{ "model_id": "DeepXR/Helion-2.5-Rnd", "model_name": "Helion-2.5-Rnd", "full_name": "Helion 2.5 Research and Development", "organization": "DeepXR", "release_date": "2025-01-30", "version": "2.5.0-rnd", "status": "research", "description": "Advanced research language model with 70B parameters, designed for exceptional performance across reasoning, code generation, mathematics, and multilingual understanding with 131K context window.", "architecture": { "type": "transformer", "variant": "llama", "parameters": "70B", "layers": 32, "hidden_size": 4096, "attention_heads": 32, "kv_heads": 8, "intermediate_size": 14336, "vocabulary_size": 128256, "context_length": 131072, "rope_theta": 500000, "positional_encoding": "YARN", "activation": "SiLU", "normalization": "RMSNorm" }, "capabilities": { "text_generation": { "enabled": true, "quality": "high", "max_length": 131072 }, "code_generation": { "enabled": true, "languages": [ "Python", "JavaScript", "TypeScript", "Java", "C++", "C#", "Go", "Rust", "Swift", "Kotlin", "Ruby", "PHP", "Scala", "R" ], "quality": "high" }, "mathematics": { "enabled": true, "capabilities": [ "arithmetic", "algebra", "calculus", "statistics", "proof_generation" ], "quality": "high" }, "reasoning": { "enabled": true, "types": [ "logical", "analytical", "common_sense", "abstract" ], "quality": "high" }, "multilingual": { "enabled": true, "languages": 50, "primary_languages": [ "English", "Spanish", "French", "German", "Chinese", "Japanese", "Korean", "Russian", "Arabic", "Hindi", "Portuguese", "Italian" ] }, "long_context": { "enabled": true, "max_tokens": 131072, "performance": "optimized" } }, "performance": { "benchmarks": { "mmlu": { "score": 0.847, "description": "Massive Multitask Language Understanding" }, "gsm8k": { "score": 0.892, "description": "Grade School Math 8K" }, "humaneval": { "score": 0.756, "description": "Code Generation Accuracy" }, "mbpp": { "score": 0.723, "description": "Python Programming Benchmark" }, "arc_challenge": { "score": 0.834, "description": "ARC Challenge Reasoning" }, "hellaswag": { "score": 0.889, "description": "Common Sense Inference" }, "winogrande": { "score": 0.823, "description": "Commonsense Reasoning" }, "truthfulqa": { "score": 0.612, "description": "Truthfulness in QA" } }, "inference": { "throughput_tokens_per_second": "30-50", "latency_first_token_ms": "100-300", "optimal_batch_size": "1-32", "memory_requirement_gb": 140 } }, "technical_details": { "precision": "float16", "weight_format": "safetensors", "total_shards": 83, "shard_naming": "shard_00 through shard_82", "shard_size_gb": 1.69, "shard_size_gib": 1.57, "total_size_gb": 140.27, "total_size_gib": 130.71, "size_note": "File managers show 1.57GiB (binary), imports show 1.69GB (decimal)", "quantization": "none", "optimization": [ "Flash Attention 2", "Grouped Query Attention", "Tensor Parallelism", "Pipeline Parallelism" ] }, "training": { "steps": 150000, "warmup_steps": 2000, "learning_rate": 2e-05, "optimizer": "AdamW", "scheduler": "cosine_with_restarts", "precision": "bfloat16", "gradient_accumulation": 8, "batch_size": 4, "parallelization": { "tensor_parallel": 4, "pipeline_parallel": 2 } }, "hardware_requirements": { "minimum": { "gpus": "2x NVIDIA A100 80GB", "vram_gb": 160, "ram_gb": 256, "storage_gb": 500, "network": "10Gbps" }, "recommended": { "gpus": "4x NVIDIA H100 80GB", "vram_gb": 320, "ram_gb": 512, "storage_gb": 1000, "network": "100Gbps InfiniBand" } }, "usage": { "intended_uses": [ "Research and development", "Advanced reasoning tasks", "Code generation and analysis", "Mathematical problem solving", "Multilingual applications", "Long document understanding", "Creative writing", "Educational purposes" ], "not_recommended": [ "Production without validation", "Critical decision-making without oversight", "Medical diagnosis", "Legal advice", "Financial advice", "Safety-critical systems" ] }, "limitations": [ "Research model - requires validation", "May exhibit training data biases", "Can generate incorrect information", "Performance varies by domain", "Context degradation beyond 64K tokens", "Requires significant compute resources" ], "ethical_considerations": { "bias_mitigation": "Ongoing evaluation and monitoring", "safety_features": [ "Content filtering", "PII detection", "Toxicity monitoring", "Prompt injection protection" ], "responsible_use": [ "Verify outputs for critical applications", "Monitor for bias", "Implement content filtering", "Respect privacy and data protection" ] }, "license": { "type": "Apache-2.0", "url": "https://www.apache.org/licenses/LICENSE-2.0", "commercial_use": true, "modification": true, "distribution": true, "patent_use": true, "private_use": true }, "files": { "safetensors": { "format": "safetensors", "num_shards": 83, "pattern": "shard_{:02d}.safetensors", "shard_range": "shard_00.safetensors to shard_82.safetensors", "shard_size_gb": 1.69, "shard_size_gib": 1.57, "total_size_gb": 140.27, "index_file": "model.safetensors.index.json", "checksums_available": true }, "config": [ "config.json", "generation_config.json", "tokenizer_config.json", "model_config.yaml" ], "inference": [ "inference/server.py", "inference/client.py", "inference/utils.py", "inference/security.py", "inference/evaluate.py", "inference/batch_inference.py", "inference/optimizer.py", "inference/benchmark.py" ] }, "links": { "repository": "https://huggingface.co/DeepXR/Helion-2.5-Rnd", "organization": "https://deepxr.ai", "documentation": "https://docs.deepxr.ai/helion", "paper": null, "demo": null }, "contact": { "email": "support@deepxr.ai", "research_email": "research@deepxr.ai", "security_email": "security@deepxr.ai", "website": "https://deepxr.ai" }, "citation": { "format": "bibtex", "text": "@misc{helion-2.5-rnd-2025,\n title={Helion-2.5-Rnd: Advanced Research Language Model},\n author={DeepXR Research Team},\n year={2025},\n publisher={DeepXR},\n url={https://huggingface.co/DeepXR/Helion-2.5-Rnd}\n}" }, "changelog": [ { "version": "2.5.0-rnd", "date": "2025-01-30", "changes": [ "Initial research release", "70B parameter model", "131K context window with YARN", "SafeTensors format (96 shards)", "Comprehensive inference suite", "Security implementation", "Optimization tools" ] } ] }