File size: 14,511 Bytes
f30f448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#!/usr/bin/env python3
"""
Helion-2.5-Rnd Inference Pipeline
High-level pipeline for easy model usage
"""

import logging
import time
from typing import Any, Dict, List, Optional, Union

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class StopOnTokens(StoppingCriteria):
    """Stop generation when specific tokens are generated"""
    
    def __init__(self, stop_token_ids: List[int]):
        self.stop_token_ids = stop_token_ids
    
    def __call__(
        self,
        input_ids: torch.LongTensor,
        scores: torch.FloatTensor,
        **kwargs
    ) -> bool:
        for stop_id in self.stop_token_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


class HelionPipeline:
    """High-level inference pipeline for Helion model"""
    
    def __init__(
        self,
        model_path: str,
        device: str = "cuda",
        torch_dtype=torch.bfloat16,
        load_in_8bit: bool = False,
        trust_remote_code: bool = True
    ):
        """
        Initialize Helion pipeline
        
        Args:
            model_path: Path to model or HuggingFace ID
            device: Device to load model on
            torch_dtype: Torch data type
            load_in_8bit: Whether to load in 8-bit
            trust_remote_code: Trust remote code
        """
        logger.info(f"Loading Helion model from {model_path}")
        
        self.device = device
        self.model_path = model_path
        
        # Load tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_path,
            trust_remote_code=trust_remote_code
        )
        
        # Load model
        self.model = AutoModelForCausalLM.from_pretrained(
            model_path,
            torch_dtype=torch_dtype,
            device_map="auto" if device == "cuda" else None,
            load_in_8bit=load_in_8bit,
            trust_remote_code=trust_remote_code
        )
        
        if device != "cuda" and not load_in_8bit:
            self.model = self.model.to(device)
        
        self.model.eval()
        
        # Setup stop tokens
        self.stop_token_ids = [
            self.tokenizer.eos_token_id,
            self.tokenizer.convert_tokens_to_ids("<|im_end|>"),
        ]
        
        logger.info("Model loaded successfully")
    
    def generate(
        self,
        prompt: str,
        max_new_tokens: int = 512,
        temperature: float = 0.7,
        top_p: float = 0.9,
        top_k: int = 50,
        repetition_penalty: float = 1.1,
        do_sample: bool = True,
        num_return_sequences: int = 1,
        **kwargs
    ) -> Union[str, List[str]]:
        """
        Generate text from prompt
        
        Args:
            prompt: Input prompt
            max_new_tokens: Maximum tokens to generate
            temperature: Sampling temperature
            top_p: Nucleus sampling parameter
            top_k: Top-k sampling parameter
            repetition_penalty: Repetition penalty
            do_sample: Whether to sample
            num_return_sequences: Number of sequences to return
            **kwargs: Additional generation parameters
            
        Returns:
            Generated text or list of texts
        """
        # Tokenize input
        inputs = self.tokenizer(
            prompt,
            return_tensors="pt",
            truncation=True,
            max_length=self.model.config.max_position_embeddings
        ).to(self.device)
        
        # Setup stopping criteria
        stopping_criteria = StoppingCriteriaList([
            StopOnTokens(self.stop_token_ids)
        ])
        
        # Generate
        with torch.no_grad():
            start_time = time.time()
            
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=max_new_tokens,
                temperature=temperature,
                top_p=top_p,
                top_k=top_k,
                repetition_penalty=repetition_penalty,
                do_sample=do_sample,
                num_return_sequences=num_return_sequences,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.tokenizer.pad_token_id,
                **kwargs
            )
            
            generation_time = time.time() - start_time
        
        # Decode outputs
        generated_texts = []
        for output in outputs:
            text = self.tokenizer.decode(
                output[inputs['input_ids'].shape[1]:],
                skip_special_tokens=True
            )
            generated_texts.append(text.strip())
        
        logger.info(f"Generated {len(generated_texts)} sequences in {generation_time:.2f}s")
        
        if num_return_sequences == 1:
            return generated_texts[0]
        return generated_texts
    
    def chat(
        self,
        messages: List[Dict[str, str]],
        max_new_tokens: int = 512,
        temperature: float = 0.7,
        **kwargs
    ) -> str:
        """
        Chat completion
        
        Args:
            messages: List of message dictionaries
            max_new_tokens: Maximum tokens to generate
            temperature: Sampling temperature
            **kwargs: Additional generation parameters
            
        Returns:
            Assistant response
        """
        # Format chat prompt
        prompt = self._format_chat_prompt(messages)
        
        # Generate response
        response = self.generate(
            prompt,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            **kwargs
        )
        
        return response
    
    def _format_chat_prompt(self, messages: List[Dict[str, str]]) -> str:
        """Format messages into chat prompt"""
        formatted = ""
        
        for msg in messages:
            role = msg.get('role', 'user')
            content = msg.get('content', '')
            formatted += f"<|im_start|>{role}\n{content}<|im_end|>\n"
        
        formatted += "<|im_start|>assistant\n"
        return formatted
    
    def batch_generate(
        self,
        prompts: List[str],
        max_new_tokens: int = 512,
        temperature: float = 0.7,
        batch_size: int = 4,
        **kwargs
    ) -> List[str]:
        """
        Generate for multiple prompts in batches
        
        Args:
            prompts: List of input prompts
            max_new_tokens: Maximum tokens to generate
            temperature: Sampling temperature
            batch_size: Batch size for processing
            **kwargs: Additional generation parameters
            
        Returns:
            List of generated texts
        """
        all_outputs = []
        
        for i in range(0, len(prompts), batch_size):
            batch = prompts[i:i + batch_size]
            
            # Tokenize batch
            inputs = self.tokenizer(
                batch,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=self.model.config.max_position_embeddings
            ).to(self.device)
            
            # Generate
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=max_new_tokens,
                    temperature=temperature,
                    pad_token_id=self.tokenizer.pad_token_id,
                    **kwargs
                )
            
            # Decode
            for j, output in enumerate(outputs):
                text = self.tokenizer.decode(
                    output[inputs['input_ids'][j].shape[0]:],
                    skip_special_tokens=True
                )
                all_outputs.append(text.strip())
        
        logger.info(f"Generated {len(all_outputs)} outputs")
        return all_outputs
    
    def stream_generate(
        self,
        prompt: str,
        max_new_tokens: int = 512,
        temperature: float = 0.7,
        **kwargs
    ):
        """
        Stream generation token by token
        
        Args:
            prompt: Input prompt
            max_new_tokens: Maximum tokens to generate
            temperature: Sampling temperature
            **kwargs: Additional generation parameters
            
        Yields:
            Generated tokens
        """
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        input_length = inputs['input_ids'].shape[1]
        
        stopping_criteria = StoppingCriteriaList([
            StopOnTokens(self.stop_token_ids)
        ])
        
        with torch.no_grad():
            for _ in range(max_new_tokens):
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=1,
                    temperature=temperature,
                    stopping_criteria=stopping_criteria,
                    pad_token_id=self.tokenizer.pad_token_id,
                    **kwargs
                )
                
                new_token_id = outputs[0, -1].item()
                
                # Check if stop token
                if new_token_id in self.stop_token_ids:
                    break
                
                # Decode and yield new token
                new_token = self.tokenizer.decode([new_token_id])
                yield new_token
                
                # Update inputs for next iteration
                inputs = {
                    'input_ids': outputs,
                    'attention_mask': torch.ones_like(outputs)
                }
    
    def get_embeddings(self, text: str) -> torch.Tensor:
        """
        Get embeddings for text
        
        Args:
            text: Input text
            
        Returns:
            Embedding tensor
        """
        inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
        
        with torch.no_grad():
            outputs = self.model(**inputs, output_hidden_states=True)
            embeddings = outputs.hidden_states[-1].mean(dim=1)
        
        return embeddings
    
    def score_text(self, text: str) -> float:
        """
        Calculate perplexity score for text
        
        Args:
            text: Input text
            
        Returns:
            Perplexity score
        """
        inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
        
        with torch.no_grad():
            outputs = self.model(**inputs, labels=inputs['input_ids'])
            loss = outputs.loss
            perplexity = torch.exp(loss).item()
        
        return perplexity
    
    def cleanup(self):
        """Clean up resources"""
        del self.model
        del self.tokenizer
        torch.cuda.empty_cache()
        logger.info("Pipeline cleaned up")


class ConversationPipeline(HelionPipeline):
    """Pipeline with conversation history management"""
    
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.conversation_history: List[Dict[str, str]] = []
        self.system_prompt: Optional[str] = None
    
    def set_system_prompt(self, prompt: str):
        """Set system prompt for conversation"""
        self.system_prompt = prompt
    
    def add_message(self, role: str, content: str):
        """Add message to conversation history"""
        self.conversation_history.append({
            'role': role,
            'content': content
        })
    
    def generate_response(
        self,
        user_message: str,
        max_new_tokens: int = 512,
        temperature: float = 0.7,
        **kwargs
    ) -> str:
        """
        Generate response in conversation context
        
        Args:
            user_message: User's message
            max_new_tokens: Maximum tokens to generate
            temperature: Sampling temperature
            **kwargs: Additional generation parameters
            
        Returns:
            Assistant response
        """
        # Build messages
        messages = []
        
        if self.system_prompt:
            messages.append({
                'role': 'system',
                'content': self.system_prompt
            })
        
        messages.extend(self.conversation_history)
        messages.append({
            'role': 'user',
            'content': user_message
        })
        
        # Generate response
        response = self.chat(
            messages,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            **kwargs
        )
        
        # Update history
        self.add_message('user', user_message)
        self.add_message('assistant', response)
        
        return response
    
    def reset_conversation(self):
        """Reset conversation history"""
        self.conversation_history.clear()
        logger.info("Conversation history reset")


def main():
    """Example usage"""
    # Initialize pipeline
    pipeline = HelionPipeline(
        model_path="DeepXR/Helion-2.5-Rnd",
        device="cuda"
    )
    
    # Simple generation
    prompt = "Explain quantum computing in simple terms:"
    response = pipeline.generate(prompt, max_new_tokens=256)
    print(f"Response: {response}\n")
    
    # Chat completion
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is the capital of France?"}
    ]
    response = pipeline.chat(messages)
    print(f"Chat response: {response}\n")
    
    # Batch generation
    prompts = [
        "Write a haiku about AI:",
        "Explain machine learning:",
        "What is Python?"
    ]
    responses = pipeline.batch_generate(prompts, batch_size=2)
    for i, resp in enumerate(responses):
        print(f"Batch {i+1}: {resp}\n")
    
    # Conversation
    conv_pipeline = ConversationPipeline(
        model_path="DeepXR/Helion-2.5-Rnd",
        device="cuda"
    )
    conv_pipeline.set_system_prompt("You are a helpful coding assistant.")
    
    response1 = conv_pipeline.generate_response("How do I sort a list in Python?")
    print(f"Conv 1: {response1}\n")
    
    response2 = conv_pipeline.generate_response("Can you show me an example?")
    print(f"Conv 2: {response2}\n")


if __name__ == "__main__":
    main()