--- library_name: transformers license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract tags: - generated_from_trainer datasets: - source_data metrics: - precision - recall - f1 model-index: - name: SourceData_NER_v1_0_0_PubMedBERT_base results: - task: name: Token Classification type: token-classification dataset: name: source_data type: source_data config: NER split: validation args: NER metrics: - name: Precision type: precision value: 0.8140302498537645 - name: Recall type: recall value: 0.8535940649005462 - name: F1 type: f1 value: 0.8333428384042887 --- # SourceData_NER_v1_0_0_PubMedBERT_base This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.1432 - Accuracy Score: 0.9557 - Precision: 0.8140 - Recall: 0.8536 - F1: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Use adafactor and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.1092 | 1.0 | 864 | 0.1403 | 0.9520 | 0.8061 | 0.8293 | 0.8175 | | 0.075 | 2.0 | 1728 | 0.1432 | 0.9557 | 0.8140 | 0.8536 | 0.8333 | ### Framework versions - Transformers 4.46.3 - Pytorch 1.13.1+cu117 - Datasets 3.1.0 - Tokenizers 0.20.3