drAbreu commited on
Commit
81d9f98
·
verified ·
1 Parent(s): fac5719

End of training

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -25,13 +25,13 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9688679245283018
29
  - name: Recall
30
  type: recall
31
- value: 0.9725378787878788
32
  - name: F1
33
  type: f1
34
- value: 0.9706994328922495
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.0016
45
  - Accuracy Score: 0.9996
46
- - Precision: 0.9689
47
- - Recall: 0.9725
48
- - F1: 0.9707
49
 
50
  ## Model description
51
 
@@ -79,7 +79,7 @@ No additional optimizer arguments
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
  |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
- | 0.001 | 0.9994 | 863 | 0.0016 | 0.9996 | 0.9689 | 0.9725 | 0.9707 |
83
 
84
 
85
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9722117202268431
29
  - name: Recall
30
  type: recall
31
+ value: 0.9740530303030303
32
  - name: F1
33
  type: f1
34
+ value: 0.973131504257332
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.0018
45
  - Accuracy Score: 0.9996
46
+ - Precision: 0.9722
47
+ - Recall: 0.9741
48
+ - F1: 0.9731
49
 
50
  ## Model description
51
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
  |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
+ | 0.0008 | 0.9994 | 863 | 0.0018 | 0.9996 | 0.9722 | 0.9741 | 0.9731 |
83
 
84
 
85
  ### Framework versions