--- library_name: transformers license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-large tags: - generated_from_trainer datasets: - source_data metrics: - precision - recall - f1 model-index: - name: SourceData_NER_v1_0_0_BioLinkBERT_large results: - task: name: Token Classification type: token-classification dataset: name: source_data type: source_data config: NER split: validation args: NER metrics: - name: Precision type: precision value: 0.822425590865203 - name: Recall type: recall value: 0.8583257878902941 - name: F1 type: f1 value: 0.8399922822412943 --- # SourceData_NER_v1_0_0_BioLinkBERT_large This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.1324 - Accuracy Score: 0.9585 - Precision: 0.8224 - Recall: 0.8583 - F1: 0.8400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adafactor and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.1047 | 0.9994 | 863 | 0.1295 | 0.9563 | 0.8179 | 0.8437 | 0.8306 | | 0.0747 | 1.9988 | 1726 | 0.1324 | 0.9585 | 0.8224 | 0.8583 | 0.8400 | ### Framework versions - Transformers 4.46.3 - Pytorch 1.13.1+cu117 - Datasets 3.1.0 - Tokenizers 0.20.3