drAbreu commited on
Commit
c27c75d
·
verified ·
1 Parent(s): 89e9f65

End of training

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -25,13 +25,13 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8240023449604288
29
  - name: Recall
30
  type: recall
31
- value: 0.8621374536320355
32
  - name: F1
33
  type: f1
34
- value: 0.8426386519836992
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.1297
45
- - Accuracy Score: 0.9589
46
- - Precision: 0.8240
47
- - Recall: 0.8621
48
- - F1: 0.8426
49
 
50
  ## Model description
51
 
@@ -79,8 +79,8 @@ No additional optimizer arguments
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
  |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
- | 0.1052 | 0.9994 | 863 | 0.1325 | 0.9569 | 0.8153 | 0.8534 | 0.8339 |
83
- | 0.0753 | 1.9988 | 1726 | 0.1297 | 0.9589 | 0.8240 | 0.8621 | 0.8426 |
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.822425590865203
29
  - name: Recall
30
  type: recall
31
+ value: 0.8583257878902941
32
  - name: F1
33
  type: f1
34
+ value: 0.8399922822412943
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.1324
45
+ - Accuracy Score: 0.9585
46
+ - Precision: 0.8224
47
+ - Recall: 0.8583
48
+ - F1: 0.8400
49
 
50
  ## Model description
51
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
  |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
+ | 0.1047 | 0.9994 | 863 | 0.1295 | 0.9563 | 0.8179 | 0.8437 | 0.8306 |
83
+ | 0.0747 | 1.9988 | 1726 | 0.1324 | 0.9585 | 0.8224 | 0.8583 | 0.8400 |
84
 
85
 
86
  ### Framework versions