drAbreu commited on
Commit
b96b892
·
verified ·
1 Parent(s): a304fb7

End of training

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - source_data
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: SourceData_SmallmolRoles_v1_0_0_PubMedBERT_large
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: source_data
21
+ type: source_data
22
+ config: ROLES_SM
23
+ split: validation
24
+ args: ROLES_SM
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9688679245283018
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9725378787878788
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9706994328922495
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # SourceData_SmallmolRoles_v1_0_0_PubMedBERT_large
41
+
42
+ This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.0016
45
+ - Accuracy Score: 0.9996
46
+ - Precision: 0.9689
47
+ - Recall: 0.9725
48
+ - F1: 0.9707
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 5e-05
68
+ - train_batch_size: 16
69
+ - eval_batch_size: 64
70
+ - seed: 42
71
+ - gradient_accumulation_steps: 4
72
+ - total_train_batch_size: 64
73
+ - optimizer: Use adafactor and the args are:
74
+ No additional optimizer arguments
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 1.0
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
+ | 0.001 | 0.9994 | 863 | 0.0016 | 0.9996 | 0.9689 | 0.9725 | 0.9707 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.46.3
88
+ - Pytorch 1.13.1+cu117
89
+ - Datasets 3.1.0
90
+ - Tokenizers 0.20.3