--- license: mit base_model: prajjwal1/bert-mini tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: bert-mini-url results: [] --- # bert-mini-url This model is a fine-tuned version of [prajjwal1/bert-mini](https://huggingface.co/prajjwal1/bert-mini) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0565 - Accuracy: 0.9873 - Precision: 0.9848 - Recall: 0.9912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | |:-------------:|:-----:|:------:|:---------------:|:--------:|:---------:|:------:| | 0.0644 | 1.0 | 32322 | 0.0633 | 0.9815 | 0.9832 | 0.9818 | | 0.0579 | 2.0 | 64644 | 0.0572 | 0.9853 | 0.9818 | 0.9906 | | 0.0485 | 3.0 | 96966 | 0.0564 | 0.9867 | 0.9859 | 0.9892 | | 0.0439 | 4.0 | 129288 | 0.0565 | 0.9873 | 0.9848 | 0.9912 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1