []
        start_time = time.time()
        
        logger.info(f"Processing {len(prompts)} prompts...")
        
        for i in tqdm(range(0, len(prompts), self.batch_size)):
            batch = prompts[i:i + self.batch_size]
            
            for prompt in batch:
                result = self._process_single_with_retry(
                    prompt,
                    temperature,
                    max_tokens,
                    **kwargs
                )
                results.append(result)
        
        # Update statistics
        self.stats['total'] = len(prompts)
        self.stats['successful'] = sum(1 for r in results if r['success'])
        self.stats['failed'] = len(prompts) - self.stats['successful']
        self.stats['total_time'] = time.time() - start_time
        self.stats['avg_time_per_request'] = self.stats['total_time'] / len(prompts)
        
        logger.info(f"Batch processing complete. Success rate: {self.stats['successful']}/{self.stats['total']}")
        
        return results
    
    def _process_single_with_retry(
        self,
        prompt: str,
        temperature: float,
        max_tokens: int,
        **kwargs
    ) -> Dict:
        """Process single prompt with retry logic"""
        for attempt in range(self.max_retries):
            try:
                start = time.time()
                response = self.client.complete(
                    prompt=prompt,
                    temperature=temperature,
                    max_tokens=max_tokens,
                    **kwargs
                )
                duration = time.time() - start
                
                return {
                    'prompt': prompt,
                    'response': response,
                    'success': True,
                    'duration': duration,
                    'attempts': attempt + 1
                }
            
            except Exception as e:
                logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
                
                if attempt < self.max_retries - 1:
                    time.sleep(self.retry_delay)
                else:
                    return {
                        'prompt': prompt,
                        'response': None,
                        'success': False,
                        'error': str(e),
                        'attempts': attempt + 1
                    }
    
    def process_chat_conversations(
        self,
        conversations: List[List[Dict]],
        temperature: float = 0.7,
        max_tokens: int = 1024,
        **kwargs
    ) -> List[Dict]:
        """
        Process chat conversations in batch
        
        Args:
            conversations: List of message lists
            temperature: Sampling temperature
            max_tokens: Maximum tokens per response
            **kwargs: Additional generation parameters
        
        Returns:
            List of conversation results
        """
        results = []
        start_time = time.time()
        
        logger.info(f"Processing {len(conversations)} conversations...")
        
        for conv in tqdm(conversations):
            try:
                start = time.time()
                response = self.client.chat(
                    messages=conv,
                    temperature=temperature,
                    max_tokens=max_tokens,
                    **kwargs
                )
                duration = time.time() - start
                
                results.append({
                    'conversation': conv,
                    'response': response,
                    'success': True,
                    'duration': duration
                })
            
            except Exception as e:
                logger.error(f"Conversation processing failed: {str(e)}")
                results.append({
                    'conversation': conv,
                    'response': None,
                    'success': False,
                    'error': str(e)
                })
        
        total_time = time.time() - start_time
        successful = sum(1 for r in results if r['success'])
        
        logger.info(f"Processed {successful}/{len(conversations)} conversations in {total_time:.2f}s")
        
        return results
    
    def process_file(
        self,
        input_file: str,
        output_file: str,
        prompt_column: str = "prompt",
        temperature: float = 0.7,
        max_tokens: int = 1024,
        **kwargs
    ) -> pd.DataFrame:
        """
        Process prompts from file
        
        Args:
            input_file: Input CSV/JSON file path
            output_file: Output file path
            prompt_column: Column name containing prompts
            temperature: Sampling temperature
            max_tokens: Maximum tokens per response
            **kwargs: Additional generation parameters
        
        Returns:
            DataFrame with results
        """
        # Load input file
        input_path = Path(input_file)
        
        if input_path.suffix == '.csv':
            df = pd.read_csv(input_path)
        elif input_path.suffix == '.json':
            df = pd.read_json(input_path)
        else:
            raise ValueError(f"Unsupported file format: {input_path.suffix}")
        
        if prompt_column not in df.columns:
            raise ValueError(f"Column '{prompt_column}' not found in input file")
        
        # Process prompts
        prompts = df[prompt_column].tolist()
        results = self.process_prompts(
            prompts,
            temperature=temperature,
            max_tokens=max_tokens,
            **kwargs
        )
        
        # Add results to dataframe
        df['response'] = [r['response'] for r in results]
        df['success'] = [r['success'] for r in results]
        df['duration'] = [r.get('duration', None) for r in results]
        df['error'] = [r.get('error', None) for r in results]
        
        # Save results
        output_path = Path(output_file)
        output_path.parent.mkdir(parents=True, exist_ok=True)
        
        if output_path.suffix == '.csv':
            df.to_csv(output_path, index=False)
        elif output_path.suffix == '.json':
            df.to_json(output_path, orient='records', indent=2)
        else:
            raise ValueError(f"Unsupported output format: {output_path.suffix}")
        
        logger.info(f"Results saved to {output_path}")
        
        return df
    
    def get_statistics(self) -> Dict:
        """Get processing statistics"""
        return self.stats.copy()


class DatasetProcessor:
    """Process specific dataset formats"""
    
    def __init__(self, client: HelionClient):
        self.client = client
        self.processor = BatchProcessor(client)
    
    def process_qa_dataset(
        self,
        questions: List[str],
        contexts: Optional[List[str]] = None,
        temperature: float = 0.3,
        max_tokens: int = 512
    ) -> List[Dict]:
        """Process question-answering dataset"""
        prompts = []
        
        for i, question in enumerate(questions):
            if contexts and i < len(contexts):
                prompt = f"Context: {contexts[i]}\n\nQuestion: {question}\n\nAnswer:"
            else:
                prompt = f"Question: {question}\n\nAnswer:"
            
            prompts.append(prompt)
        
        return self.processor.process_prompts(
            prompts,
            temperature=temperature,
            max_tokens=max_tokens
        )
    
    def process_code_dataset(
        self,
        tasks: List[str],
        languages: Optional[List[str]] = None,
        temperature: float = 0.2,
        max_tokens: int = 1024
    ) -> List[Dict]:
        """Process code generation tasks"""
        prompts = []
        
        for i, task in enumerate(tasks):
            lang = languages[i] if languages and i < len(languages) else "python"
            prompt = f"Write a {lang} function to: {task}\n\n```{lang}\n"
            prompts.append(prompt)
        
        return self.processor.process_prompts(
            prompts,
            temperature=temperature,
            max_tokens=max_tokens
        )
    
    def process_translation_dataset(
        self,
        texts: List[str],
        source_lang: str,
        target_lang: str,
        temperature: float = 0.3,
        max_tokens: int = 1024
    ) -> List[Dict]:
        """Process translation tasks"""
        prompts = []
        
        for text in texts:
            prompt = f"Translate the following text from {source_lang} to {target_lang}:\n\n{text}\n\nTranslation:"
            prompts.append(prompt)
        
        return self.processor.process_prompts(
            prompts,
            temperature=temperature,
            max_tokens=max_tokens
        )
    
    def process_summarization_dataset(
        self,
        documents: List[str],
        max_summary_length: int = 150,
        temperature: float = 0.5,
        max_tokens: int = 512
    ) -> List[Dict]:
        """Process document summarization"""
        prompts = []
        
        for doc in documents:
            prompt = f"Summarize the following document in {max_summary_length} words or less:\n\n{doc}\n\nSummary:"
            prompts.append(prompt)
        
        return self.processor.process_prompts(
            prompts,
            temperature=temperature,
            max_tokens=max_tokens
        )


def main():
    """Main batch processing entry point"""
    parser = argparse.ArgumentParser(description="Batch inference with Helion")
    parser.add_argument("--base-url", type=str, default="http://localhost:8000")
    parser.add_argument("--input", type=str, required=True, help="Input file (CSV/JSON)")
    parser.add_argument("--output", type=str, required=True, help="Output file (CSV/JSON)")
    parser.add_argument("--prompt-column", type=str, default="prompt")
    parser.add_argument("--temperature", type=float, default=0.7)
    parser.add_argument("--max-tokens", type=int, default=1024)
    parser.add_argument("--batch-size", type=int, default=10)
    
    args = parser.parse_args()
    
    # Initialize client and processor
    client = HelionClient(base_url=args.base_url)
    processor = BatchProcessor(client, batch_size=args.batch_size)
    
    # Process file
    df = processor.process_file(
        input_file=args.input,
        output_file=args.output,
        prompt_column=args.prompt_column,
        temperature=args.temperature,
        max_tokens=args.max_tokens
    )
    
    # Print statistics
    stats = processor.get_statistics()
    logger.info("\nProcessing Statistics:")
    logger.info(f"Total requests: {stats['total']}")
    logger.info(f"Successful: {stats['successful']}")
    logger.info(f"Failed: {stats['failed']}")
    logger.info(f"Total time: {stats['total_time']:.2f}s")
    logger.info(f"Avg time per request: {stats['avg_time_per_request']:.2f}s")


if __name__ == "__main__":
    main()