Create inference/evaluate.py
Browse files- inference/evaluate.py +401 -0
inference/evaluate.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Helion-2.5-Rnd Evaluation Script
|
| 4 |
+
Comprehensive benchmark evaluation across multiple datasets
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import argparse
|
| 8 |
+
import json
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
from collections import defaultdict
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from typing import Dict, List, Optional
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
from datasets import load_dataset
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 19 |
+
|
| 20 |
+
logging.basicConfig(
|
| 21 |
+
level=logging.INFO,
|
| 22 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 23 |
+
)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class HelionEvaluator:
|
| 28 |
+
"""Evaluation framework for Helion model"""
|
| 29 |
+
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
model_path: str,
|
| 33 |
+
device: str = "cuda",
|
| 34 |
+
batch_size: int = 1,
|
| 35 |
+
max_length: int = 2048
|
| 36 |
+
):
|
| 37 |
+
"""
|
| 38 |
+
Initialize evaluator
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
model_path: Path to model or HuggingFace model ID
|
| 42 |
+
device: Device to run evaluation on
|
| 43 |
+
batch_size: Batch size for evaluation
|
| 44 |
+
max_length: Maximum sequence length
|
| 45 |
+
"""
|
| 46 |
+
logger.info(f"Loading model from {model_path}")
|
| 47 |
+
|
| 48 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 49 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
+
model_path,
|
| 51 |
+
torch_dtype=torch.bfloat16,
|
| 52 |
+
device_map="auto",
|
| 53 |
+
trust_remote_code=True
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
self.device = device
|
| 57 |
+
self.batch_size = batch_size
|
| 58 |
+
self.max_length = max_length
|
| 59 |
+
|
| 60 |
+
logger.info("Model loaded successfully")
|
| 61 |
+
|
| 62 |
+
def generate(
|
| 63 |
+
self,
|
| 64 |
+
prompt: str,
|
| 65 |
+
max_new_tokens: int = 512,
|
| 66 |
+
temperature: float = 0.0,
|
| 67 |
+
**kwargs
|
| 68 |
+
) -> str:
|
| 69 |
+
"""Generate text from prompt"""
|
| 70 |
+
inputs = self.tokenizer(
|
| 71 |
+
prompt,
|
| 72 |
+
return_tensors="pt",
|
| 73 |
+
truncation=True,
|
| 74 |
+
max_length=self.max_length
|
| 75 |
+
).to(self.device)
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = self.model.generate(
|
| 79 |
+
**inputs,
|
| 80 |
+
max_new_tokens=max_new_tokens,
|
| 81 |
+
temperature=temperature if temperature > 0 else 1.0,
|
| 82 |
+
do_sample=temperature > 0,
|
| 83 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 84 |
+
**kwargs
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
response = self.tokenizer.decode(
|
| 88 |
+
outputs[0][inputs['input_ids'].shape[1]:],
|
| 89 |
+
skip_special_tokens=True
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
return response.strip()
|
| 93 |
+
|
| 94 |
+
def evaluate_mmlu(self, num_samples: Optional[int] = None) -> Dict:
|
| 95 |
+
"""Evaluate on MMLU benchmark"""
|
| 96 |
+
logger.info("Evaluating on MMLU...")
|
| 97 |
+
|
| 98 |
+
dataset = load_dataset("cais/mmlu", "all", split="test")
|
| 99 |
+
if num_samples:
|
| 100 |
+
dataset = dataset.select(range(min(num_samples, len(dataset))))
|
| 101 |
+
|
| 102 |
+
correct = 0
|
| 103 |
+
total = 0
|
| 104 |
+
|
| 105 |
+
for example in tqdm(dataset, desc="MMLU"):
|
| 106 |
+
question = example["question"]
|
| 107 |
+
choices = example["choices"]
|
| 108 |
+
answer = example["answer"]
|
| 109 |
+
|
| 110 |
+
# Format prompt
|
| 111 |
+
prompt = f"Question: {question}\n\nChoices:\n"
|
| 112 |
+
for i, choice in enumerate(choices):
|
| 113 |
+
prompt += f"{chr(65+i)}. {choice}\n"
|
| 114 |
+
prompt += "\nAnswer: "
|
| 115 |
+
|
| 116 |
+
# Generate response
|
| 117 |
+
response = self.generate(prompt, max_new_tokens=10, temperature=0.0)
|
| 118 |
+
|
| 119 |
+
# Extract answer
|
| 120 |
+
pred = response.strip()[0].upper() if response else ""
|
| 121 |
+
correct_answer = chr(65 + answer)
|
| 122 |
+
|
| 123 |
+
if pred == correct_answer:
|
| 124 |
+
correct += 1
|
| 125 |
+
total += 1
|
| 126 |
+
|
| 127 |
+
accuracy = correct / total if total > 0 else 0
|
| 128 |
+
|
| 129 |
+
return {
|
| 130 |
+
"benchmark": "MMLU",
|
| 131 |
+
"accuracy": accuracy,
|
| 132 |
+
"correct": correct,
|
| 133 |
+
"total": total
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
def evaluate_gsm8k(self, num_samples: Optional[int] = None) -> Dict:
|
| 137 |
+
"""Evaluate on GSM8K mathematical reasoning"""
|
| 138 |
+
logger.info("Evaluating on GSM8K...")
|
| 139 |
+
|
| 140 |
+
dataset = load_dataset("gsm8k", "main", split="test")
|
| 141 |
+
if num_samples:
|
| 142 |
+
dataset = dataset.select(range(min(num_samples, len(dataset))))
|
| 143 |
+
|
| 144 |
+
correct = 0
|
| 145 |
+
total = 0
|
| 146 |
+
|
| 147 |
+
for example in tqdm(dataset, desc="GSM8K"):
|
| 148 |
+
question = example["question"]
|
| 149 |
+
answer = example["answer"]
|
| 150 |
+
|
| 151 |
+
# Extract numerical answer
|
| 152 |
+
import re
|
| 153 |
+
match = re.search(r'####\s*(-?\d+(?:,\d+)*(?:\.\d+)?)', answer)
|
| 154 |
+
if not match:
|
| 155 |
+
continue
|
| 156 |
+
|
| 157 |
+
correct_answer = match.group(1).replace(',', '')
|
| 158 |
+
|
| 159 |
+
# Format prompt
|
| 160 |
+
prompt = f"Question: {question}\n\nLet's solve this step by step:\n"
|
| 161 |
+
|
| 162 |
+
# Generate response
|
| 163 |
+
response = self.generate(prompt, max_new_tokens=512, temperature=0.0)
|
| 164 |
+
|
| 165 |
+
# Extract predicted answer
|
| 166 |
+
pred_match = re.search(r'(?:answer is|=)\s*(-?\d+(?:,\d+)*(?:\.\d+)?)', response.lower())
|
| 167 |
+
if pred_match:
|
| 168 |
+
pred_answer = pred_match.group(1).replace(',', '')
|
| 169 |
+
if pred_answer == correct_answer:
|
| 170 |
+
correct += 1
|
| 171 |
+
|
| 172 |
+
total += 1
|
| 173 |
+
|
| 174 |
+
accuracy = correct / total if total > 0 else 0
|
| 175 |
+
|
| 176 |
+
return {
|
| 177 |
+
"benchmark": "GSM8K",
|
| 178 |
+
"accuracy": accuracy,
|
| 179 |
+
"correct": correct,
|
| 180 |
+
"total": total
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
def evaluate_humaneval(self, num_samples: Optional[int] = None) -> Dict:
|
| 184 |
+
"""Evaluate on HumanEval code generation"""
|
| 185 |
+
logger.info("Evaluating on HumanEval...")
|
| 186 |
+
|
| 187 |
+
try:
|
| 188 |
+
dataset = load_dataset("openai_humaneval", split="test")
|
| 189 |
+
except:
|
| 190 |
+
logger.warning("HumanEval dataset not available")
|
| 191 |
+
return {"benchmark": "HumanEval", "error": "Dataset not available"}
|
| 192 |
+
|
| 193 |
+
if num_samples:
|
| 194 |
+
dataset = dataset.select(range(min(num_samples, len(dataset))))
|
| 195 |
+
|
| 196 |
+
results = []
|
| 197 |
+
|
| 198 |
+
for example in tqdm(dataset, desc="HumanEval"):
|
| 199 |
+
prompt = example["prompt"]
|
| 200 |
+
|
| 201 |
+
# Generate code
|
| 202 |
+
full_prompt = f"Complete the following Python function:\n\n{prompt}"
|
| 203 |
+
response = self.generate(
|
| 204 |
+
full_prompt,
|
| 205 |
+
max_new_tokens=512,
|
| 206 |
+
temperature=0.0
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Extract code
|
| 210 |
+
code = prompt + response
|
| 211 |
+
|
| 212 |
+
results.append({
|
| 213 |
+
"task_id": example["task_id"],
|
| 214 |
+
"completion": code,
|
| 215 |
+
"test": example["test"]
|
| 216 |
+
})
|
| 217 |
+
|
| 218 |
+
# Note: Full evaluation requires executing code
|
| 219 |
+
# This is a simplified version
|
| 220 |
+
return {
|
| 221 |
+
"benchmark": "HumanEval",
|
| 222 |
+
"samples_generated": len(results),
|
| 223 |
+
"note": "Full evaluation requires code execution framework"
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
def evaluate_truthfulqa(self, num_samples: Optional[int] = None) -> Dict:
|
| 227 |
+
"""Evaluate on TruthfulQA"""
|
| 228 |
+
logger.info("Evaluating on TruthfulQA...")
|
| 229 |
+
|
| 230 |
+
dataset = load_dataset("truthful_qa", "generation", split="validation")
|
| 231 |
+
if num_samples:
|
| 232 |
+
dataset = dataset.select(range(min(num_samples, len(dataset))))
|
| 233 |
+
|
| 234 |
+
responses = []
|
| 235 |
+
|
| 236 |
+
for example in tqdm(dataset, desc="TruthfulQA"):
|
| 237 |
+
question = example["question"]
|
| 238 |
+
|
| 239 |
+
prompt = f"Question: {question}\n\nProvide a truthful and accurate answer:\nAnswer: "
|
| 240 |
+
|
| 241 |
+
response = self.generate(prompt, max_new_tokens=256, temperature=0.0)
|
| 242 |
+
|
| 243 |
+
responses.append({
|
| 244 |
+
"question": question,
|
| 245 |
+
"response": response,
|
| 246 |
+
"best_answer": example["best_answer"],
|
| 247 |
+
"correct_answers": example["correct_answers"],
|
| 248 |
+
"incorrect_answers": example["incorrect_answers"]
|
| 249 |
+
})
|
| 250 |
+
|
| 251 |
+
return {
|
| 252 |
+
"benchmark": "TruthfulQA",
|
| 253 |
+
"samples_evaluated": len(responses),
|
| 254 |
+
"note": "Manual review required for truthfulness assessment"
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
def evaluate_all(
|
| 258 |
+
self,
|
| 259 |
+
output_file: Optional[str] = None,
|
| 260 |
+
num_samples: Optional[int] = None
|
| 261 |
+
) -> Dict:
|
| 262 |
+
"""Run all evaluations"""
|
| 263 |
+
logger.info("Starting comprehensive evaluation...")
|
| 264 |
+
|
| 265 |
+
results = {
|
| 266 |
+
"model": "DeepXR/Helion-2.5-Rnd",
|
| 267 |
+
"benchmarks": {}
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
# Run evaluations
|
| 271 |
+
try:
|
| 272 |
+
results["benchmarks"]["mmlu"] = self.evaluate_mmlu(num_samples)
|
| 273 |
+
except Exception as e:
|
| 274 |
+
logger.error(f"MMLU evaluation failed: {e}")
|
| 275 |
+
results["benchmarks"]["mmlu"] = {"error": str(e)}
|
| 276 |
+
|
| 277 |
+
try:
|
| 278 |
+
results["benchmarks"]["gsm8k"] = self.evaluate_gsm8k(num_samples)
|
| 279 |
+
except Exception as e:
|
| 280 |
+
logger.error(f"GSM8K evaluation failed: {e}")
|
| 281 |
+
results["benchmarks"]["gsm8k"] = {"error": str(e)}
|
| 282 |
+
|
| 283 |
+
try:
|
| 284 |
+
results["benchmarks"]["humaneval"] = self.evaluate_humaneval(num_samples)
|
| 285 |
+
except Exception as e:
|
| 286 |
+
logger.error(f"HumanEval evaluation failed: {e}")
|
| 287 |
+
results["benchmarks"]["humaneval"] = {"error": str(e)}
|
| 288 |
+
|
| 289 |
+
try:
|
| 290 |
+
results["benchmarks"]["truthfulqa"] = self.evaluate_truthfulqa(num_samples)
|
| 291 |
+
except Exception as e:
|
| 292 |
+
logger.error(f"TruthfulQA evaluation failed: {e}")
|
| 293 |
+
results["benchmarks"]["truthfulqa"] = {"error": str(e)}
|
| 294 |
+
|
| 295 |
+
# Save results
|
| 296 |
+
if output_file:
|
| 297 |
+
output_path = Path(output_file)
|
| 298 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 299 |
+
|
| 300 |
+
with open(output_path, 'w') as f:
|
| 301 |
+
json.dump(results, f, indent=2)
|
| 302 |
+
|
| 303 |
+
logger.info(f"Results saved to {output_path}")
|
| 304 |
+
|
| 305 |
+
# Print summary
|
| 306 |
+
logger.info("\n" + "="*50)
|
| 307 |
+
logger.info("EVALUATION SUMMARY")
|
| 308 |
+
logger.info("="*50)
|
| 309 |
+
|
| 310 |
+
for benchmark, result in results["benchmarks"].items():
|
| 311 |
+
if "accuracy" in result:
|
| 312 |
+
logger.info(f"{benchmark.upper()}: {result['accuracy']:.2%}")
|
| 313 |
+
elif "error" in result:
|
| 314 |
+
logger.info(f"{benchmark.upper()}: ERROR - {result['error']}")
|
| 315 |
+
else:
|
| 316 |
+
logger.info(f"{benchmark.upper()}: {result.get('note', 'Completed')}")
|
| 317 |
+
|
| 318 |
+
return results
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def main():
|
| 322 |
+
"""Main evaluation entry point"""
|
| 323 |
+
parser = argparse.ArgumentParser(description="Evaluate Helion model")
|
| 324 |
+
parser.add_argument(
|
| 325 |
+
"--model",
|
| 326 |
+
type=str,
|
| 327 |
+
required=True,
|
| 328 |
+
help="Model path or HuggingFace ID"
|
| 329 |
+
)
|
| 330 |
+
parser.add_argument(
|
| 331 |
+
"--benchmarks",
|
| 332 |
+
type=str,
|
| 333 |
+
nargs="+",
|
| 334 |
+
default=["all"],
|
| 335 |
+
choices=["all", "mmlu", "gsm8k", "humaneval", "truthfulqa"],
|
| 336 |
+
help="Benchmarks to run"
|
| 337 |
+
)
|
| 338 |
+
parser.add_argument(
|
| 339 |
+
"--output",
|
| 340 |
+
type=str,
|
| 341 |
+
default="evaluation_results.json",
|
| 342 |
+
help="Output file for results"
|
| 343 |
+
)
|
| 344 |
+
parser.add_argument(
|
| 345 |
+
"--num-samples",
|
| 346 |
+
type=int,
|
| 347 |
+
default=None,
|
| 348 |
+
help="Number of samples to evaluate (for quick testing)"
|
| 349 |
+
)
|
| 350 |
+
parser.add_argument(
|
| 351 |
+
"--device",
|
| 352 |
+
type=str,
|
| 353 |
+
default="cuda",
|
| 354 |
+
help="Device to use"
|
| 355 |
+
)
|
| 356 |
+
parser.add_argument(
|
| 357 |
+
"--batch-size",
|
| 358 |
+
type=int,
|
| 359 |
+
default=1,
|
| 360 |
+
help="Batch size"
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
args = parser.parse_args()
|
| 364 |
+
|
| 365 |
+
# Initialize evaluator
|
| 366 |
+
evaluator = HelionEvaluator(
|
| 367 |
+
model_path=args.model,
|
| 368 |
+
device=args.device,
|
| 369 |
+
batch_size=args.batch_size
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
# Run evaluations
|
| 373 |
+
if "all" in args.benchmarks:
|
| 374 |
+
results = evaluator.evaluate_all(
|
| 375 |
+
output_file=args.output,
|
| 376 |
+
num_samples=args.num_samples
|
| 377 |
+
)
|
| 378 |
+
else:
|
| 379 |
+
results = {"model": args.model, "benchmarks": {}}
|
| 380 |
+
|
| 381 |
+
if "mmlu" in args.benchmarks:
|
| 382 |
+
results["benchmarks"]["mmlu"] = evaluator.evaluate_mmlu(args.num_samples)
|
| 383 |
+
|
| 384 |
+
if "gsm8k" in args.benchmarks:
|
| 385 |
+
results["benchmarks"]["gsm8k"] = evaluator.evaluate_gsm8k(args.num_samples)
|
| 386 |
+
|
| 387 |
+
if "humaneval" in args.benchmarks:
|
| 388 |
+
results["benchmarks"]["humaneval"] = evaluator.evaluate_humaneval(args.num_samples)
|
| 389 |
+
|
| 390 |
+
if "truthfulqa" in args.benchmarks:
|
| 391 |
+
results["benchmarks"]["truthfulqa"] = evaluator.evaluate_truthfulqa(args.num_samples)
|
| 392 |
+
|
| 393 |
+
# Save results
|
| 394 |
+
with open(args.output, 'w') as f:
|
| 395 |
+
json.dump(results, f, indent=2)
|
| 396 |
+
|
| 397 |
+
logger.info(f"Results saved to {args.output}")
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
if __name__ == "__main__":
|
| 401 |
+
main()
|