drAbreu commited on
Commit
d72c03c
·
verified ·
1 Parent(s): b30469b

End of training

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - source_data
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: SourceData_NER_v1_0_0_PubMedBERT_base
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: source_data
21
+ type: source_data
22
+ config: NER
23
+ split: validation
24
+ args: NER
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8094689663785088
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8519438034874551
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8301634398502927
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # SourceData_NER_v1_0_0_PubMedBERT_base
41
+
42
+ This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the source_data dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.1442
45
+ - Accuracy Score: 0.9554
46
+ - Precision: 0.8095
47
+ - Recall: 0.8519
48
+ - F1: 0.8302
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 0.0001
68
+ - train_batch_size: 64
69
+ - eval_batch_size: 128
70
+ - seed: 42
71
+ - optimizer: Use adafactor and the args are:
72
+ No additional optimizer arguments
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 2.0
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
79
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
80
+ | 0.1078 | 1.0 | 864 | 0.1402 | 0.9529 | 0.8074 | 0.8323 | 0.8196 |
81
+ | 0.0738 | 2.0 | 1728 | 0.1442 | 0.9554 | 0.8095 | 0.8519 | 0.8302 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.46.3
87
+ - Pytorch 1.13.1+cu117
88
+ - Datasets 3.1.0
89
+ - Tokenizers 0.20.3