Update README.md
Browse files
README.md
CHANGED
|
@@ -14,6 +14,7 @@ For a complete overview of the project, including all related models, datasets,
|
|
| 14 |
```python
|
| 15 |
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 16 |
from peft import PeftModel
|
|
|
|
| 17 |
|
| 18 |
# Load base model
|
| 19 |
base_model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
|
@@ -23,6 +24,57 @@ processor = AutoProcessor.from_pretrained(base_model_name)
|
|
| 23 |
# Load LoRA adapter
|
| 24 |
adapter_path = "DermaVLM/DermatoLLama-200k"
|
| 25 |
model = PeftModel.from_pretrained(model, adapter_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
```
|
| 27 |
|
| 28 |
## Citation
|
|
|
|
| 14 |
```python
|
| 15 |
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 16 |
from peft import PeftModel
|
| 17 |
+
from PIL import Image
|
| 18 |
|
| 19 |
# Load base model
|
| 20 |
base_model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
|
|
|
| 24 |
# Load LoRA adapter
|
| 25 |
adapter_path = "DermaVLM/DermatoLLama-200k"
|
| 26 |
model = PeftModel.from_pretrained(model, adapter_path)
|
| 27 |
+
|
| 28 |
+
# Inference
|
| 29 |
+
image_path = "DERM12345.jpg"
|
| 30 |
+
image = Image.open(image_path).convert("RGB")
|
| 31 |
+
prompt_text = "Describe the image in detail."
|
| 32 |
+
messages = []
|
| 33 |
+
content_list = []
|
| 34 |
+
if image:
|
| 35 |
+
content_list.append({"type": "image"})
|
| 36 |
+
|
| 37 |
+
# Add the text part of the prompt
|
| 38 |
+
content_list.append({"type": "text", "text": prompt_text})
|
| 39 |
+
messages.append({"role": "user", "content": content_list})
|
| 40 |
+
|
| 41 |
+
input_text = processor.apply_chat_template(
|
| 42 |
+
messages,
|
| 43 |
+
add_generation_prompt=True,
|
| 44 |
+
tokenize=False,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Prepare final inputs
|
| 48 |
+
inputs = processor(
|
| 49 |
+
images=image,
|
| 50 |
+
text=input_text,
|
| 51 |
+
add_special_tokens=False,
|
| 52 |
+
return_tensors="pt",
|
| 53 |
+
).to(model.device)
|
| 54 |
+
|
| 55 |
+
generation_config = {
|
| 56 |
+
"max_new_tokens": 256,
|
| 57 |
+
"do_sample": True,
|
| 58 |
+
"temperature": 0.4,
|
| 59 |
+
"top_p": 0.95,
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
input_length = inputs.input_ids.shape[1]
|
| 63 |
+
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
outputs = model.generate(
|
| 66 |
+
**inputs,
|
| 67 |
+
**generation_config,
|
| 68 |
+
pad_token_id=(
|
| 69 |
+
processor.tokenizer.pad_token_id
|
| 70 |
+
if processor.tokenizer.pad_token_id is not None
|
| 71 |
+
else processor.tokenizer.eos_token_id
|
| 72 |
+
),
|
| 73 |
+
)
|
| 74 |
+
generated_tokens = outputs[0][input_length:]
|
| 75 |
+
raw_output = processor.decode(generated_tokens, skip_special_tokens=True)
|
| 76 |
+
|
| 77 |
+
print(raw_output)
|
| 78 |
```
|
| 79 |
|
| 80 |
## Citation
|