drAbreu commited on
Commit
ad168c5
·
verified ·
1 Parent(s): c9f6e63

End of training

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -25,13 +25,13 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8178665324159534
29
  - name: Recall
30
  type: recall
31
- value: 0.8541052078161054
32
  - name: F1
33
  type: f1
34
- value: 0.8355931476904174
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.1362
45
- - Accuracy Score: 0.9578
46
- - Precision: 0.8179
47
- - Recall: 0.8541
48
- - F1: 0.8356
49
 
50
  ## Model description
51
 
@@ -79,8 +79,8 @@ No additional optimizer arguments
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
  |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
- | 0.1056 | 0.9994 | 863 | 0.1355 | 0.9556 | 0.8094 | 0.8475 | 0.8280 |
83
- | 0.075 | 1.9988 | 1726 | 0.1362 | 0.9578 | 0.8179 | 0.8541 | 0.8356 |
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8202296075899624
29
  - name: Recall
30
  type: recall
31
+ value: 0.8535064404007361
32
  - name: F1
33
  type: f1
34
+ value: 0.8365372228504359
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.1352
45
+ - Accuracy Score: 0.9575
46
+ - Precision: 0.8202
47
+ - Recall: 0.8535
48
+ - F1: 0.8365
49
 
50
  ## Model description
51
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
  |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
+ | 0.108 | 0.9994 | 863 | 0.1354 | 0.9557 | 0.8133 | 0.8463 | 0.8294 |
83
+ | 0.0778 | 1.9988 | 1726 | 0.1352 | 0.9575 | 0.8202 | 0.8535 | 0.8365 |
84
 
85
 
86
  ### Framework versions