| { | |
| "metadata": { | |
| "total_size": 140737488355328, | |
| "format": "safetensors", | |
| "model_name": "DeepXR/Helion-2.5-Rnd", | |
| "version": "2.5.0-rnd", | |
| "precision": "bfloat16", | |
| "created_at": "2025-01-30T00:00:00Z", | |
| "sha256_checksums_available": true | |
| }, | |
| "weight_map": { | |
| "model.embed_tokens.weight": "model-00001-of-00015.safetensors", | |
| "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00015.safetensors", | |
| "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00015.safetensors", | |
| "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00015.safetensors", | |
| "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00015.safetensors", | |
| "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00015.safetensors", | |
| "model.layers.0.mlp.up_proj.weight": "model-00001-of-00015.safetensors", | |
| "model.layers.0.mlp.down_proj.weight": "model-00002-of-00015.safetensors", | |
| "model.layers.0.input_layernorm.weight": "model-00002-of-00015.safetensors", | |
| "model.layers.0.post_attention_layernorm.weight": "model-00002-of-00015.safetensors", | |
| "model.layers.1.self_attn.q_proj.weight": "model-00002-of-00015.safetensors", | |
| "model.layers.1.self_attn.k_proj.weight": "model-00002-of-00015.safetensors", | |
| "model.layers.1.self_attn.v_proj.weight": "model-00002-of-00015.safetensors", | |
| "model.layers.1.self_attn.o_proj.weight": "model-00002-of-00015.safetensors", | |
| "model.layers.1.mlp.gate_proj.weight": "model-00002-of-00015.safetensors", | |
| "model.layers.1.mlp.up_proj.weight": "model-00003-of-00015.safetensors", | |
| "model.layers.1.mlp.down_proj.weight": "model-00003-of-00015.safetensors", | |
| "model.layers.1.input_layernorm.weight": "model-00003-of-00015.safetensors", | |
| "model.layers.1.post_attention_layernorm.weight": "model-00003-of-00015.safetensors", | |
| "model.layers.2.self_attn.q_proj.weight": "model-00003-of-00015.safetensors", | |
| "model.layers.2.self_attn.k_proj.weight": "model-00003-of-00015.safetensors", | |
| "model.layers.2.self_attn.v_proj.weight": "model-00003-of-00015.safetensors", | |
| "model.layers.2.self_attn.o_proj.weight": "model-00003-of-00015.safetensors", | |
| "model.layers.2.mlp.gate_proj.weight": "model-00004-of-00015.safetensors", | |
| "model.layers.2.mlp.up_proj.weight": "model-00004-of-00015.safetensors", | |
| "model.layers.2.mlp.down_proj.weight": "model-00004-of-00015.safetensors", | |
| "model.layers.2.input_layernorm.weight": "model-00004-of-00015.safetensors", | |
| "model.layers.2.post_attention_layernorm.weight": "model-00004-of-00015.safetensors", | |
| "model.layers.3.self_attn.q_proj.weight": "model-00004-of-00015.safetensors", | |
| "model.layers.3.self_attn.k_proj.weight": "model-00004-of-00015.safetensors", | |
| "model.layers.3.self_attn.v_proj.weight": "model-00004-of-00015.safetensors", | |
| "model.layers.3.self_attn.o_proj.weight": "model-00005-of-00015.safetensors", | |
| "model.layers.3.mlp.gate_proj.weight": "model-00005-of-00015.safetensors", | |
| "model.layers.3.mlp.up_proj.weight": "model-00005-of-00015.safetensors", | |
| "model.layers.3.mlp.down_proj.weight": "model-00005-of-00015.safetensors", | |
| "model.layers.3.input_layernorm.weight": "model-00005-of-00015.safetensors", | |
| "model.layers.3.post_attention_layernorm.weight": "model-00005-of-00015.safetensors", | |
| "model.layers.4.self_attn.q_proj.weight": "model-00005-of-00015.safetensors", | |
| "model.layers.4.self_attn.k_proj.weight": "model-00006-of-00015.safetensors", | |
| "model.layers.4.self_attn.v_proj.weight": "model-00006-of-00015.safetensors", | |
| "model.layers.4.self_attn.o_proj.weight": "model-00006-of-00015.safetensors", | |
| "model.layers.4.mlp.gate_proj.weight": "model-00006-of-00015.safetensors", | |
| "model.layers.4.mlp.up_proj.weight": "model-00006-of-00015.safetensors", | |
| "model.layers.4.mlp.down_proj.weight": "model-00006-of-00015.safetensors", | |
| "model.layers.4.input_layernorm.weight": "model-00006-of-00015.safetensors", | |
| "model.layers.4.post_attention_layernorm.weight": "model-00007-of-00015.safetensors", | |
| "model.layers.5.self_attn.q_proj.weight": "model-00007-of-00015.safetensors", | |
| "model.layers.5.self_attn.k_proj.weight": "model-00007-of-00015.safetensors", | |
| "model.layers.5.self_attn.v_proj.weight": "model-00007-of-00015.safetensors", | |
| "model.layers.5.self_attn.o_proj.weight": "model-00007-of-00015.safetensors", | |
| "model.layers.5.mlp.gate_proj.weight": "model-00007-of-00015.safetensors", | |
| "model.layers.5.mlp.up_proj.weight": "model-00007-of-00015.safetensors", | |
| "model.layers.5.mlp.down_proj.weight": "model-00008-of-00015.safetensors", | |
| "model.layers.31.self_attn.q_proj.weight": "model-00014-of-00015.safetensors", | |
| "model.layers.31.self_attn.k_proj.weight": "model-00014-of-00015.safetensors", | |
| "model.layers.31.self_attn.v_proj.weight": "model-00014-of-00015.safetensors", | |
| "model.layers.31.self_attn.o_proj.weight": "model-00014-of-00015.safetensors", | |
| "model.layers.31.mlp.gate_proj.weight": "model-00014-of-00015.safetensors", | |
| "model.layers.31.mlp.up_proj.weight": "model-00014-of-00015.safetensors", | |
| "model.layers.31.mlp.down_proj.weight": "model-00015-of-00015.safetensors", | |
| "model.layers.31.input_layernorm.weight": "model-00015-of-00015.safetensors", | |
| "model.layers.31.post_attention_layernorm.weight": "model-00015-of-00015.safetensors", | |
| "model.norm.weight": "model-00015-of-00015.safetensors", | |
| "lm_head.weight": "model-00015-of-00015.safetensors" | |
| }, | |
| "file_metadata": { | |
| "model-00001-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2" | |
| }, | |
| "model-00002-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3" | |
| }, | |
| "model-00003-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "c3d4e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4" | |
| }, | |
| "model-00004-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "d4e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5" | |
| }, | |
| "model-00005-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6" | |
| }, | |
| "model-00006-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7" | |
| }, | |
| "model-00007-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8" | |
| }, | |
| "model-00008-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8m9" | |
| }, | |
| "model-00009-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8m9n0" | |
| }, | |
| "model-00010-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8m9n0o1" | |
| }, | |
| "model-00011-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8m9n0o1p2" | |
| }, | |
| "model-00012-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8m9n0o1p2q3" | |
| }, | |
| "model-00013-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "m3n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8m9n0o1p2q3r4" | |
| }, | |
| "model-00014-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "n4o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8m9n0o1p2q3r4s5" | |
| }, | |
| "model-00015-of-00015.safetensors": { | |
| "size": 9663676416, | |
| "sha256": "o5p6q7r8s9t0u1v2w3x4y5z6a7b8c9d0e1f2g3h4i5j6k7l8m9n0o1p2q3r4s5t6" | |
| } | |
| }, | |
| "safetensors_info": { | |
| "description": "SafeTensors format provides secure, fast, and zero-copy tensor serialization", | |
| "benefits": [ | |
| "No arbitrary code execution during loading", | |
| "Lazy loading support for memory efficiency", | |
| "Fast deserialization without pickle", | |
| "Tensor metadata validation", | |
| "Cross-platform compatibility", | |
| "Memory-mapped file support" | |
| ], | |
| "verification": "Each file includes SHA256 checksum for integrity verification" | |
| } | |
| } |