Create inference/benchmark.py
Browse files- inference/benchmark.py +422 -0
inference/benchmark.py
ADDED
|
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Helion-2.5-Rnd Benchmark Runner
|
| 4 |
+
Comprehensive benchmarking suite for performance testing
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import argparse
|
| 8 |
+
import json
|
| 9 |
+
import logging
|
| 10 |
+
import statistics
|
| 11 |
+
import time
|
| 12 |
+
from collections import defaultdict
|
| 13 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from typing import Dict, List, Optional
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
|
| 20 |
+
from inference.client import HelionClient
|
| 21 |
+
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class BenchmarkRunner:
|
| 27 |
+
"""Run comprehensive benchmarks on Helion model"""
|
| 28 |
+
|
| 29 |
+
def __init__(
|
| 30 |
+
self,
|
| 31 |
+
base_url: str = "http://localhost:8000",
|
| 32 |
+
output_dir: str = "./benchmark_results"
|
| 33 |
+
):
|
| 34 |
+
"""
|
| 35 |
+
Initialize benchmark runner
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
base_url: API base URL
|
| 39 |
+
output_dir: Directory for results
|
| 40 |
+
"""
|
| 41 |
+
self.client = HelionClient(base_url=base_url)
|
| 42 |
+
self.output_dir = Path(output_dir)
|
| 43 |
+
self.output_dir.mkdir(parents=True, exist_ok=True)
|
| 44 |
+
|
| 45 |
+
self.results = {
|
| 46 |
+
'timestamp': datetime.now().isoformat(),
|
| 47 |
+
'base_url': base_url,
|
| 48 |
+
'tests': {}
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
def benchmark_latency(
|
| 52 |
+
self,
|
| 53 |
+
num_requests: int = 100,
|
| 54 |
+
prompt_lengths: List[int] = [128, 512, 2048],
|
| 55 |
+
max_tokens: int = 256
|
| 56 |
+
) -> Dict:
|
| 57 |
+
"""
|
| 58 |
+
Benchmark inference latency
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
num_requests: Number of requests per test
|
| 62 |
+
prompt_lengths: Different prompt lengths to test
|
| 63 |
+
max_tokens: Maximum tokens to generate
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
Latency benchmark results
|
| 67 |
+
"""
|
| 68 |
+
logger.info("Running latency benchmark...")
|
| 69 |
+
|
| 70 |
+
results = {}
|
| 71 |
+
|
| 72 |
+
for prompt_len in prompt_lengths:
|
| 73 |
+
logger.info(f"Testing prompt length: {prompt_len}")
|
| 74 |
+
|
| 75 |
+
# Generate test prompt
|
| 76 |
+
test_prompt = "Hello world. " * (prompt_len // 13)
|
| 77 |
+
|
| 78 |
+
latencies = []
|
| 79 |
+
first_token_latencies = []
|
| 80 |
+
|
| 81 |
+
for i in range(num_requests):
|
| 82 |
+
try:
|
| 83 |
+
start_time = time.time()
|
| 84 |
+
|
| 85 |
+
response = self.client.complete(
|
| 86 |
+
prompt=test_prompt,
|
| 87 |
+
max_tokens=max_tokens,
|
| 88 |
+
temperature=0.7,
|
| 89 |
+
stream=False
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
end_time = time.time()
|
| 93 |
+
latency = (end_time - start_time) * 1000 # Convert to ms
|
| 94 |
+
|
| 95 |
+
latencies.append(latency)
|
| 96 |
+
|
| 97 |
+
if i % 10 == 0:
|
| 98 |
+
logger.info(f" Progress: {i+1}/{num_requests}")
|
| 99 |
+
|
| 100 |
+
except Exception as e:
|
| 101 |
+
logger.error(f"Request failed: {e}")
|
| 102 |
+
|
| 103 |
+
if latencies:
|
| 104 |
+
results[f"prompt_{prompt_len}"] = {
|
| 105 |
+
'num_samples': len(latencies),
|
| 106 |
+
'mean_ms': statistics.mean(latencies),
|
| 107 |
+
'median_ms': statistics.median(latencies),
|
| 108 |
+
'std_dev_ms': statistics.stdev(latencies) if len(latencies) > 1 else 0,
|
| 109 |
+
'min_ms': min(latencies),
|
| 110 |
+
'max_ms': max(latencies),
|
| 111 |
+
'p50_ms': np.percentile(latencies, 50),
|
| 112 |
+
'p90_ms': np.percentile(latencies, 90),
|
| 113 |
+
'p95_ms': np.percentile(latencies, 95),
|
| 114 |
+
'p99_ms': np.percentile(latencies, 99)
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
return results
|
| 118 |
+
|
| 119 |
+
def benchmark_throughput(
|
| 120 |
+
self,
|
| 121 |
+
duration_seconds: int = 60,
|
| 122 |
+
concurrent_requests: int = 10,
|
| 123 |
+
prompt_length: int = 512,
|
| 124 |
+
max_tokens: int = 128
|
| 125 |
+
) -> Dict:
|
| 126 |
+
"""
|
| 127 |
+
Benchmark throughput with concurrent requests
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
duration_seconds: How long to run test
|
| 131 |
+
concurrent_requests: Number of concurrent requests
|
| 132 |
+
prompt_length: Prompt length for testing
|
| 133 |
+
max_tokens: Maximum tokens to generate
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
Throughput benchmark results
|
| 137 |
+
"""
|
| 138 |
+
logger.info(f"Running throughput benchmark for {duration_seconds}s...")
|
| 139 |
+
|
| 140 |
+
test_prompt = "The quick brown fox jumps over the lazy dog. " * (prompt_length // 45)
|
| 141 |
+
|
| 142 |
+
start_time = time.time()
|
| 143 |
+
end_time = start_time + duration_seconds
|
| 144 |
+
|
| 145 |
+
completed_requests = 0
|
| 146 |
+
failed_requests = 0
|
| 147 |
+
total_tokens = 0
|
| 148 |
+
latencies = []
|
| 149 |
+
|
| 150 |
+
def make_request():
|
| 151 |
+
try:
|
| 152 |
+
req_start = time.time()
|
| 153 |
+
response = self.client.complete(
|
| 154 |
+
prompt=test_prompt,
|
| 155 |
+
max_tokens=max_tokens,
|
| 156 |
+
temperature=0.7
|
| 157 |
+
)
|
| 158 |
+
req_end = time.time()
|
| 159 |
+
|
| 160 |
+
return {
|
| 161 |
+
'success': True,
|
| 162 |
+
'latency': req_end - req_start,
|
| 163 |
+
'tokens': len(response.split()) # Approximate
|
| 164 |
+
}
|
| 165 |
+
except Exception as e:
|
| 166 |
+
return {'success': False, 'error': str(e)}
|
| 167 |
+
|
| 168 |
+
with ThreadPoolExecutor(max_workers=concurrent_requests) as executor:
|
| 169 |
+
while time.time() < end_time:
|
| 170 |
+
futures = [executor.submit(make_request) for _ in range(concurrent_requests)]
|
| 171 |
+
|
| 172 |
+
for future in as_completed(futures):
|
| 173 |
+
result = future.result()
|
| 174 |
+
|
| 175 |
+
if result['success']:
|
| 176 |
+
completed_requests += 1
|
| 177 |
+
latencies.append(result['latency'] * 1000)
|
| 178 |
+
total_tokens += result.get('tokens', 0)
|
| 179 |
+
else:
|
| 180 |
+
failed_requests += 1
|
| 181 |
+
|
| 182 |
+
actual_duration = time.time() - start_time
|
| 183 |
+
|
| 184 |
+
return {
|
| 185 |
+
'duration_seconds': actual_duration,
|
| 186 |
+
'concurrent_requests': concurrent_requests,
|
| 187 |
+
'completed_requests': completed_requests,
|
| 188 |
+
'failed_requests': failed_requests,
|
| 189 |
+
'requests_per_second': completed_requests / actual_duration,
|
| 190 |
+
'total_tokens': total_tokens,
|
| 191 |
+
'tokens_per_second': total_tokens / actual_duration,
|
| 192 |
+
'avg_latency_ms': statistics.mean(latencies) if latencies else 0,
|
| 193 |
+
'p95_latency_ms': np.percentile(latencies, 95) if latencies else 0
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
def benchmark_context_length(
|
| 197 |
+
self,
|
| 198 |
+
context_lengths: List[int] = [1024, 4096, 16384, 65536],
|
| 199 |
+
num_samples: int = 10
|
| 200 |
+
) -> Dict:
|
| 201 |
+
"""
|
| 202 |
+
Benchmark performance across different context lengths
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
context_lengths: List of context lengths to test
|
| 206 |
+
num_samples: Number of samples per length
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
Context length benchmark results
|
| 210 |
+
"""
|
| 211 |
+
logger.info("Running context length benchmark...")
|
| 212 |
+
|
| 213 |
+
results = {}
|
| 214 |
+
|
| 215 |
+
for ctx_len in context_lengths:
|
| 216 |
+
logger.info(f"Testing context length: {ctx_len}")
|
| 217 |
+
|
| 218 |
+
# Generate long context
|
| 219 |
+
base_text = "This is a test sentence for context length benchmarking. "
|
| 220 |
+
long_prompt = base_text * (ctx_len // len(base_text))
|
| 221 |
+
long_prompt = long_prompt[:ctx_len] + "\n\nSummarize the above text:"
|
| 222 |
+
|
| 223 |
+
latencies = []
|
| 224 |
+
|
| 225 |
+
for i in range(num_samples):
|
| 226 |
+
try:
|
| 227 |
+
start_time = time.time()
|
| 228 |
+
|
| 229 |
+
response = self.client.complete(
|
| 230 |
+
prompt=long_prompt,
|
| 231 |
+
max_tokens=256,
|
| 232 |
+
temperature=0.5
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
end_time = time.time()
|
| 236 |
+
latencies.append((end_time - start_time) * 1000)
|
| 237 |
+
|
| 238 |
+
except Exception as e:
|
| 239 |
+
logger.error(f"Context length {ctx_len} failed: {e}")
|
| 240 |
+
|
| 241 |
+
if latencies:
|
| 242 |
+
results[f"context_{ctx_len}"] = {
|
| 243 |
+
'mean_latency_ms': statistics.mean(latencies),
|
| 244 |
+
'median_latency_ms': statistics.median(latencies),
|
| 245 |
+
'std_dev_ms': statistics.stdev(latencies) if len(latencies) > 1 else 0
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
return results
|
| 249 |
+
|
| 250 |
+
def benchmark_generation_quality(
|
| 251 |
+
self,
|
| 252 |
+
test_prompts: Optional[List[str]] = None,
|
| 253 |
+
num_samples: int = 5
|
| 254 |
+
) -> Dict:
|
| 255 |
+
"""
|
| 256 |
+
Benchmark generation quality with diverse prompts
|
| 257 |
+
|
| 258 |
+
Args:
|
| 259 |
+
test_prompts: Custom test prompts
|
| 260 |
+
num_samples: Number of samples per prompt type
|
| 261 |
+
|
| 262 |
+
Returns:
|
| 263 |
+
Quality benchmark results
|
| 264 |
+
"""
|
| 265 |
+
logger.info("Running generation quality benchmark...")
|
| 266 |
+
|
| 267 |
+
if test_prompts is None:
|
| 268 |
+
test_prompts = [
|
| 269 |
+
"Explain quantum computing in simple terms:",
|
| 270 |
+
"Write a Python function to calculate fibonacci numbers:",
|
| 271 |
+
"Translate 'Hello, how are you?' to Spanish, French, and German:",
|
| 272 |
+
"Solve: If x + 5 = 12, what is x?",
|
| 273 |
+
"Write a haiku about artificial intelligence:"
|
| 274 |
+
]
|
| 275 |
+
|
| 276 |
+
results = {}
|
| 277 |
+
|
| 278 |
+
for i, prompt in enumerate(test_prompts):
|
| 279 |
+
logger.info(f"Testing prompt {i+1}/{len(test_prompts)}")
|
| 280 |
+
|
| 281 |
+
responses = []
|
| 282 |
+
|
| 283 |
+
for _ in range(num_samples):
|
| 284 |
+
try:
|
| 285 |
+
response = self.client.complete(
|
| 286 |
+
prompt=prompt,
|
| 287 |
+
max_tokens=512,
|
| 288 |
+
temperature=0.7
|
| 289 |
+
)
|
| 290 |
+
responses.append(response)
|
| 291 |
+
except Exception as e:
|
| 292 |
+
logger.error(f"Generation failed: {e}")
|
| 293 |
+
|
| 294 |
+
if responses:
|
| 295 |
+
results[f"prompt_{i+1}"] = {
|
| 296 |
+
'prompt': prompt[:50] + "...",
|
| 297 |
+
'num_responses': len(responses),
|
| 298 |
+
'avg_length': statistics.mean([len(r) for r in responses]),
|
| 299 |
+
'sample_response': responses[0][:200] + "..."
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
return results
|
| 303 |
+
|
| 304 |
+
def run_all_benchmarks(self, quick_mode: bool = False) -> Dict:
|
| 305 |
+
"""
|
| 306 |
+
Run all benchmark suites
|
| 307 |
+
|
| 308 |
+
Args:
|
| 309 |
+
quick_mode: Run faster with fewer samples
|
| 310 |
+
|
| 311 |
+
Returns:
|
| 312 |
+
Complete benchmark results
|
| 313 |
+
"""
|
| 314 |
+
logger.info("Starting comprehensive benchmark suite...")
|
| 315 |
+
|
| 316 |
+
if quick_mode:
|
| 317 |
+
logger.info("Running in quick mode (fewer samples)")
|
| 318 |
+
|
| 319 |
+
# Latency benchmark
|
| 320 |
+
logger.info("\n=== Latency Benchmark ===")
|
| 321 |
+
self.results['tests']['latency'] = self.benchmark_latency(
|
| 322 |
+
num_requests=20 if quick_mode else 100,
|
| 323 |
+
prompt_lengths=[128, 512] if quick_mode else [128, 512, 2048]
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
# Throughput benchmark
|
| 327 |
+
logger.info("\n=== Throughput Benchmark ===")
|
| 328 |
+
self.results['tests']['throughput'] = self.benchmark_throughput(
|
| 329 |
+
duration_seconds=30 if quick_mode else 60,
|
| 330 |
+
concurrent_requests=5 if quick_mode else 10
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
# Context length benchmark
|
| 334 |
+
logger.info("\n=== Context Length Benchmark ===")
|
| 335 |
+
self.results['tests']['context_length'] = self.benchmark_context_length(
|
| 336 |
+
context_lengths=[1024, 4096] if quick_mode else [1024, 4096, 16384],
|
| 337 |
+
num_samples=5 if quick_mode else 10
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# Generation quality
|
| 341 |
+
logger.info("\n=== Generation Quality Benchmark ===")
|
| 342 |
+
self.results['tests']['generation_quality'] = self.benchmark_generation_quality(
|
| 343 |
+
num_samples=2 if quick_mode else 5
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
return self.results
|
| 347 |
+
|
| 348 |
+
def save_results(self, filename: Optional[str] = None):
|
| 349 |
+
"""
|
| 350 |
+
Save benchmark results to file
|
| 351 |
+
|
| 352 |
+
Args:
|
| 353 |
+
filename: Output filename
|
| 354 |
+
"""
|
| 355 |
+
if filename is None:
|
| 356 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 357 |
+
filename = f"benchmark_{timestamp}.json"
|
| 358 |
+
|
| 359 |
+
output_path = self.output_dir / filename
|
| 360 |
+
|
| 361 |
+
with open(output_path, 'w') as f:
|
| 362 |
+
json.dump(self.results, f, indent=2)
|
| 363 |
+
|
| 364 |
+
logger.info(f"Results saved to {output_path}")
|
| 365 |
+
|
| 366 |
+
def print_summary(self):
|
| 367 |
+
"""Print benchmark summary"""
|
| 368 |
+
logger.info("\n" + "="*60)
|
| 369 |
+
logger.info("BENCHMARK SUMMARY")
|
| 370 |
+
logger.info("="*60)
|
| 371 |
+
|
| 372 |
+
if 'latency' in self.results['tests']:
|
| 373 |
+
logger.info("\nLatency Results:")
|
| 374 |
+
for prompt_type, metrics in self.results['tests']['latency'].items():
|
| 375 |
+
logger.info(f" {prompt_type}:")
|
| 376 |
+
logger.info(f" Mean: {metrics['mean_ms']:.2f}ms")
|
| 377 |
+
logger.info(f" P95: {metrics['p95_ms']:.2f}ms")
|
| 378 |
+
logger.info(f" P99: {metrics['p99_ms']:.2f}ms")
|
| 379 |
+
|
| 380 |
+
if 'throughput' in self.results['tests']:
|
| 381 |
+
logger.info("\nThroughput Results:")
|
| 382 |
+
metrics = self.results['tests']['throughput']
|
| 383 |
+
logger.info(f" Requests/sec: {metrics['requests_per_second']:.2f}")
|
| 384 |
+
logger.info(f" Tokens/sec: {metrics['tokens_per_second']:.2f}")
|
| 385 |
+
logger.info(f" Avg Latency: {metrics['avg_latency_ms']:.2f}ms")
|
| 386 |
+
|
| 387 |
+
logger.info("\n" + "="*60)
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def main():
|
| 391 |
+
"""Main entry point"""
|
| 392 |
+
parser = argparse.ArgumentParser(description="Helion Benchmark Runner")
|
| 393 |
+
parser.add_argument("--base-url", type=str, default="http://localhost:8000")
|
| 394 |
+
parser.add_argument("--output-dir", type=str, default="./benchmark_results")
|
| 395 |
+
parser.add_argument("--quick", action="store_true", help="Run quick benchmark")
|
| 396 |
+
parser.add_argument("--test", type=str, choices=['latency', 'throughput', 'context', 'quality', 'all'],
|
| 397 |
+
default='all', help="Specific test to run")
|
| 398 |
+
|
| 399 |
+
args = parser.parse_args()
|
| 400 |
+
|
| 401 |
+
runner = BenchmarkRunner(
|
| 402 |
+
base_url=args.base_url,
|
| 403 |
+
output_dir=args.output_dir
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
if args.test == 'all':
|
| 407 |
+
results = runner.run_all_benchmarks(quick_mode=args.quick)
|
| 408 |
+
elif args.test == 'latency':
|
| 409 |
+
results = runner.benchmark_latency(num_requests=20 if args.quick else 100)
|
| 410 |
+
elif args.test == 'throughput':
|
| 411 |
+
results = runner.benchmark_throughput(duration_seconds=30 if args.quick else 60)
|
| 412 |
+
elif args.test == 'context':
|
| 413 |
+
results = runner.benchmark_context_length(num_samples=5 if args.quick else 10)
|
| 414 |
+
elif args.test == 'quality':
|
| 415 |
+
results = runner.benchmark_generation_quality(num_samples=2 if args.quick else 5)
|
| 416 |
+
|
| 417 |
+
runner.save_results()
|
| 418 |
+
runner.print_summary()
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
if __name__ == "__main__":
|
| 422 |
+
main()
|