Create inference/data_loader.py
Browse files- inference/data_loader.py +510 -0
inference/data_loader.py
ADDED
|
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Helion-2.5-Rnd Advanced Data Loader
|
| 4 |
+
Efficient data loading and preprocessing for inference
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import json
|
| 8 |
+
import logging
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Any, Dict, Iterator, List, Optional, Union
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
from safetensors.torch import load_file
|
| 14 |
+
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class SafeTensorsLoader:
|
| 20 |
+
"""Efficient SafeTensors model loading with validation"""
|
| 21 |
+
|
| 22 |
+
def __init__(self, model_path: str, device: str = "cuda"):
|
| 23 |
+
"""
|
| 24 |
+
Initialize SafeTensors loader
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
model_path: Path to model directory
|
| 28 |
+
device: Target device for loading
|
| 29 |
+
"""
|
| 30 |
+
self.model_path = Path(model_path)
|
| 31 |
+
self.device = device
|
| 32 |
+
self.index = self._load_index()
|
| 33 |
+
self.loaded_shards = {}
|
| 34 |
+
|
| 35 |
+
def _load_index(self) -> Dict:
|
| 36 |
+
"""Load SafeTensors index file"""
|
| 37 |
+
index_path = self.model_path / "model.safetensors.index.json"
|
| 38 |
+
|
| 39 |
+
if not index_path.exists():
|
| 40 |
+
raise FileNotFoundError(f"Index file not found: {index_path}")
|
| 41 |
+
|
| 42 |
+
with open(index_path, 'r') as f:
|
| 43 |
+
index = json.load(f)
|
| 44 |
+
|
| 45 |
+
logger.info(f"Loaded index with {len(index.get('weight_map', {}))} weight mappings")
|
| 46 |
+
return index
|
| 47 |
+
|
| 48 |
+
def get_shard_path(self, shard_name: str) -> Path:
|
| 49 |
+
"""Get full path to shard file"""
|
| 50 |
+
return self.model_path / shard_name
|
| 51 |
+
|
| 52 |
+
def load_shard(self, shard_name: str, lazy: bool = False) -> Dict:
|
| 53 |
+
"""
|
| 54 |
+
Load a single SafeTensors shard
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
shard_name: Name of shard file
|
| 58 |
+
lazy: Whether to use lazy loading
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
Dictionary of tensors
|
| 62 |
+
"""
|
| 63 |
+
if shard_name in self.loaded_shards:
|
| 64 |
+
logger.debug(f"Using cached shard: {shard_name}")
|
| 65 |
+
return self.loaded_shards[shard_name]
|
| 66 |
+
|
| 67 |
+
shard_path = self.get_shard_path(shard_name)
|
| 68 |
+
|
| 69 |
+
if not shard_path.exists():
|
| 70 |
+
raise FileNotFoundError(f"Shard not found: {shard_path}")
|
| 71 |
+
|
| 72 |
+
logger.info(f"Loading shard: {shard_name}")
|
| 73 |
+
|
| 74 |
+
try:
|
| 75 |
+
tensors = load_file(str(shard_path), device=self.device)
|
| 76 |
+
|
| 77 |
+
if not lazy:
|
| 78 |
+
self.loaded_shards[shard_name] = tensors
|
| 79 |
+
|
| 80 |
+
return tensors
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Failed to load shard {shard_name}: {e}")
|
| 84 |
+
raise
|
| 85 |
+
|
| 86 |
+
def load_weight(self, weight_name: str) -> Any:
|
| 87 |
+
"""
|
| 88 |
+
Load a specific weight by name
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
weight_name: Name of the weight tensor
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
Weight tensor
|
| 95 |
+
"""
|
| 96 |
+
weight_map = self.index.get('weight_map', {})
|
| 97 |
+
|
| 98 |
+
if weight_name not in weight_map:
|
| 99 |
+
raise KeyError(f"Weight not found in index: {weight_name}")
|
| 100 |
+
|
| 101 |
+
shard_name = weight_map[weight_name]
|
| 102 |
+
tensors = self.load_shard(shard_name)
|
| 103 |
+
|
| 104 |
+
return tensors[weight_name]
|
| 105 |
+
|
| 106 |
+
def load_all_weights(self, progress_callback=None) -> Dict:
|
| 107 |
+
"""
|
| 108 |
+
Load all model weights
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
progress_callback: Optional callback for progress updates
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
Dictionary of all weights
|
| 115 |
+
"""
|
| 116 |
+
all_weights = {}
|
| 117 |
+
weight_map = self.index.get('weight_map', {})
|
| 118 |
+
unique_shards = set(weight_map.values())
|
| 119 |
+
|
| 120 |
+
logger.info(f"Loading {len(unique_shards)} shards...")
|
| 121 |
+
|
| 122 |
+
for i, shard_name in enumerate(sorted(unique_shards)):
|
| 123 |
+
tensors = self.load_shard(shard_name)
|
| 124 |
+
all_weights.update(tensors)
|
| 125 |
+
|
| 126 |
+
if progress_callback:
|
| 127 |
+
progress_callback(i + 1, len(unique_shards))
|
| 128 |
+
|
| 129 |
+
logger.info(f"Loaded {len(all_weights)} weight tensors")
|
| 130 |
+
return all_weights
|
| 131 |
+
|
| 132 |
+
def validate_checksums(self) -> Dict[str, bool]:
|
| 133 |
+
"""
|
| 134 |
+
Validate SHA256 checksums of all shards
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
Dictionary mapping shard names to validation status
|
| 138 |
+
"""
|
| 139 |
+
import hashlib
|
| 140 |
+
|
| 141 |
+
results = {}
|
| 142 |
+
file_metadata = self.index.get('file_metadata', {})
|
| 143 |
+
|
| 144 |
+
for shard_name, metadata in file_metadata.items():
|
| 145 |
+
expected_hash = metadata.get('sha256')
|
| 146 |
+
|
| 147 |
+
if not expected_hash:
|
| 148 |
+
results[shard_name] = None
|
| 149 |
+
continue
|
| 150 |
+
|
| 151 |
+
shard_path = self.get_shard_path(shard_name)
|
| 152 |
+
|
| 153 |
+
if not shard_path.exists():
|
| 154 |
+
results[shard_name] = False
|
| 155 |
+
continue
|
| 156 |
+
|
| 157 |
+
sha256 = hashlib.sha256()
|
| 158 |
+
with open(shard_path, 'rb') as f:
|
| 159 |
+
for chunk in iter(lambda: f.read(4096), b''):
|
| 160 |
+
sha256.update(chunk)
|
| 161 |
+
|
| 162 |
+
actual_hash = sha256.hexdigest()
|
| 163 |
+
results[shard_name] = (actual_hash == expected_hash)
|
| 164 |
+
|
| 165 |
+
status = "✓" if results[shard_name] else "✗"
|
| 166 |
+
logger.info(f"{status} {shard_name}")
|
| 167 |
+
|
| 168 |
+
return results
|
| 169 |
+
|
| 170 |
+
def get_model_info(self) -> Dict:
|
| 171 |
+
"""Get model information from index"""
|
| 172 |
+
metadata = self.index.get('metadata', {})
|
| 173 |
+
|
| 174 |
+
return {
|
| 175 |
+
'model_name': metadata.get('model_name', 'Unknown'),
|
| 176 |
+
'version': metadata.get('version', 'Unknown'),
|
| 177 |
+
'total_size_bytes': metadata.get('total_size', 0),
|
| 178 |
+
'total_size_gb': metadata.get('total_size', 0) / (1024**3),
|
| 179 |
+
'format': metadata.get('format', 'safetensors'),
|
| 180 |
+
'precision': metadata.get('precision', 'unknown'),
|
| 181 |
+
'total_shards': metadata.get('total_shards', 0),
|
| 182 |
+
'parameters': metadata.get('parameters', 'Unknown')
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
def clear_cache(self):
|
| 186 |
+
"""Clear loaded shard cache"""
|
| 187 |
+
self.loaded_shards.clear()
|
| 188 |
+
logger.info("Cleared shard cache")
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class DatasetPreprocessor:
|
| 192 |
+
"""Preprocess datasets for inference"""
|
| 193 |
+
|
| 194 |
+
def __init__(self, tokenizer=None, max_length: int = 131072):
|
| 195 |
+
"""
|
| 196 |
+
Initialize preprocessor
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
tokenizer: Tokenizer instance
|
| 200 |
+
max_length: Maximum sequence length
|
| 201 |
+
"""
|
| 202 |
+
self.tokenizer = tokenizer
|
| 203 |
+
self.max_length = max_length
|
| 204 |
+
|
| 205 |
+
def preprocess_text(self, text: str) -> str:
|
| 206 |
+
"""
|
| 207 |
+
Preprocess raw text
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
text: Input text
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
Preprocessed text
|
| 214 |
+
"""
|
| 215 |
+
# Remove excessive whitespace
|
| 216 |
+
text = ' '.join(text.split())
|
| 217 |
+
|
| 218 |
+
# Remove control characters
|
| 219 |
+
text = ''.join(char for char in text if ord(char) >= 32 or char in '\n\t')
|
| 220 |
+
|
| 221 |
+
return text.strip()
|
| 222 |
+
|
| 223 |
+
def preprocess_chat_messages(self, messages: List[Dict[str, str]]) -> str:
|
| 224 |
+
"""
|
| 225 |
+
Preprocess chat messages into prompt format
|
| 226 |
+
|
| 227 |
+
Args:
|
| 228 |
+
messages: List of message dictionaries
|
| 229 |
+
|
| 230 |
+
Returns:
|
| 231 |
+
Formatted prompt string
|
| 232 |
+
"""
|
| 233 |
+
formatted = ""
|
| 234 |
+
|
| 235 |
+
for msg in messages:
|
| 236 |
+
role = msg.get('role', 'user')
|
| 237 |
+
content = self.preprocess_text(msg.get('content', ''))
|
| 238 |
+
formatted += f"<|im_start|>{role}\n{content}<|im_end|>\n"
|
| 239 |
+
|
| 240 |
+
formatted += "<|im_start|>assistant\n"
|
| 241 |
+
return formatted
|
| 242 |
+
|
| 243 |
+
def batch_preprocess(
|
| 244 |
+
self,
|
| 245 |
+
texts: List[str],
|
| 246 |
+
add_special_tokens: bool = True,
|
| 247 |
+
padding: bool = True,
|
| 248 |
+
truncation: bool = True
|
| 249 |
+
) -> Dict:
|
| 250 |
+
"""
|
| 251 |
+
Batch preprocess texts
|
| 252 |
+
|
| 253 |
+
Args:
|
| 254 |
+
texts: List of input texts
|
| 255 |
+
add_special_tokens: Whether to add special tokens
|
| 256 |
+
padding: Whether to pad sequences
|
| 257 |
+
truncation: Whether to truncate sequences
|
| 258 |
+
|
| 259 |
+
Returns:
|
| 260 |
+
Batch of preprocessed data
|
| 261 |
+
"""
|
| 262 |
+
if self.tokenizer is None:
|
| 263 |
+
raise ValueError("Tokenizer not initialized")
|
| 264 |
+
|
| 265 |
+
processed_texts = [self.preprocess_text(text) for text in texts]
|
| 266 |
+
|
| 267 |
+
encodings = self.tokenizer(
|
| 268 |
+
processed_texts,
|
| 269 |
+
add_special_tokens=add_special_tokens,
|
| 270 |
+
padding=padding,
|
| 271 |
+
truncation=truncation,
|
| 272 |
+
max_length=self.max_length,
|
| 273 |
+
return_tensors='pt'
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
return encodings
|
| 277 |
+
|
| 278 |
+
def stream_process_file(
|
| 279 |
+
self,
|
| 280 |
+
file_path: str,
|
| 281 |
+
batch_size: int = 32
|
| 282 |
+
) -> Iterator[Dict]:
|
| 283 |
+
"""
|
| 284 |
+
Stream process large files in batches
|
| 285 |
+
|
| 286 |
+
Args:
|
| 287 |
+
file_path: Path to input file
|
| 288 |
+
batch_size: Number of samples per batch
|
| 289 |
+
|
| 290 |
+
Yields:
|
| 291 |
+
Batches of preprocessed data
|
| 292 |
+
"""
|
| 293 |
+
path = Path(file_path)
|
| 294 |
+
|
| 295 |
+
if path.suffix == '.jsonl':
|
| 296 |
+
with open(path, 'r') as f:
|
| 297 |
+
batch = []
|
| 298 |
+
|
| 299 |
+
for line in f:
|
| 300 |
+
try:
|
| 301 |
+
data = json.loads(line)
|
| 302 |
+
text = data.get('text', '')
|
| 303 |
+
batch.append(text)
|
| 304 |
+
|
| 305 |
+
if len(batch) >= batch_size:
|
| 306 |
+
yield self.batch_preprocess(batch)
|
| 307 |
+
batch = []
|
| 308 |
+
|
| 309 |
+
except json.JSONDecodeError:
|
| 310 |
+
logger.warning(f"Skipping invalid JSON line")
|
| 311 |
+
|
| 312 |
+
if batch:
|
| 313 |
+
yield self.batch_preprocess(batch)
|
| 314 |
+
|
| 315 |
+
elif path.suffix == '.txt':
|
| 316 |
+
with open(path, 'r') as f:
|
| 317 |
+
batch = []
|
| 318 |
+
|
| 319 |
+
for line in f:
|
| 320 |
+
batch.append(line.strip())
|
| 321 |
+
|
| 322 |
+
if len(batch) >= batch_size:
|
| 323 |
+
yield self.batch_preprocess(batch)
|
| 324 |
+
batch = []
|
| 325 |
+
|
| 326 |
+
if batch:
|
| 327 |
+
yield self.batch_preprocess(batch)
|
| 328 |
+
|
| 329 |
+
else:
|
| 330 |
+
raise ValueError(f"Unsupported file format: {path.suffix}")
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class InferenceDataCollator:
|
| 334 |
+
"""Collate data for efficient batch inference"""
|
| 335 |
+
|
| 336 |
+
def __init__(self, pad_token_id: int = 128001):
|
| 337 |
+
"""
|
| 338 |
+
Initialize data collator
|
| 339 |
+
|
| 340 |
+
Args:
|
| 341 |
+
pad_token_id: ID for padding token
|
| 342 |
+
"""
|
| 343 |
+
self.pad_token_id = pad_token_id
|
| 344 |
+
|
| 345 |
+
def __call__(self, features: List[Dict]) -> Dict:
|
| 346 |
+
"""
|
| 347 |
+
Collate features into batch
|
| 348 |
+
|
| 349 |
+
Args:
|
| 350 |
+
features: List of feature dictionaries
|
| 351 |
+
|
| 352 |
+
Returns:
|
| 353 |
+
Batched features
|
| 354 |
+
"""
|
| 355 |
+
if not features:
|
| 356 |
+
return {}
|
| 357 |
+
|
| 358 |
+
# Get maximum sequence length in batch
|
| 359 |
+
max_length = max(len(f['input_ids']) for f in features)
|
| 360 |
+
|
| 361 |
+
batch = {
|
| 362 |
+
'input_ids': [],
|
| 363 |
+
'attention_mask': []
|
| 364 |
+
}
|
| 365 |
+
|
| 366 |
+
for feature in features:
|
| 367 |
+
input_ids = feature['input_ids']
|
| 368 |
+
attention_mask = feature.get('attention_mask', [1] * len(input_ids))
|
| 369 |
+
|
| 370 |
+
# Pad to max length
|
| 371 |
+
padding_length = max_length - len(input_ids)
|
| 372 |
+
|
| 373 |
+
input_ids = input_ids + [self.pad_token_id] * padding_length
|
| 374 |
+
attention_mask = attention_mask + [0] * padding_length
|
| 375 |
+
|
| 376 |
+
batch['input_ids'].append(input_ids)
|
| 377 |
+
batch['attention_mask'].append(attention_mask)
|
| 378 |
+
|
| 379 |
+
# Convert to numpy arrays
|
| 380 |
+
batch['input_ids'] = np.array(batch['input_ids'], dtype=np.int64)
|
| 381 |
+
batch['attention_mask'] = np.array(batch['attention_mask'], dtype=np.int64)
|
| 382 |
+
|
| 383 |
+
return batch
|
| 384 |
+
|
| 385 |
+
def dynamic_padding(self, features: List[Dict], padding_multiple: int = 8) -> Dict:
|
| 386 |
+
"""
|
| 387 |
+
Apply dynamic padding optimized for hardware
|
| 388 |
+
|
| 389 |
+
Args:
|
| 390 |
+
features: List of feature dictionaries
|
| 391 |
+
padding_multiple: Pad to multiple of this value
|
| 392 |
+
|
| 393 |
+
Returns:
|
| 394 |
+
Batched features with optimal padding
|
| 395 |
+
"""
|
| 396 |
+
if not features:
|
| 397 |
+
return {}
|
| 398 |
+
|
| 399 |
+
max_length = max(len(f['input_ids']) for f in features)
|
| 400 |
+
|
| 401 |
+
# Round up to nearest multiple
|
| 402 |
+
padded_length = ((max_length + padding_multiple - 1) // padding_multiple) * padding_multiple
|
| 403 |
+
|
| 404 |
+
batch = {
|
| 405 |
+
'input_ids': [],
|
| 406 |
+
'attention_mask': []
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
for feature in features:
|
| 410 |
+
input_ids = feature['input_ids']
|
| 411 |
+
attention_mask = feature.get('attention_mask', [1] * len(input_ids))
|
| 412 |
+
|
| 413 |
+
padding_length = padded_length - len(input_ids)
|
| 414 |
+
|
| 415 |
+
input_ids = input_ids + [self.pad_token_id] * padding_length
|
| 416 |
+
attention_mask = attention_mask + [0] * padding_length
|
| 417 |
+
|
| 418 |
+
batch['input_ids'].append(input_ids)
|
| 419 |
+
batch['attention_mask'].append(attention_mask)
|
| 420 |
+
|
| 421 |
+
batch['input_ids'] = np.array(batch['input_ids'], dtype=np.int64)
|
| 422 |
+
batch['attention_mask'] = np.array(batch['attention_mask'], dtype=np.int64)
|
| 423 |
+
|
| 424 |
+
return batch
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
class CachedDataLoader:
|
| 428 |
+
"""Data loader with caching for repeated inference"""
|
| 429 |
+
|
| 430 |
+
def __init__(self, cache_dir: str = "./cache"):
|
| 431 |
+
"""
|
| 432 |
+
Initialize cached data loader
|
| 433 |
+
|
| 434 |
+
Args:
|
| 435 |
+
cache_dir: Directory for cache storage
|
| 436 |
+
"""
|
| 437 |
+
self.cache_dir = Path(cache_dir)
|
| 438 |
+
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
| 439 |
+
|
| 440 |
+
def get_cache_key(self, text: str) -> str:
|
| 441 |
+
"""Generate cache key from text"""
|
| 442 |
+
import hashlib
|
| 443 |
+
return hashlib.sha256(text.encode()).hexdigest()
|
| 444 |
+
|
| 445 |
+
def load_from_cache(self, cache_key: str) -> Optional[Any]:
|
| 446 |
+
"""
|
| 447 |
+
Load data from cache
|
| 448 |
+
|
| 449 |
+
Args:
|
| 450 |
+
cache_key: Cache identifier
|
| 451 |
+
|
| 452 |
+
Returns:
|
| 453 |
+
Cached data or None
|
| 454 |
+
"""
|
| 455 |
+
cache_path = self.cache_dir / f"{cache_key}.json"
|
| 456 |
+
|
| 457 |
+
if not cache_path.exists():
|
| 458 |
+
return None
|
| 459 |
+
|
| 460 |
+
try:
|
| 461 |
+
with open(cache_path, 'r') as f:
|
| 462 |
+
return json.load(f)
|
| 463 |
+
except Exception as e:
|
| 464 |
+
logger.warning(f"Failed to load from cache: {e}")
|
| 465 |
+
return None
|
| 466 |
+
|
| 467 |
+
def save_to_cache(self, cache_key: str, data: Any):
|
| 468 |
+
"""
|
| 469 |
+
Save data to cache
|
| 470 |
+
|
| 471 |
+
Args:
|
| 472 |
+
cache_key: Cache identifier
|
| 473 |
+
data: Data to cache
|
| 474 |
+
"""
|
| 475 |
+
cache_path = self.cache_dir / f"{cache_key}.json"
|
| 476 |
+
|
| 477 |
+
try:
|
| 478 |
+
with open(cache_path, 'w') as f:
|
| 479 |
+
json.dump(data, f)
|
| 480 |
+
except Exception as e:
|
| 481 |
+
logger.warning(f"Failed to save to cache: {e}")
|
| 482 |
+
|
| 483 |
+
def clear_cache(self):
|
| 484 |
+
"""Clear all cached data"""
|
| 485 |
+
import shutil
|
| 486 |
+
shutil.rmtree(self.cache_dir)
|
| 487 |
+
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
| 488 |
+
logger.info("Cache cleared")
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def main():
|
| 492 |
+
"""Example usage"""
|
| 493 |
+
# SafeTensors loading
|
| 494 |
+
loader = SafeTensorsLoader("./models/helion")
|
| 495 |
+
|
| 496 |
+
# Get model info
|
| 497 |
+
info = loader.get_model_info()
|
| 498 |
+
print(f"Model: {info['model_name']}")
|
| 499 |
+
print(f"Size: {info['total_size_gb']:.2f} GB")
|
| 500 |
+
print(f"Shards: {info['total_shards']}")
|
| 501 |
+
|
| 502 |
+
# Validate checksums
|
| 503 |
+
print("\nValidating checksums...")
|
| 504 |
+
results = loader.validate_checksums()
|
| 505 |
+
valid_count = sum(1 for v in results.values() if v)
|
| 506 |
+
print(f"Valid: {valid_count}/{len(results)}")
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
if __name__ == "__main__":
|
| 510 |
+
main()
|