---
thumbnail: "/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66c26b6fb01b19d8c3c2467b%2Fjg2NWmCUfPyzizm2USjMt.jpeg"
datasets:
- NewEden/Orion-LIT
- NewEden/Orion-Asstr-Stories-16K
- Mielikki/Erebus-87k
base_model:
- Qwen/QwQ
tags:
- qwen
- roleplay
- finetune
- storywriting
---
  
 
    Hamanasu 32B
 
## π Overview
After 25 hours, I present Hamanasu-QwQ-32B-V0.1 - One of the first QwQ Finetunes. Using data from the following:
- `NewEden/Orion-LIT`
- `NewEden/Orion-Asstr-Stories-16K`
- `Mielikki/Erebus-87k`
This model shows great promise for roleplaying and story-writing. All thanks to Ruka-Hamanasu for funding the train.
Disclaimer: The model is still in preview, Only completion training has been performed ontop.
### π Quantizations
| Type | Link |
|:---:|:---:|
| `GGUF` | https://huggingface.co/Delta-Vector/Hamanasu-32B-V1-QwQ-exl2 |
| `EXL2` | https://huggingface.co/Delta-Vector/Hamanasu-32B-V1-QwQ-gguf |
### βοΈ Hardware
- 4x H100s 
- Epochs: 1
- Base: `QwQ`
- Amount of Tokens: 1+ Billion
 
## π° Prompting
This model uses ChatML formatting
```python
<|im_start|>system
You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|>
<|im_start|>User request
Take off your helmet.<|im_end|>
<|im_start|>No i shall not. This is the way.
```
## Axolotl Config  κ°(ΛΆβ’ α΄ β’ΛΆ)κ±
  
```yaml
base_model: Qwen/QwQ-32B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
  - path: Mielikki/Erebus-87k
    type: completion
    field: body
  - path: NewEden/Orion-Completion-Asstr-Stories-16K
    type: completion
    field: content 
  - path: NewEden/Orion-Completion-LIT
    type: completion
    field: text 
shuffle_merged_datasets: true
dataset_prepared_path: prepared_data
output_dir: ./qvq-cum
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16 
lora_dropout: 0.05
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:
 - embed_tokens
 - lm_head
wandb_project: qwq
wandb_entity:
wandb_watch:
wandb_name: Pretrain-pt1-v2-frfr
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
max_grad_norm: 0.001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
saves_per_epoch: 2
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
```