File size: 14,511 Bytes
f30f448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
#!/usr/bin/env python3
"""
Helion-2.5-Rnd Inference Pipeline
High-level pipeline for easy model usage
"""
import logging
import time
from typing import Any, Dict, List, Optional, Union
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class StopOnTokens(StoppingCriteria):
"""Stop generation when specific tokens are generated"""
def __init__(self, stop_token_ids: List[int]):
self.stop_token_ids = stop_token_ids
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
**kwargs
) -> bool:
for stop_id in self.stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
class HelionPipeline:
"""High-level inference pipeline for Helion model"""
def __init__(
self,
model_path: str,
device: str = "cuda",
torch_dtype=torch.bfloat16,
load_in_8bit: bool = False,
trust_remote_code: bool = True
):
"""
Initialize Helion pipeline
Args:
model_path: Path to model or HuggingFace ID
device: Device to load model on
torch_dtype: Torch data type
load_in_8bit: Whether to load in 8-bit
trust_remote_code: Trust remote code
"""
logger.info(f"Loading Helion model from {model_path}")
self.device = device
self.model_path = model_path
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=trust_remote_code
)
# Load model
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch_dtype,
device_map="auto" if device == "cuda" else None,
load_in_8bit=load_in_8bit,
trust_remote_code=trust_remote_code
)
if device != "cuda" and not load_in_8bit:
self.model = self.model.to(device)
self.model.eval()
# Setup stop tokens
self.stop_token_ids = [
self.tokenizer.eos_token_id,
self.tokenizer.convert_tokens_to_ids("<|im_end|>"),
]
logger.info("Model loaded successfully")
def generate(
self,
prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.7,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.1,
do_sample: bool = True,
num_return_sequences: int = 1,
**kwargs
) -> Union[str, List[str]]:
"""
Generate text from prompt
Args:
prompt: Input prompt
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
repetition_penalty: Repetition penalty
do_sample: Whether to sample
num_return_sequences: Number of sequences to return
**kwargs: Additional generation parameters
Returns:
Generated text or list of texts
"""
# Tokenize input
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=self.model.config.max_position_embeddings
).to(self.device)
# Setup stopping criteria
stopping_criteria = StoppingCriteriaList([
StopOnTokens(self.stop_token_ids)
])
# Generate
with torch.no_grad():
start_time = time.time()
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
stopping_criteria=stopping_criteria,
pad_token_id=self.tokenizer.pad_token_id,
**kwargs
)
generation_time = time.time() - start_time
# Decode outputs
generated_texts = []
for output in outputs:
text = self.tokenizer.decode(
output[inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
generated_texts.append(text.strip())
logger.info(f"Generated {len(generated_texts)} sequences in {generation_time:.2f}s")
if num_return_sequences == 1:
return generated_texts[0]
return generated_texts
def chat(
self,
messages: List[Dict[str, str]],
max_new_tokens: int = 512,
temperature: float = 0.7,
**kwargs
) -> str:
"""
Chat completion
Args:
messages: List of message dictionaries
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature
**kwargs: Additional generation parameters
Returns:
Assistant response
"""
# Format chat prompt
prompt = self._format_chat_prompt(messages)
# Generate response
response = self.generate(
prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
**kwargs
)
return response
def _format_chat_prompt(self, messages: List[Dict[str, str]]) -> str:
"""Format messages into chat prompt"""
formatted = ""
for msg in messages:
role = msg.get('role', 'user')
content = msg.get('content', '')
formatted += f"<|im_start|>{role}\n{content}<|im_end|>\n"
formatted += "<|im_start|>assistant\n"
return formatted
def batch_generate(
self,
prompts: List[str],
max_new_tokens: int = 512,
temperature: float = 0.7,
batch_size: int = 4,
**kwargs
) -> List[str]:
"""
Generate for multiple prompts in batches
Args:
prompts: List of input prompts
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature
batch_size: Batch size for processing
**kwargs: Additional generation parameters
Returns:
List of generated texts
"""
all_outputs = []
for i in range(0, len(prompts), batch_size):
batch = prompts[i:i + batch_size]
# Tokenize batch
inputs = self.tokenizer(
batch,
return_tensors="pt",
padding=True,
truncation=True,
max_length=self.model.config.max_position_embeddings
).to(self.device)
# Generate
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
pad_token_id=self.tokenizer.pad_token_id,
**kwargs
)
# Decode
for j, output in enumerate(outputs):
text = self.tokenizer.decode(
output[inputs['input_ids'][j].shape[0]:],
skip_special_tokens=True
)
all_outputs.append(text.strip())
logger.info(f"Generated {len(all_outputs)} outputs")
return all_outputs
def stream_generate(
self,
prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.7,
**kwargs
):
"""
Stream generation token by token
Args:
prompt: Input prompt
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature
**kwargs: Additional generation parameters
Yields:
Generated tokens
"""
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
input_length = inputs['input_ids'].shape[1]
stopping_criteria = StoppingCriteriaList([
StopOnTokens(self.stop_token_ids)
])
with torch.no_grad():
for _ in range(max_new_tokens):
outputs = self.model.generate(
**inputs,
max_new_tokens=1,
temperature=temperature,
stopping_criteria=stopping_criteria,
pad_token_id=self.tokenizer.pad_token_id,
**kwargs
)
new_token_id = outputs[0, -1].item()
# Check if stop token
if new_token_id in self.stop_token_ids:
break
# Decode and yield new token
new_token = self.tokenizer.decode([new_token_id])
yield new_token
# Update inputs for next iteration
inputs = {
'input_ids': outputs,
'attention_mask': torch.ones_like(outputs)
}
def get_embeddings(self, text: str) -> torch.Tensor:
"""
Get embeddings for text
Args:
text: Input text
Returns:
Embedding tensor
"""
inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model(**inputs, output_hidden_states=True)
embeddings = outputs.hidden_states[-1].mean(dim=1)
return embeddings
def score_text(self, text: str) -> float:
"""
Calculate perplexity score for text
Args:
text: Input text
Returns:
Perplexity score
"""
inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model(**inputs, labels=inputs['input_ids'])
loss = outputs.loss
perplexity = torch.exp(loss).item()
return perplexity
def cleanup(self):
"""Clean up resources"""
del self.model
del self.tokenizer
torch.cuda.empty_cache()
logger.info("Pipeline cleaned up")
class ConversationPipeline(HelionPipeline):
"""Pipeline with conversation history management"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conversation_history: List[Dict[str, str]] = []
self.system_prompt: Optional[str] = None
def set_system_prompt(self, prompt: str):
"""Set system prompt for conversation"""
self.system_prompt = prompt
def add_message(self, role: str, content: str):
"""Add message to conversation history"""
self.conversation_history.append({
'role': role,
'content': content
})
def generate_response(
self,
user_message: str,
max_new_tokens: int = 512,
temperature: float = 0.7,
**kwargs
) -> str:
"""
Generate response in conversation context
Args:
user_message: User's message
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature
**kwargs: Additional generation parameters
Returns:
Assistant response
"""
# Build messages
messages = []
if self.system_prompt:
messages.append({
'role': 'system',
'content': self.system_prompt
})
messages.extend(self.conversation_history)
messages.append({
'role': 'user',
'content': user_message
})
# Generate response
response = self.chat(
messages,
max_new_tokens=max_new_tokens,
temperature=temperature,
**kwargs
)
# Update history
self.add_message('user', user_message)
self.add_message('assistant', response)
return response
def reset_conversation(self):
"""Reset conversation history"""
self.conversation_history.clear()
logger.info("Conversation history reset")
def main():
"""Example usage"""
# Initialize pipeline
pipeline = HelionPipeline(
model_path="DeepXR/Helion-2.5-Rnd",
device="cuda"
)
# Simple generation
prompt = "Explain quantum computing in simple terms:"
response = pipeline.generate(prompt, max_new_tokens=256)
print(f"Response: {response}\n")
# Chat completion
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the capital of France?"}
]
response = pipeline.chat(messages)
print(f"Chat response: {response}\n")
# Batch generation
prompts = [
"Write a haiku about AI:",
"Explain machine learning:",
"What is Python?"
]
responses = pipeline.batch_generate(prompts, batch_size=2)
for i, resp in enumerate(responses):
print(f"Batch {i+1}: {resp}\n")
# Conversation
conv_pipeline = ConversationPipeline(
model_path="DeepXR/Helion-2.5-Rnd",
device="cuda"
)
conv_pipeline.set_system_prompt("You are a helpful coding assistant.")
response1 = conv_pipeline.generate_response("How do I sort a list in Python?")
print(f"Conv 1: {response1}\n")
response2 = conv_pipeline.generate_response("Can you show me an example?")
print(f"Conv 2: {response2}\n")
if __name__ == "__main__":
main() |